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Abstract
For positive integers a, k, let Ak(a) denote the sequence ak, ak + 1, ak + a, . . . , ak +
ak−1. Let Γ

(
Ak(a)

)
denote the set of integers that are expressible as a linear

combination of elements of Ak(a) with non-negative integer coefficients. We de-
termine g

(
Ak(a)

)
and n

(
Ak(a)

)
which denote the largest (respectively, the number

of) positive integer(s) not in Γ
(
Ak(a)

)
. We also determine the set S!

(
Ak(a)

)
of

positive integers not in Γ
(
Ak(a)

)
which satisfy n + Γ!

(
Ak(a)

)
⊂ Γ!

(
Ak(a)

)
, where

Γ!
(
Ak(a)

)
= Γ

(
Ak(a)

)
\ {0}.

1. Introduction

For a sequence of relatively prime positive integers A = a1, . . . , ak, let Γ(A) denote
the set of all integers of the form

∑k
i=1 aixi where each xi ≥ 0. It is well-known

and not difficult to show that Γc(A) := N \Γ(A) is a finite set. The Coin Exchange
Problem of Frobenius is to determine the largest integer in Γc(A). This is denoted
by g(A), and called the Frobenius number of A. The Frobenius number is known
in the case k = 2 to be g(a1, a2) = a1a2 − a1 − a2. A related problem is the
determination of the number of integers in Γc(A), which is denoted by n(A) and
known in the case k = 2 to be given by n(a1, a2) = 1

2 (a1 − 1)(a2 − 1). Various
aspects of the Frobenius Problem may be found in [4].

The purpose of this article is to determine both the Frobenius number g
(
Ak(a)

)

and n
(
Ak(a)

)
when Ak(a) = {ak, ak + 1, ak + a, . . . , ak + ak−1}. Moreover,

we determine the set S!
(
Ak(a)

)
, introduced in [7], of positive integers not

in Γ
(
Ak(a)

)
which satisfy n + Γ!

(
Ak(a)

)
⊂ Γ!

(
Ak(a)

)
, where Γ!

(
Ak(a)

)

= Γ
(
Ak(a)

)
\ {0}. In particular, this determines the Frobenius number since

g
(
Ak(a)

)
is the largest integer in S!

(
Ak(a)

)
. Hujter in [2] determined the Frobe-

nius number g
(
Ak(a)

)
(see p.70 in [4]) as a special case of a more general result.

We give simpler and direct proofs of this result, employing three methods to deter-
mine not only the Frobenius number g(·) but also n(·). First, we use a reduction
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formula due to Johnson [3] for g(·), and due to Rødseth [5] for n(·). Next, we again
determine these values using results due to Brauer and Shockley [1] for g(·), and to
Selmer [6] for n(·). We determine n

(
Ak(a)

)
from this by showing that exactly half

of the nonnegative integers less than or equal to g
(
Ak(a)

)
belong to Γ

(
Ak(a)

)
.

2. Main Results

Throughout this section, for positive integers a, k, we denote by Ak the sequence
ak, ak + 1, ak + a, . . . , ak + ak−1. For the sake of convenience, we state without
proof, two results that are crucial in the determination of exact values for both g(·)
and n(·). The following reduction formulae for g(A), due to Johnson [3], and for
n(A) due to Rødseth [5], are useful in cases when all but one member of A have a
common factor greater than 1.

Lemma 1. [3, 5] Let a ∈ A, let d = gcd
(
A \ {a}

)
, and define A′ := 1

d

(
A \ {a}

)
.

Then

(i) g(A) = d · g
(
A′ ∪ {a}

)
+ a(d− 1);

(ii) n(A) = d · n
(
A′ ∪ {a}

)
+ 1

2 (a− 1)(d− 1).

Fix a ∈ A, and let mC denote the smallest integer in Γ(A) ∩C, where C denotes
a nonzero residue class mod a. The functions g(·) and n(·) are easily determined
from the values of mC. The following result, part (i) of which is due to Brauer
& Shockley [1] and part (ii) to Selmer [6], shows that both g(·) and n(·) can be
determined from the values of mC.

Lemma 2. [1, 6] Let a ∈ A. Then

(i) g(A) = max
C

mC − a, the maximum taken over all nonzero classes C mod a;

(ii) n(A) =
1
a

∑

C

mC − 1
2 (a − 1), the sum taken over all nonzero classes C mod

a.

The following variation of the Frobenius Problem was introduced by the author
[7]. Observe that n + Γ(A) ⊂ Γ(A) for n ∈ Γ!(A) = Γ(A) \ {0}. Let

S!(A) := {n ∈ Γc(A) : n + Γ!(A) ⊂ Γ!(A)}.

For the sake of convenience, we recall the following essential result regarding S!(A)
from [7]. If C denotes the set of all nonzero residue classes mod a, then

S!(A) ⊆ {mC − a : C ∈ C}. (1)
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Moreover, if (x) denotes the residue class of x mod a and mx the least integer in
Γ(A) ∩ (x), then

mj − a ∈ S!(A) ⇐⇒mj − a ≥mj+i −mi for 1 ≤ i ≤ a− 1. (2)

Observe that S!(A) += ∅; in fact, g(A) is the largest integer in S!(A). A complete
description of S!(A) would therefore lead to the determination of g(A).

2.1. The Reduction Formulae

We first determine g
(
Ak(a)

)
and n

(
Ak(a)

)
by using the reduction formulae of

Lemma 1. This is particularly useful because the integers in Ak(a) \ {ak + 1}
share a common divisor a.

Theorem 3. For positive integers a and k,

(i) g
(
ak, ak + 1, ak + a, . . . , ak + ak−1

)
= k(a− 1)ak − 1;

(ii) n
(
ak, ak + 1, ak + a, . . . , ak + ak−1

)
= 1

2k(a− 1)ak.

First Proof. We use the reduction formulae given in Lemma 1 and the identity ak +
1 = (a−1)ak−1+(ak−1+1). Note that the identity implies ak+1 ∈ Γ

(
{ak−1, ak−1+

1}
)
. We fix a and induct on k.

(i) g
(
ak, ak + 1, ak + a, . . . , ak + ak−1

)

= a · g
(
ak + 1, ak−1, ak−1 + 1, . . . , ak−1 + ak−2

)
+ (a− 1)(ak + 1)

= a · g
(
ak−1, ak−1 + 1, . . . , ak−1 + ak−2

)
+ (a− 1)(ak + 1)

= a
{
(k − 1)(a− 1)ak−1 − 1

}
+ (a− 1)(ak + 1)

= k(a− 1)ak − 1

(ii) n
(
ak, ak + 1, ak + a, . . . , ak + ak−1

)

= a · n
(
ak + 1, ak−1, ak−1 + 1, . . . , ak−1 + ak−2

)
+ 1

2 (a− 1)ak

= a · n
(
ak−1, ak−1 + 1, . . . , ak−1 + ak−2

)
+ 1

2 (a− 1)ak

= 1
2 (k − 1)(a− 1)ak + 1

2 (a− 1)ak

= 1
2k(a− 1)ak.

!
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2.2. The Calculation of mC

For the second proof, we determine mC for each nonzero residue class C mod ak.
In addition to providing a method to determine g

(
Ak(a)

)
and n

(
Ak(a)

)
, it also

provides an expression for S!
(
Ak(a)

)
. Now g

(
Ak(a)

)
denotes the largest N such

that

aky + (ak + 1)x0 + (ak + a)x1 + · · · + (ak + ak−1)xk−1

= ak
(
y +

∑k−1
i=0 xi

)
+

∑k−1
i=0 aixi = N (3)

has no solution in nonnegative integers xi, and n
(
Ak(a)

)
the number of such N .

Lemma 4. Let sa(x) denote the sum of digits in the base a representation of x.
For each x, 1 ≤ x ≤ ak− 1, the least positive integer of the form given by (3) in the
class x mod ak is given by aksa(x) + x.

Proof. Let mx denote the least positive integer in Γ(Ak(a)), which is in the class
(x) mod ak. Then mx is the minimum value attained by the expression on the left
in (3) subject to

∑k−1
i=0 aixi = x and each xi ≥ 0. The values of xi are uniquely de-

termined by the base a representation of x mod ak, and we must choose y = 0
in order to minimize the sum in (3) subject to the constraints. Thus mx =
aksa(x) + x. !

Lemma 4 allows us to provides another proof of Theorem 3.

Second Proof. Let C denote the set of nonzero residue classes mod ak. We use
Lemma 4.

(i) g
(
ak, ak + 1, ak + a, . . . , ak + ak−1

)
= max

C∈C
mC − ak

= max
1≤x≤ak−1

{
aksa(x) + x

}
− ak

=
(
aksa(ak − 1) + (ak − 1)

)
− ak

= k(a− 1)ak − 1.
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(ii) n
(
ak, ak + 1, ak + a, . . . , ak + ak−1

)

=
1
ak

∑

C∈C
mC − 1

2 (ak − 1)

=
1
ak

∑

1≤x≤ak−1

(
aksa(x) + x

)
− 1

2 (ak − 1)

=
∑

1≤x≤ak−1

sa(x)

= 1
2

∑

0≤x≤ak−1

(
sa(x) + sa(ak − 1− x)

)

= 1
2

∑

0≤x≤ak−1

sa(ak − 1)

= 1
2k(a− 1)ak. !

2.3. The Determination of S!
(
ak, ak + 1, ak + a, . . . , ak + ak−1

)

Theorem 5. For positive integers a and k,

S!
(
ak, ak + 1, ak + a, . . . , ak + ak−1

)
=

{
k(a− 1)ak − 1

}
.

Proof. Let Ak(a) = {ak, ak + 1, ak + a, . . . , ak + ak−1}. By (1) and Lemma 4,

S!
(
Ak(a)

)
⊆

{
ak

(
sa(x)− 1

)
+ x : 1 ≤ x ≤ ak − 1

}
.

By (2), ak
(
sa(x)− 1

)
+ x ∈ S! if and only if for each y with 1 ≤ y ≤ ak − 1,

ak
(
sa

(
(x + y) mod ak

)
+ 1

)
+ (x + y) mod ak ≤ ak

(
sa(x) + sa(y)

)
+ x + y. (4)

Since sa(x) + sa(ak − 1 − x) = sa(ak − 1), the inequality (4) fails to hold for the
pair {x, ak − 1 − x} whenever x < ak − 1. Thus the only element in S!

(
Ak(a)

)
is

ak
(
sa(ak − 1)− 1

)
+ (ak − 1) = k(a− 1)ak − 1. !

Corollary 6. For positive integers a and k,

g
(
ak, ak + 1, ak + a, . . . , ak + ak−1

)
= k(a− 1)ak − 1.
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2.4. A Connection Between g
(
Ak(a)

)
and n

(
Ak(a)

)

If m,n are integers with sum g(Ak(a)
)
, then it is easy to see that at most one

of m,n can belong to Γ(Ak(a)
)
. On the other hand, if for some such pair m,n,

neither belongs to Γ(Ak(a)
)
, there would be less than 1

2

{
1 + g(Ak(a)

)}
integers in

Γc
(
Ak(a)

)
. Thus, for every pair of non-negative integers m,n with sum g(Ak(a)

)
,

exactly one of m,n belong to Γc
(
Ak(a)

)
. We use this to derive n

(
Ak(a)

)
, giving a

third derivation for n
(
Ak(a)

)
.

Theorem 7. For positive integers a and k, let Ak(a) denote the sequence ak, ak +
1, ak + a, . . . , ak + ak−1. If m + n = g(Ak(a)), then m ∈ Γ

(
Ak(a)

)
if and only if

n /∈ Γ
(
Ak(a)

)
.

Proof. Let m + n = g(Ak(a)). If m ∈ Γ
(
Ak(a)

)
, then n /∈ Γ

(
Ak(a)

)
, for otherwise

m + n = g(Ak(a)) ∈ Γ
(
Ak(a)

)
, which is false.

Conversely, suppose n /∈ Γ
(
Ak(a)

)
. If n < 0, then m > g(Ak(a)) and so m ∈

Γ
(
Ak(a)

)
. We may therefore assume that 1 ≤ n ≤ g(Ak(a)) since both 0 and any

integer greater than g(Ak(a)) belong to Γ
(
Ak(a)

)
. Suppose n ≡ x (mod ak); then

n ≤mx−ak = ak
(
sa(x)−1

)
+x. Since m+n = g

(
Ak(a)

)
= aksa(ak−1)−1 ≡ −1

(mod ak), we have m ≡ ak−1−x (mod ak). Using sa(x)+sa(ak−1−x) = sa(ak−1),
we have

m = g
(
Ak(a)

)
−n ≥ ak

(
sa(ak−1)−sa(x)

)
+(ak−1−x) = aksa(ak−1−x)+(ak−1−x)

= mak−1−x.

Hence m ∈ Γ
(
Ak(a)

)
. This completes the proof. !

Corollary 8. For positive integers a and k,

n
(
Ak(a)

)
= 1

2

{
1 + g

(
Ak(a)

)}
.

Proof. Consider pairs {m,n} of integers in the interval [0, g
(
Ak

)
] with m + n =

g
(
Ak(a)

)
. By Theorem 7, exactly one integer from each such pair is in Γc

(
Ak(a)

)
.

This completes the proof since no integer greater than g
(
Ak(a)

)
is in Γc

(
Ak(a)

)
. !
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