ON THE FROBENIUS PROBLEM FOR $\left\{a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right\}$

Amitabha Tripathi
Dept. of Mathematics, Indian Institute of Technology, New Delhi, India atripath@maths.iitd.ac.in

Received: 11/14/09, Revised: 5/7/10, Accepted: 5/13/10, Published: 10/8/10

Abstract

For positive integers a, k, let $\mathcal{A}_{k}(a)$ denote the sequence $a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+$ a^{k-1}. Let $\Gamma\left(\mathcal{A}_{k}(a)\right)$ denote the set of integers that are expressible as a linear combination of elements of $\mathcal{A}_{k}(a)$ with non-negative integer coefficients. We determine $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ and $\mathrm{n}\left(\mathcal{A}_{k}(a)\right)$ which denote the largest (respectively, the number of) positive integer(s) not in $\Gamma\left(\mathcal{A}_{k}(a)\right)$. We also determine the set $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a)\right)$ of positive integers not in $\Gamma\left(\mathcal{A}_{k}(a)\right)$ which satisfy $n+\Gamma^{\star}\left(\mathcal{A}_{k}(a)\right) \subset \Gamma^{\star}\left(\mathcal{A}_{k}(a)\right)$, where $\Gamma^{\star}\left(\mathcal{A}_{k}(a)\right)=\Gamma\left(\mathcal{A}_{k}(a)\right) \backslash\{0\}$.

1. Introduction

For a sequence of relatively prime positive integers $A=a_{1}, \ldots, a_{k}$, let $\Gamma(A)$ denote the set of all integers of the form $\sum_{i=1}^{k} a_{i} x_{i}$ where each $x_{i} \geq 0$. It is well-known and not difficult to show that $\Gamma^{c}(A):=\mathbb{N} \backslash \Gamma(A)$ is a finite set. The Coin Exchange Problem of Frobenius is to determine the largest integer in $\Gamma^{c}(A)$. This is denoted by $\mathrm{g}(A)$, and called the Frobenius number of A. The Frobenius number is known in the case $k=2$ to be $\mathrm{g}\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$. A related problem is the determination of the number of integers in $\Gamma^{c}(A)$, which is denoted by $\mathrm{n}(A)$ and known in the case $k=2$ to be given by $\mathrm{n}\left(a_{1}, a_{2}\right)=\frac{1}{2}\left(a_{1}-1\right)\left(a_{2}-1\right)$. Various aspects of the Frobenius Problem may be found in [4].

The purpose of this article is to determine both the Frobenius number $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ and $\mathrm{n}\left(\mathcal{A}_{k}(a)\right)$ when $\mathcal{A}_{k}(a)=\left\{a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right\}$. Moreover, we determine the set $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a)\right)$, introduced in [7], of positive integers not in $\Gamma\left(\mathcal{A}_{k}(a)\right)$ which satisfy $n+\Gamma^{\star}\left(\mathcal{A}_{k}(a)\right) \subset \Gamma^{\star}\left(\mathcal{A}_{k}(a)\right)$, where $\Gamma^{\star}\left(\mathcal{A}_{k}(a)\right)$ $=\Gamma\left(\mathcal{A}_{k}(a)\right) \backslash\{0\}$. In particular, this determines the Frobenius number since $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ is the largest integer in $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a)\right)$. Hujter in [2] determined the Frobenius number $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ (see p. 70 in [4]) as a special case of a more general result. We give simpler and direct proofs of this result, employing three methods to determine not only the Frobenius number $\mathrm{g}(\cdot)$ but also $\mathrm{n}(\cdot)$. First, we use a reduction
formula due to Johnson [3] for $g(\cdot)$, and due to Rødseth [5] for $n(\cdot)$. Next, we again determine these values using results due to Brauer and Shockley [1] for $g(\cdot)$, and to Selmer [6] for $\mathrm{n}(\cdot)$. We determine $\mathrm{n}\left(\mathcal{A}_{k}(a)\right)$ from this by showing that exactly half of the nonnegative integers less than or equal to $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ belong to $\Gamma\left(\mathcal{A}_{k}(a)\right)$.

2. Main Results

Throughout this section, for positive integers a, k, we denote by \mathcal{A}_{k} the sequence $a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}$. For the sake of convenience, we state without proof, two results that are crucial in the determination of exact values for both $\mathrm{g}(\cdot)$ and $\mathrm{n}(\cdot)$. The following reduction formulae for $\mathrm{g}(A)$, due to Johnson [3], and for $\mathrm{n}(A)$ due to Rødseth [5], are useful in cases when all but one member of A have a common factor greater than 1.

Lemma 1. [3,5] Let $a \in A$, let $d=\operatorname{gcd}(A \backslash\{a\})$, and define $A^{\prime}:=\frac{1}{d}(A \backslash\{a\})$. Then
(i) $\mathrm{g}(A)=d \cdot \mathrm{~g}\left(A^{\prime} \cup\{a\}\right)+a(d-1)$;
(ii) $\mathrm{n}(A)=d \cdot \mathrm{n}\left(A^{\prime} \cup\{a\}\right)+\frac{1}{2}(a-1)(d-1)$.

Fix $a \in A$, and let $\mathbf{m}_{\mathbf{C}}$ denote the smallest integer in $\Gamma(A) \cap \mathbf{C}$, where \mathbf{C} denotes a nonzero residue class mod a. The functions $\mathrm{g}(\cdot)$ and $\mathrm{n}(\cdot)$ are easily determined from the values of $\mathbf{m}_{\mathbf{C}}$. The following result, part (i) of which is due to Brauer \& Shockley [1] and part (ii) to Selmer [6], shows that both $\mathrm{g}(\cdot)$ and $\mathrm{n}(\cdot)$ can be determined from the values of $\mathbf{m}_{\mathbf{C}}$.

Lemma 2. [1, 6] Let $a \in A$. Then
(i) $\mathrm{g}(A)=\max _{\mathbf{C}} \mathbf{m}_{\mathbf{C}}-a$, the maximum taken over all nonzero classes $\mathbf{C} \bmod a$;
(ii) $\mathrm{n}(A)=\frac{1}{a} \sum_{\mathbf{C}} \mathbf{m}_{\mathbf{C}}-\frac{1}{2}(a-1)$, the sum taken over all nonzero classes $\mathbf{C} \bmod$ a.

The following variation of the Frobenius Problem was introduced by the author [7]. Observe that $n+\Gamma(A) \subset \Gamma(A)$ for $n \in \Gamma^{\star}(A)=\Gamma(A) \backslash\{0\}$. Let

$$
\mathcal{S}^{\star}(A):=\left\{n \in \Gamma^{c}(A): n+\Gamma^{\star}(A) \subset \Gamma^{\star}(A)\right\} .
$$

For the sake of convenience, we recall the following essential result regarding $\mathcal{S}^{\star}(A)$ from [7]. If \mathcal{C} denotes the set of all nonzero residue classes $\bmod a$, then

$$
\begin{equation*}
\mathcal{S}^{\star}(A) \subseteq\left\{\mathbf{m}_{\mathbf{C}}-a: \mathbf{C} \in \mathcal{C}\right\} \tag{1}
\end{equation*}
$$

Moreover, if (x) denotes the residue class of $x \bmod a$ and \mathbf{m}_{x} the least integer in $\Gamma(A) \cap(x)$, then

$$
\begin{equation*}
\mathbf{m}_{j}-a \in \mathcal{S}^{\star}(A) \Longleftrightarrow \mathbf{m}_{j}-a \geq \mathbf{m}_{j+i}-\mathbf{m}_{i} \text { for } 1 \leq i \leq a-1 \tag{2}
\end{equation*}
$$

Observe that $\mathcal{S}^{\star}(A) \neq \emptyset$; in fact, $\mathrm{g}(A)$ is the largest integer in $\mathcal{S}^{\star}(A)$. A complete description of $\mathcal{S}^{\star}(A)$ would therefore lead to the determination of $\mathrm{g}(A)$.

2.1. The Reduction Formulae

We first determine $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ and $\mathrm{n}\left(\mathcal{A}_{k}(a)\right)$ by using the reduction formulae of Lemma 1. This is particularly useful because the integers in $\mathcal{A}_{k}(a) \backslash\left\{a^{k}+1\right\}$ share a common divisor a.

Theorem 3. For positive integers a and k,
(i) $\mathrm{g}\left(a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right)=k(a-1) a^{k}-1$;
(ii) $\mathrm{n}\left(a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right)=\frac{1}{2} k(a-1) a^{k}$.

First Proof. We use the reduction formulae given in Lemma 1 and the identity $a^{k}+$ $1=(a-1) a^{k-1}+\left(a^{k-1}+1\right)$. Note that the identity implies $a^{k}+1 \in \Gamma\left(\left\{a^{k-1}, a^{k-1}+\right.\right.$ 1\}). We fix a and induct on k.
(i) $\mathrm{g}\left(a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right)$

$$
\begin{aligned}
& =a \cdot \mathrm{~g}\left(a^{k}+1, a^{k-1}, a^{k-1}+1, \ldots, a^{k-1}+a^{k-2}\right)+(a-1)\left(a^{k}+1\right) \\
& =a \cdot \mathrm{~g}\left(a^{k-1}, a^{k-1}+1, \ldots, a^{k-1}+a^{k-2}\right)+(a-1)\left(a^{k}+1\right) \\
& =a\left\{(k-1)(a-1) a^{k-1}-1\right\}+(a-1)\left(a^{k}+1\right) \\
& =k(a-1) a^{k}-1
\end{aligned}
$$

(ii) $\mathrm{n}\left(a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right)$

$$
=a \cdot \mathrm{n}\left(a^{k}+1, a^{k-1}, a^{k-1}+1, \ldots, a^{k-1}+a^{k-2}\right)+\frac{1}{2}(a-1) a^{k}
$$

$$
=a \cdot \mathrm{n}\left(a^{k-1}, a^{k-1}+1, \ldots, a^{k-1}+a^{k-2}\right)+\frac{1}{2}(a-1) a^{k}
$$

$$
=\frac{1}{2}(k-1)(a-1) a^{k}+\frac{1}{2}(a-1) a^{k}
$$

$$
=\frac{1}{2} k(a-1) a^{k} .
$$

2.2. The Calculation of m_{C}

For the second proof, we determine $\mathbf{m}_{\mathbf{C}}$ for each nonzero residue class $\mathbf{C} \bmod a^{k}$. In addition to providing a method to determine $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ and $\mathrm{n}\left(\mathcal{A}_{k}(a)\right)$, it also provides an expression for $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a)\right)$. Now $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ denotes the largest N such that

$$
\begin{align*}
a^{k} y+\left(a^{k}+1\right) x_{0}+\left(a^{k}+a\right) & x_{1}+\cdots+\left(a^{k}+a^{k-1}\right) x_{k-1} \\
& =a^{k}\left(y+\sum_{i=0}^{k-1} x_{i}\right)+\sum_{i=0}^{k-1} a^{i} x_{i}=N \tag{3}
\end{align*}
$$

has no solution in nonnegative integers x_{i}, and $\mathrm{n}\left(\mathcal{A}_{k}(a)\right)$ the number of such N.

Lemma 4. Let $\mathbf{s}_{a}(x)$ denote the sum of digits in the base a representation of x. For each $x, 1 \leq x \leq a^{k}-1$, the least positive integer of the form given by (3) in the class $x \bmod a^{k}$ is given by $a^{k} \mathbf{s}_{a}(x)+x$.

Proof. Let \mathbf{m}_{x} denote the least positive integer in $\Gamma\left(A_{k}(a)\right)$, which is in the class $(x) \bmod a^{k}$. Then \mathbf{m}_{x} is the minimum value attained by the expression on the left in (3) subject to $\sum_{i=0}^{k-1} a^{i} x_{i}=x$ and each $x_{i} \geq 0$. The values of x_{i} are uniquely determined by the base a representation of $x \bmod a^{k}$, and we must choose $y=0$ in order to minimize the sum in (3) subject to the constraints. Thus $\mathbf{m}_{x}=$ $a^{k} \mathbf{S}_{a}(x)+x$.

Lemma 4 allows us to provides another proof of Theorem 3.
Second Proof. Let \mathcal{C} denote the set of nonzero residue classes $\bmod a^{k}$. We use Lemma 4.

$$
\text { (i) } \begin{aligned}
\mathrm{g}\left(a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right) & =\max _{\mathbf{C} \in \mathcal{C}} m_{\mathbf{C}}-a^{k} \\
& =\max _{1 \leq x \leq a^{k}-1}\left\{a^{k} \mathbf{s}_{a}(x)+x\right\}-a^{k} \\
& =\left(a^{k} \mathbf{s}_{a}\left(a^{k}-1\right)+\left(a^{k}-1\right)\right)-a^{k} \\
& =k(a-1) a^{k}-1
\end{aligned}
$$

(ii) $\mathrm{n}\left(a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right)$

$$
\begin{aligned}
& =\frac{1}{a^{k}} \sum_{\mathbf{C} \in \mathcal{C}} m_{\mathbf{C}}-\frac{1}{2}\left(a^{k}-1\right) \\
& =\frac{1}{a^{k}} \sum_{1 \leq x \leq a^{k}-1}\left(a^{k} \mathbf{s}_{a}(x)+x\right)-\frac{1}{2}\left(a^{k}-1\right) \\
& =\sum_{1 \leq x \leq a^{k}-1} \mathbf{s}_{a}(x) \\
& =\frac{1}{2} \sum_{0 \leq x \leq a^{k}-1}\left(\mathbf{s}_{a}(x)+\mathbf{s}_{a}\left(a^{k}-1-x\right)\right) \\
& =\frac{1}{2} \sum_{0 \leq x \leq a^{k}-1} \mathbf{s}_{a}\left(a^{k}-1\right) \\
& =\frac{1}{2} k(a-1) a^{k}
\end{aligned}
$$

2.3. The Determination of $\mathcal{S}^{\star}\left(a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right)$

Theorem 5. For positive integers a and k,

$$
\mathcal{S}^{\star}\left(a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right)=\left\{k(a-1) a^{k}-1\right\} .
$$

Proof. Let $\mathcal{A}_{k}(a)=\left\{a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right\}$. By (1) and Lemma 4,

$$
\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a)\right) \subseteq\left\{a^{k}\left(\mathbf{s}_{a}(x)-1\right)+x: 1 \leq x \leq a^{k}-1\right\}
$$

By $(2), a^{k}\left(\mathbf{s}_{a}(x)-1\right)+x \in \mathcal{S}^{\star}$ if and only if for each y with $1 \leq y \leq a^{k}-1$,

$$
\begin{equation*}
a^{k}\left(\mathbf{s}_{a}\left((x+y) \bmod a^{k}\right)+1\right)+(x+y) \bmod a^{k} \leq a^{k}\left(\mathbf{s}_{a}(x)+\mathbf{s}_{a}(y)\right)+x+y \tag{4}
\end{equation*}
$$

Since $\mathbf{s}_{a}(x)+\mathbf{s}_{a}\left(a^{k}-1-x\right)=\mathbf{s}_{a}\left(a^{k}-1\right)$, the inequality (4) fails to hold for the pair $\left\{x, a^{k}-1-x\right\}$ whenever $x<a^{k}-1$. Thus the only element in $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a)\right)$ is $a^{k}\left(\mathbf{s}_{a}\left(a^{k}-1\right)-1\right)+\left(a^{k}-1\right)=k(a-1) a^{k}-1$.

Corollary 6. For positive integers a and k,

$$
\mathrm{g}\left(a^{k}, a^{k}+1, a^{k}+a, \ldots, a^{k}+a^{k-1}\right)=k(a-1) a^{k}-1
$$

2.4. A Connection Between $\mathrm{g}\left(\mathcal{A}_{\boldsymbol{k}}(a)\right)$ and $\mathrm{n}\left(\mathcal{A}_{\boldsymbol{k}}(a)\right)$

If m, n are integers with sum $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$, then it is easy to see that at most one of m, n can belong to $\Gamma\left(\mathcal{A}_{k}(a)\right)$. On the other hand, if for some such pair m, n, neither belongs to $\Gamma\left(\mathcal{A}_{k}(a)\right)$, there would be less than $\frac{1}{2}\left\{1+\mathrm{g}\left(\mathcal{A}_{k}(a)\right)\right\}$ integers in $\Gamma^{c}\left(\mathcal{A}_{k}(a)\right)$. Thus, for every pair of non-negative integers m, n with $\operatorname{sum} \mathrm{g}\left(\mathcal{A}_{k}(a)\right)$, exactly one of m, n belong to $\Gamma^{c}\left(\mathcal{A}_{k}(a)\right)$. We use this to derive $\mathrm{n}\left(\mathcal{A}_{k}(a)\right)$, giving a third derivation for $\mathrm{n}\left(\mathcal{A}_{k}(a)\right)$.

Theorem 7. For positive integers a and k, let $\mathcal{A}_{k}(a)$ denote the sequence $a^{k}, a^{k}+$ $1, a^{k}+a, \ldots, a^{k}+a^{k-1}$. If $m+n=\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$, then $m \in \Gamma\left(\mathcal{A}_{k}(a)\right)$ if and only if $n \notin \Gamma\left(\mathcal{A}_{k}(a)\right)$.

Proof. Let $m+n=\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$. If $m \in \Gamma\left(\mathcal{A}_{k}(a)\right)$, then $n \notin \Gamma\left(\mathcal{A}_{k}(a)\right)$, for otherwise $m+n=\mathrm{g}\left(\mathcal{A}_{k}(a)\right) \in \Gamma\left(\mathcal{A}_{k}(a)\right)$, which is false.

Conversely, suppose $n \notin \Gamma\left(\mathcal{A}_{k}(a)\right)$. If $n<0$, then $m>\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ and so $m \in$ $\Gamma\left(\mathcal{A}_{k}(a)\right)$. We may therefore assume that $1 \leq n \leq \mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ since both 0 and any integer greater than $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ belong to $\Gamma\left(\mathcal{A}_{k}(a)\right)$. Suppose $n \equiv x\left(\bmod a^{k}\right)$; then $n \leq \mathbf{m}_{x}-a^{k}=a^{k}\left(\mathbf{s}_{a}(x)-1\right)+x$. Since $m+n=\mathrm{g}\left(\mathcal{A}_{k}(a)\right)=a^{k} \mathbf{s}_{a}\left(a^{k}-1\right)-1 \equiv-1$ $\left(\bmod a^{k}\right)$, we have $m \equiv a^{k}-1-x\left(\bmod a^{k}\right) . U \operatorname{sing} \mathbf{s}_{a}(x)+\mathbf{s}_{a}\left(a^{k}-1-x\right)=\mathbf{s}_{a}\left(a^{k}-1\right)$, we have

$$
\begin{aligned}
m=\mathrm{g}\left(\mathcal{A}_{k}(a)\right)-n \geq a^{k}\left(\mathbf{s}_{a}\left(a^{k}-1\right)-\mathbf{s}_{a}(x)\right)+\left(a^{k}-1-x\right) & =a^{k} \mathbf{s}_{a}\left(a^{k}-1-x\right)+\left(a^{k}-1-x\right) \\
& =\mathbf{m}_{a^{k}-1-x} .
\end{aligned}
$$

Hence $m \in \Gamma\left(\mathcal{A}_{k}(a)\right)$. This completes the proof.

Corollary 8. For positive integers a and k,

$$
\mathrm{n}\left(\mathcal{A}_{k}(a)\right)=\frac{1}{2}\left\{1+\mathrm{g}\left(\mathcal{A}_{k}(a)\right)\right\} .
$$

Proof. Consider pairs $\{m, n\}$ of integers in the interval $\left[0, \mathrm{~g}\left(\mathcal{A}_{k}\right)\right]$ with $m+n=$ $g\left(\mathcal{A}_{k}(a)\right)$. By Theorem 7 , exactly one integer from each such pair is in $\Gamma^{c}\left(\mathcal{A}_{k}(a)\right)$. This completes the proof since no integer greater than $\mathrm{g}\left(\mathcal{A}_{k}(a)\right)$ is in $\Gamma^{c}\left(\mathcal{A}_{k}(a)\right)$.

Acknowledgement. The author wishes to thank the referee for his comments.

References

[1] A. Brauer and J. E. Shockley, On a problem of Frobenius, Crelle 211 (1962), 215-220.
[2] M. Hujter, On a sharp upper and lower bounds for the Frobenius problem, Technical Report MO/32, Computer and Automation Institute, Hungarian Academy of Sciences, 1982.
[3] S. M. Johnson, A Linear Diophantine Problem, Canad. J. Math. 12 (1960), 390-398.
[4] J. L. Ramírez Alfonsín, The Frobenius Diophantine Problem, Oxford Lecture Series in Mathematics and its Applications, no. 30, Oxford University Press, 2005.
[5] Ø. J. Rødseth, On a linear Diophantine problem of Frobenius, Crelle 301 (1978), 171-178.
[6] E. S. Selmer, On the linear Diophantine problem of Frobenius, Crelle 293/294 (1977), 1-17.
[7] A. Tripathi, On a variation of the Coin Exchange Problem for Arithmetic Progressions, Integers 3, Article A01 (2003), 5 pp.

