

ON THE FROBENIUS PROBLEM FOR $\{a^k, a^k + 1, a^k + a, \dots, a^k + a^{k-1}\}$

Amitabha Tripathi Dept. of Mathematics, Indian Institute of Technology, New Delhi, India atripath@maths.iitd.ac.in

Received: 11/14/09, Revised: 5/7/10, Accepted: 5/13/10, Published: 10/8/10

Abstract

For positive integers a, k, let $\mathcal{A}_k(a)$ denote the sequence $a^k, a^k + 1, a^k + a, \ldots, a^k + a^{k-1}$. Let $\Gamma(\mathcal{A}_k(a))$ denote the set of integers that are expressible as a linear combination of elements of $\mathcal{A}_k(a)$ with non-negative integer coefficients. We determine $g(\mathcal{A}_k(a))$ and $n(\mathcal{A}_k(a))$ which denote the *largest* (respectively, the *number* of) positive integer(s) not in $\Gamma(\mathcal{A}_k(a))$. We also determine the set $\mathcal{S}^*(\mathcal{A}_k(a))$ of positive integers not in $\Gamma(\mathcal{A}_k(a))$ which satisfy $n + \Gamma^*(\mathcal{A}_k(a)) \subset \Gamma^*(\mathcal{A}_k(a))$, where $\Gamma^*(\mathcal{A}_k(a)) = \Gamma(\mathcal{A}_k(a)) \setminus \{0\}$.

1. Introduction

For a sequence of relatively prime positive integers $A = a_1, \ldots, a_k$, let $\Gamma(A)$ denote the set of all integers of the form $\sum_{i=1}^k a_i x_i$ where each $x_i \ge 0$. It is well-known and not difficult to show that $\Gamma^c(A) := \mathbb{N} \setminus \Gamma(A)$ is a *finite* set. The *Coin Exchange Problem* of Frobenius is to determine the *largest* integer in $\Gamma^c(A)$. This is denoted by $\mathbf{g}(A)$, and called the Frobenius number of A. The Frobenius number is known in the case k = 2 to be $\mathbf{g}(a_1, a_2) = a_1 a_2 - a_1 - a_2$. A related problem is the determination of the number of integers in $\Gamma^c(A)$, which is denoted by $\mathbf{n}(A)$ and known in the case k = 2 to be given by $\mathbf{n}(a_1, a_2) = \frac{1}{2}(a_1 - 1)(a_2 - 1)$. Various aspects of the Frobenius Problem may be found in [4].

The purpose of this article is to determine both the Frobenius number $g(\mathcal{A}_k(a))$ and $\mathbf{n}(\mathcal{A}_k(a))$ when $\mathcal{A}_k(a) = \{a^k, a^k + 1, a^k + a, \dots, a^k + a^{k-1}\}$. Moreover, we determine the set $\mathcal{S}^*(\mathcal{A}_k(a))$, introduced in [7], of positive integers not in $\Gamma(\mathcal{A}_k(a))$ which satisfy $n + \Gamma^*(\mathcal{A}_k(a)) \subset \Gamma^*(\mathcal{A}_k(a))$, where $\Gamma^*(\mathcal{A}_k(a))$ $= \Gamma(\mathcal{A}_k(a)) \setminus \{0\}$. In particular, this determines the Frobenius number since $\mathbf{g}(\mathcal{A}_k(a))$ is the largest integer in $\mathcal{S}^*(\mathcal{A}_k(a))$. Hujter in [2] determined the Frobenius number $\mathbf{g}(\mathcal{A}_k(a))$ (see p.70 in [4]) as a special case of a more general result. We give simpler and direct proofs of this result, employing three methods to determine not only the Frobenius number $\mathbf{g}(\cdot)$ but also $\mathbf{n}(\cdot)$. First, we use a reduction formula due to Johnson [3] for $\mathbf{g}(\cdot)$, and due to Rødseth [5] for $\mathbf{n}(\cdot)$. Next, we again determine these values using results due to Brauer and Shockley [1] for $\mathbf{g}(\cdot)$, and to Selmer [6] for $\mathbf{n}(\cdot)$. We determine $\mathbf{n}(\mathcal{A}_k(a))$ from this by showing that exactly half of the nonnegative integers less than or equal to $\mathbf{g}(\mathcal{A}_k(a))$ belong to $\Gamma(\mathcal{A}_k(a))$.

2. Main Results

Throughout this section, for positive integers a, k, we denote by \mathcal{A}_k the sequence $a^k, a^k + 1, a^k + a, \ldots, a^k + a^{k-1}$. For the sake of convenience, we state without proof, two results that are crucial in the determination of exact values for both $g(\cdot)$ and $n(\cdot)$. The following reduction formulae for g(A), due to Johnson [3], and for n(A) due to Rødseth [5], are useful in cases when all but one member of A have a common factor greater than 1.

Lemma 1. [3, 5] Let $a \in A$, let $d = \operatorname{gcd}(A \setminus \{a\})$, and define $A' := \frac{1}{d}(A \setminus \{a\})$. Then

- (i) $g(A) = d \cdot g(A' \cup \{a\}) + a(d-1);$
- (ii) $\mathbf{n}(A) = d \cdot \mathbf{n}(A' \cup \{a\}) + \frac{1}{2}(a-1)(d-1).$

Fix $a \in A$, and let $\mathbf{m}_{\mathbf{C}}$ denote the smallest integer in $\Gamma(A) \cap \mathbf{C}$, where \mathbf{C} denotes a nonzero residue class mod a. The functions $\mathbf{g}(\cdot)$ and $\mathbf{n}(\cdot)$ are easily determined from the values of $\mathbf{m}_{\mathbf{C}}$. The following result, part (i) of which is due to Brauer & Shockley [1] and part (ii) to Selmer [6], shows that both $\mathbf{g}(\cdot)$ and $\mathbf{n}(\cdot)$ can be determined from the values of $\mathbf{m}_{\mathbf{C}}$.

Lemma 2. [1, 6] Let $a \in A$. Then

- (i) $g(A) = \max_{\mathbf{C}} \mathbf{m}_{\mathbf{C}} a$, the maximum taken over all nonzero classes $\mathbf{C} \mod a$;
- (ii) $\mathbf{n}(A) = \frac{1}{a} \sum_{\mathbf{C}} \mathbf{m}_{\mathbf{C}} \frac{1}{2}(a-1)$, the sum taken over all nonzero classes \mathbf{C} mod a.

The following variation of the Frobenius Problem was introduced by the author [7]. Observe that $n + \Gamma(A) \subset \Gamma(A)$ for $n \in \Gamma^*(A) = \Gamma(A) \setminus \{0\}$. Let

$$\mathcal{S}^{\star}(A) := \{ n \in \Gamma^{c}(A) : n + \Gamma^{\star}(A) \subset \Gamma^{\star}(A) \}.$$

For the sake of convenience, we recall the following essential result regarding $\mathcal{S}^{\star}(A)$ from [7]. If \mathcal{C} denotes the set of all nonzero residue classes mod a, then

$$\mathcal{S}^{\star}(A) \subseteq \{\mathbf{m}_{\mathbf{C}} - a : \mathbf{C} \in \mathcal{C}\}.$$
 (1)

INTEGERS: 10 (2010)

Moreover, if (x) denotes the residue class of x mod a and \mathbf{m}_x the least integer in $\Gamma(A) \cap (x)$, then

$$\mathbf{m}_j - a \in \mathcal{S}^*(A) \iff \mathbf{m}_j - a \ge \mathbf{m}_{j+i} - \mathbf{m}_i \text{ for } 1 \le i \le a - 1.$$
 (2)

Observe that $\mathcal{S}^{\star}(A) \neq \emptyset$; in fact, $\mathbf{g}(A)$ is the largest integer in $\mathcal{S}^{\star}(A)$. A complete description of $\mathcal{S}^{\star}(A)$ would therefore lead to the determination of $\mathbf{g}(A)$.

2.1. The Reduction Formulae

We first determine $g(\mathcal{A}_k(a))$ and $n(\mathcal{A}_k(a))$ by using the reduction formulae of Lemma 1. This is particularly useful because the integers in $\mathcal{A}_k(a) \setminus \{a^k + 1\}$ share a common divisor a.

Theorem 3. For positive integers a and k,

(i) $g(a^k, a^k + 1, a^k + a, \dots, a^k + a^{k-1}) = k(a-1)a^k - 1;$ (ii) $n(a^k, a^k + 1, a^k + a, \dots, a^k + a^{k-1}) = \frac{1}{2}k(a-1)a^k.$

First Proof. We use the reduction formulae given in Lemma 1 and the identity $a^k + 1 = (a-1)a^{k-1} + (a^{k-1}+1)$. Note that the identity implies $a^k + 1 \in \Gamma(\{a^{k-1}, a^{k-1}+1\})$. We fix a and induct on k.

(i)
$$g(a^{k}, a^{k} + 1, a^{k} + a, ..., a^{k} + a^{k-1})$$

 $= a \cdot g(a^{k} + 1, a^{k-1}, a^{k-1} + 1, ..., a^{k-1} + a^{k-2}) + (a-1)(a^{k} + 1)$
 $= a \cdot g(a^{k-1}, a^{k-1} + 1, ..., a^{k-1} + a^{k-2}) + (a-1)(a^{k} + 1)$
 $= a\{(k-1)(a-1)a^{k-1} - 1\} + (a-1)(a^{k} + 1)$
 $= k(a-1)a^{k} - 1$

(ii)
$$\mathbf{n}(a^k, a^k + 1, a^k + a, \dots, a^k + a^{k-1})$$

$$= a \cdot \mathbf{n}(a^k + 1, a^{k-1}, a^{k-1} + 1, \dots, a^{k-1} + a^{k-2}) + \frac{1}{2}(a-1)a^k$$

$$= a \cdot \mathbf{n}(a^{k-1}, a^{k-1} + 1, \dots, a^{k-1} + a^{k-2}) + \frac{1}{2}(a-1)a^k$$

$$= \frac{1}{2}(k-1)(a-1)a^k + \frac{1}{2}(a-1)a^k$$

$$= \frac{1}{2}k(a-1)a^k.$$

2.2. The Calculation of m_C

For the second proof, we determine $\mathbf{m}_{\mathbf{C}}$ for each nonzero residue class $\mathbf{C} \mod a^k$. In addition to providing a method to determine $g(\mathcal{A}_k(a))$ and $\mathbf{n}(\mathcal{A}_k(a))$, it also provides an expression for $\mathcal{S}^*(\mathcal{A}_k(a))$. Now $g(\mathcal{A}_k(a))$ denotes the largest N such that

$$a^{k}y + (a^{k} + 1)x_{0} + (a^{k} + a)x_{1} + \dots + (a^{k} + a^{k-1})x_{k-1}$$
$$= a^{k}\left(y + \sum_{i=0}^{k-1} x_{i}\right) + \sum_{i=0}^{k-1} a^{i}x_{i} = N$$
(3)

has no solution in nonnegative integers x_i , and $\mathbf{n}(\mathcal{A}_k(a))$ the number of such N.

Lemma 4. Let $\mathbf{s}_a(x)$ denote the sum of digits in the base a representation of x. For each $x, 1 \le x \le a^k - 1$, the least positive integer of the form given by (3) in the class $x \mod a^k$ is given by $a^k \mathbf{s}_a(x) + x$.

Proof. Let \mathbf{m}_x denote the least positive integer in $\Gamma(A_k(a))$, which is in the class $(x) \mod a^k$. Then \mathbf{m}_x is the minimum value attained by the expression on the left in (3) subject to $\sum_{i=0}^{k-1} a^i x_i = x$ and each $x_i \ge 0$. The values of x_i are uniquely determined by the base a representation of $x \mod a^k$, and we must choose y = 0 in order to minimize the sum in (3) subject to the constraints. Thus $\mathbf{m}_x = a^k \mathbf{s}_a(x) + x$.

Lemma 4 allows us to provides another proof of Theorem 3.

Second Proof. Let \mathcal{C} denote the set of nonzero residue classes mod a^k . We use Lemma 4.

(i)
$$g(a^k, a^k + 1, a^k + a, ..., a^k + a^{k-1}) = \max_{\mathbf{C} \in \mathcal{C}} m_{\mathbf{C}} - a^k$$

 $= \max_{1 \le x \le a^k - 1} \left\{ a^k \mathbf{s}_a(x) + x \right\} - a^k$
 $= \left(a^k \mathbf{s}_a(a^k - 1) + (a^k - 1) \right) - a^k$
 $= k(a - 1)a^k - 1.$

(ii)
$$\mathbf{n}(a^k, a^k + 1, a^k + a, \dots, a^k + a^{k-1})$$

$$= \frac{1}{a^k} \sum_{\mathbf{C} \in \mathcal{C}} m_{\mathbf{C}} - \frac{1}{2}(a^k - 1)$$

$$= \frac{1}{a^k} \sum_{1 \le x \le a^k - 1} \left(a^k \mathbf{s}_a(x) + x\right) - \frac{1}{2}(a^k - 1)$$

$$= \sum_{1 \le x \le a^k - 1} \mathbf{s}_a(x)$$

$$= \frac{1}{2} \sum_{0 \le x \le a^k - 1} \left(\mathbf{s}_a(x) + \mathbf{s}_a(a^k - 1 - x)\right)$$

$$= \frac{1}{2} \sum_{0 \le x \le a^k - 1} \mathbf{s}_a(a^k - 1)$$

$$= \frac{1}{2} k(a - 1)a^k. \square$$

2.3. The Determination of $\mathcal{S}^{\star}(a^k, a^k+1, a^k+a, \dots, a^k+a^{k-1})$

Theorem 5. For positive integers a and k,

$$\mathcal{S}^{\star}(a^{k}, a^{k}+1, a^{k}+a, \dots, a^{k}+a^{k-1}) = \{k(a-1)a^{k}-1\}.$$

Proof. Let $\mathcal{A}_k(a) = \{a^k, a^k + 1, a^k + a, \dots, a^k + a^{k-1}\}$. By (1) and Lemma 4,

$$\mathcal{S}^{\star}(\mathcal{A}_k(a)) \subseteq \left\{ a^k (\mathbf{s}_a(x) - 1) + x : 1 \le x \le a^k - 1 \right\}.$$

By (2), $a^k (\mathbf{s}_a(x) - 1) + x \in \mathcal{S}^*$ if and only if for each y with $1 \le y \le a^k - 1$,

$$a^{k} \left(\mathbf{s}_{a} \left((x+y) \mod a^{k} \right) + 1 \right) + (x+y) \mod a^{k} \leq a^{k} \left(\mathbf{s}_{a}(x) + \mathbf{s}_{a}(y) \right) + x+y.$$
 (4)

Since $\mathbf{s}_a(x) + \mathbf{s}_a(a^k - 1 - x) = \mathbf{s}_a(a^k - 1)$, the inequality (4) fails to hold for the pair $\{x, a^k - 1 - x\}$ whenever $x < a^k - 1$. Thus the only element in $\mathcal{S}^*(\mathcal{A}_k(a))$ is $a^k(\mathbf{s}_a(a^k - 1) - 1) + (a^k - 1) = k(a - 1)a^k - 1$.

Corollary 6. For positive integers a and k,

$$g(a^k, a^k + 1, a^k + a, \dots, a^k + a^{k-1}) = k(a-1)a^k - 1.$$

INTEGERS: 10 (2010)

2.4. A Connection Between $g(\mathcal{A}_k(a))$ and $n(\mathcal{A}_k(a))$

If m, n are integers with sum $g(\mathcal{A}_k(a))$, then it is easy to see that *at most* one of m, n can belong to $\Gamma(\mathcal{A}_k(a))$. On the other hand, if for some such pair m, n, neither belongs to $\Gamma(\mathcal{A}_k(a))$, there would be less than $\frac{1}{2}\{1 + g(\mathcal{A}_k(a))\}$ integers in $\Gamma^c(\mathcal{A}_k(a))$. Thus, for every pair of non-negative integers m, n with sum $g(\mathcal{A}_k(a))$, *exactly* one of m, n belong to $\Gamma^c(\mathcal{A}_k(a))$. We use this to derive $\mathbf{n}(\mathcal{A}_k(a))$, giving a third derivation for $\mathbf{n}(\mathcal{A}_k(a))$.

Theorem 7. For positive integers a and k, let $\mathcal{A}_k(a)$ denote the sequence $a^k, a^k + 1, a^k + a, \ldots, a^k + a^{k-1}$. If $m + n = g(\mathcal{A}_k(a))$, then $m \in \Gamma(\mathcal{A}_k(a))$ if and only if $n \notin \Gamma(\mathcal{A}_k(a))$.

Proof. Let $m + n = g(\mathcal{A}_k(a))$. If $m \in \Gamma(\mathcal{A}_k(a))$, then $n \notin \Gamma(\mathcal{A}_k(a))$, for otherwise $m + n = g(\mathcal{A}_k(a)) \in \Gamma(\mathcal{A}_k(a))$, which is false.

Conversely, suppose $n \notin \Gamma(\mathcal{A}_k(a))$. If n < 0, then $m > g(\mathcal{A}_k(a))$ and so $m \in \Gamma(\mathcal{A}_k(a))$. We may therefore assume that $1 \le n \le g(\mathcal{A}_k(a))$ since both 0 and any integer greater than $g(\mathcal{A}_k(a))$ belong to $\Gamma(\mathcal{A}_k(a))$. Suppose $n \equiv x \pmod{a^k}$; then $n \le \mathbf{m}_x - a^k = a^k (\mathbf{s}_a(x) - 1) + x$. Since $m + n = g(\mathcal{A}_k(a)) = a^k \mathbf{s}_a(a^k - 1) - 1 \equiv -1 \pmod{a^k}$, we have $m \equiv a^k - 1 - x \pmod{a^k}$. Using $\mathbf{s}_a(x) + \mathbf{s}_a(a^k - 1 - x) = \mathbf{s}_a(a^k - 1)$, we have

$$m = g(\mathcal{A}_k(a)) - n \ge a^k (\mathbf{s}_a(a^k - 1) - \mathbf{s}_a(x)) + (a^k - 1 - x) = a^k \mathbf{s}_a(a^k - 1 - x) + (a^k - 1 - x)$$
$$= \mathbf{m}_{a^k - 1 - x}.$$

Hence $m \in \Gamma(\mathcal{A}_k(a))$. This completes the proof.

Corollary 8. For positive integers a and k,

$$\mathbf{n}(\mathcal{A}_k(a)) = \frac{1}{2} \left\{ 1 + \mathbf{g}(\mathcal{A}_k(a)) \right\}.$$

Proof. Consider pairs $\{m, n\}$ of integers in the interval $[0, g(\mathcal{A}_k)]$ with $m + n = g(\mathcal{A}_k(a))$. By Theorem 7, exactly one integer from each such pair is in $\Gamma^c(\mathcal{A}_k(a))$. This completes the proof since no integer greater than $g(\mathcal{A}_k(a))$ is in $\Gamma^c(\mathcal{A}_k(a))$. \Box

Acknowledgement. The author wishes to thank the referee for his comments.

References

- [1] A. Brauer and J. E. Shockley, On a problem of Frobenius, Crelle 211 (1962), 215–220.
- [2] M. Hujter, On a sharp upper and lower bounds for the Frobenius problem, Technical Report MO/32, Computer and Automation Institute, Hungarian Academy of Sciences, 1982.
- [3] S. M. Johnson, A Linear Diophantine Problem, Canad. J. Math. 12 (1960), 390-398.
- [4] J. L. Ramírez Alfonsín, The Frobenius Diophantine Problem, Oxford Lecture Series in Mathematics and its Applications, no. 30, Oxford University Press, 2005.
- [5] Ø. J. Rødseth, On a linear Diophantine problem of Frobenius, Crelle 301 (1978), 171–178.
- [6] E. S. Selmer, On the linear Diophantine problem of Frobenius, Crelle 293/294 (1977), 1–17.
- [7] A. Tripathi, On a variation of the Coin Exchange Problem for Arithmetic Progressions, Integers 3, Article A01 (2003), 5 pp.