FINDING ALMOST SQUARES V

Tsz Ho Chan
Dept. of Mathematical Sciences, University of Memphis, Memphis, TN 38152
tchan@memphis.edu

Received: 1/8/10, Accepted: 5/14/10, Published: 11/5/10

Abstract

An almost square of type 2 is an integer n that can be factored in two different ways as $n=a_{1} b_{1}=a_{2} b_{2}$ with $a_{1}, a_{2}, b_{1}, b_{2} \approx \sqrt{n}$. In this paper, we continue the study of almost squares of type 2 in short intervals and improve the $1 / 2$ upper bound. We also draw connections with almost squares of type 1.

1. Introduction and Main Results

An almost square (of type 1) is an integer n that can be factored as $n=a b$ with a, b close to \sqrt{n}. For example, $9999=99 \times 101$. We call an integer n an almost square of type 2 if it has two different such representations, $n=a_{1} b_{1}=a_{2} b_{2}$ where $a_{1}, b_{1}, a_{2}, b_{2}$ are close to \sqrt{n}. For example $99990000=9999 \times 10000=9900 \times 10100$. Of course, this depends on what we mean by close. More precisely, for $0 \leq \theta \leq 1 / 2$ and $C>0$,

Definition 1 An integer n is a (θ, C)-almost square of type 1 if $n=a b$ for some integers $a<b$ in the interval $\left[n^{1 / 2}-C n^{\theta}, n^{1 / 2}+C n^{\theta}\right]$.

Definition 2 An integer n is a (θ, C)-almost square of type 2 if $n=a_{1} b_{1}=a_{2} b_{2}$ for some integers $a_{1}<a_{2} \leq b_{2}<b_{1}$ in the interval $\left[n^{1 / 2}-C n^{\theta}, n^{1 / 2}+C n^{\theta}\right]$.

In a series of papers [1], [2], [3], [4], the author was interested in finding almost squares of either types in short intervals. In particular, given $0 \leq \theta \leq \frac{1}{2}$, we want to find "admissible" exponent $\phi_{i} \geq 0$ (as small as possible) such that, for some constants $C_{\theta, i}, D_{\theta, i}>0$, the interval $\left[x-D_{\theta, i} x^{\phi_{i}}, x+D_{\theta, i} x^{\phi_{i}}\right]$ contains a $\left(\theta, C_{\theta, i}\right)$ almost square of type $i(i=1,2)$ for all sufficiently large x. These lead to the following

Definition 3 We let $f(\theta):=\inf \phi_{1}$ and $g(\theta):=\inf \phi_{2}$, where the infima are taken over all the "admissible" $\phi_{i}(i=1,2)$ respectively.

Clearly f and g are non-increasing functions of θ. It was conjectured (and partially verified) that

Conjecture 4 For $0 \leq \theta \leq \frac{1}{2}$,

$$
f(\theta)= \begin{cases}\frac{1}{2}, & \text { if } 0 \leq \theta<\frac{1}{4} \\ \frac{1}{2}-\theta, & \text { if } \frac{1}{4} \leq \theta \leq \frac{1}{2}\end{cases}
$$

and

$$
g(\theta)= \begin{cases}\text { does not exist, } & \text { if } 0 \leq \theta<\frac{1}{4} \\ 1-2 \theta, & \text { if } \frac{1}{4} \leq \theta \leq \frac{1}{2}\end{cases}
$$

In [3], it was proved that

Theorem 5 For $\frac{1}{4} \leq \theta \leq \frac{1}{2}$,

$$
g(\theta) \leq \begin{cases}\frac{5}{8}, & \text { if } \frac{1}{4} \leq \theta \leq \frac{5}{16} \\ \frac{17}{32}, & \text { if } \frac{5}{16} \leq \theta \leq \frac{743}{2306} \\ \frac{1}{2}, & \text { if } \frac{743}{2306}<\theta \leq \frac{1}{2}\end{cases}
$$

The purpose of this paper is to improve the $\frac{1}{2}$ upper bound for $g(\theta)$ in certain range of θ, namely

Theorem 6 For $\frac{1}{3} \leq \theta \leq \frac{1}{2}$, we have $g(\theta) \leq 1-\frac{3 \theta}{2}$.
Combining the above two theorems, we have the following picture:

The thin downward sloping line is the conjectural lower bound $1-2 \theta$ while the thick line segments above are the upper bounds from Theorems 5 and 6.

Furthermore, there are some connections between almost squares of type 1 and almost squares of type 2 .

Theorem 7 If Conjecture 4 is true for $f(\theta)$ when $\frac{1}{4} \leq \theta \leq \frac{1}{2}$, then

$$
g(\theta) \leq \frac{3}{2}-3 \theta
$$

for $\frac{1}{3} \leq \theta \leq \frac{1}{2}$.

Notation. Both $f(x)=O(g(x))$ and $f(x) \ll g(x)$ mean that $|f(x)| \leq C g(x)$ for some constant $C>0$.

2. Unconditional Result: Theorem 6

Proof. We shall use the fact: for any real number $x \geq 1$, there exists a perfect square a^{2} such that $a^{2} \leq x<(a+1)^{2}$. Hence $\left|x-a^{2}\right| \ll \sqrt{x}$.

Given $x \geq 1$ sufficiently large. The almost square of type 2 close to x we have in mind has the form

$$
n=\left(G^{2}-1\right)\left(H^{2}-h^{2}\right)=a_{1} b_{1}=a_{2} b_{2}
$$

where $\left\{a_{1}, b_{1}\right\}=\{(G-1)(H-h),(G+1)(H+h)\}$ and $\left\{a_{2}, b_{2}\right\}=\{(G-1)(H+$ $h),(G+1)(H-h)\}$.

Let $0<\lambda<\frac{1}{4}$. We choose $G=\left[x^{1 / 4-\lambda}\right]$.
First, we approximate $\frac{x}{G^{2}-1}$ by H^{2} where $H=\left[\sqrt{\frac{x}{G^{2}-1}}+1\right]$. Then $0<H^{2}-$ $\frac{x}{G^{2}-1} \ll H$. One can check that
$G H=G\left[\sqrt{\frac{x}{G^{2}-1}}+1\right]=x^{1 / 2}\left(1+O\left(\frac{1}{G^{2}}\right)\right)+O(G)=x^{1 / 2}+O\left(x^{2 \lambda}\right)+O\left(x^{1 / 4-\lambda}\right)$.
Next, we approximate $H^{2}-\frac{x}{G^{2}-1}$ by h^{2} for some $0<h \ll H^{1 / 2} \ll x^{1 / 8+\lambda / 2}$. We can get within a distance $H^{2}-\frac{x}{G^{2}-1}-h^{2} \ll H^{1 / 2} \ll x^{1 / 8+\lambda / 2}$. Therefore

$$
\left|x-\left(G^{2}-1\right)\left(H^{2}-h^{2}\right)\right| \leq\left|\frac{x}{G^{2}-1}-\left(H^{2}-h^{2}\right)\right| G^{2} \ll G^{2} x^{1 / 8+\lambda / 2} \ll x^{5 / 8-3 \lambda / 2}
$$

The number $n=\left(G^{2}-1\right)\left(H^{2}-h^{2}\right)=(G-1)(G+1)(H-h)(H+h)$. Notice that

$$
\begin{aligned}
(G-1)(H-h)= & G H-H-G h+h \\
= & x^{1 / 2}+O\left(x^{2 \lambda}\right)+O\left(x^{1 / 4-\lambda}\right) \\
& +O\left(x^{1 / 4+\lambda}\right)+O\left(x^{3 / 8-\lambda / 2}\right)+O\left(x^{1 / 8+\lambda / 2}\right) \\
= & x^{1 / 2}+O\left(x^{1 / 4+\lambda}\right)+O\left(x^{3 / 8-\lambda / 2}\right)
\end{aligned}
$$

One can check that the same asymptotic holds for $(G-1)(H+h),(G+1)(H-h)$ and $(G+1)(H+h)$. When $\lambda \geq \frac{1}{12}$, the first error term dominates. Thus, we just have found a $\left(\frac{1}{4}+\lambda, C\right)$-almost square of type 2 within a distance $O\left(x^{5 / 8-3 \lambda / 2}\right)$ from x for some $C>0$.

Set $\theta=\frac{1}{4}+\lambda$. The condition $\frac{1}{12} \leq \lambda<\frac{1}{4}$ becomes $\frac{1}{3} \leq \theta<\frac{1}{2}$. Meanwhile $\frac{5}{8}-\frac{3 \lambda}{2}=1-\frac{3 \theta}{2}$. Therefore, for any $\frac{1}{3} \leq \theta<\frac{1}{2}$, there exists a (θ, C)-almost square of type 2 within a distance $O\left(x^{1-3 \theta / 2}\right)$ from x. So $g(\theta) \leq 1-\frac{3 \theta}{2}$ when $\frac{1}{3} \leq \theta<\frac{1}{2}$. When $\lambda=\frac{1}{4}$ (i.e. $\theta=\frac{1}{2}$), one simply uses $G=2$ and the above argument works in the same way to give $g\left(\frac{1}{2}\right) \leq \frac{1}{4}$.

3. Connection to Almost Squares of Type 1: Theorem 7

Proof. In the previous section, we used an elementary method to approximate $\frac{x}{G^{2}-1}$ by $(H-h)(H+h)$, a $\left(\frac{1}{4}, C\right)$-almost square of type 1 , since $h \ll H^{1 / 2} \ll\left(\frac{x}{G^{2}-1}\right)^{1 / 4}$. So one should expect to do better using (ϕ, C)-almost square of type 1 for some $\frac{1}{4} \leq \phi \leq \frac{1}{2}$.

Again we choose $G=\left[x^{1 / 4-\lambda}\right]$ and let $H=\sqrt{\frac{x}{G^{2}-1}}$. By Conjecture 4 on $f(\theta)$, we can find a (ϕ, C)-almost square of type 1 , say $a b$, such that $H-C H^{2 \phi} \leq a<$ $b \leq H+C H^{2 \phi}$ and

$$
\left|\frac{x}{G^{2}-1}-a b\right| \ll\left(\frac{x}{G^{2}-1}\right)^{1 / 2-\phi+\epsilon} \ll x^{1 / 4-\phi / 2+\lambda-2 \lambda \phi+\epsilon}
$$

for x sufficiently large. Hence

$$
\begin{equation*}
|x-(G-1)(G+1) a b| \ll x^{3 / 4-\lambda-\phi / 2-2 \lambda \phi+\epsilon} . \tag{1}
\end{equation*}
$$

Similar to the previous section, one has

$$
\begin{aligned}
(G-1) a=(G-1)\left(H+O\left(H^{2 \phi}\right)\right) & =G H-H+O\left(G H^{2 \phi}\right) \\
& =x^{1 / 2}+O\left(x^{1 / 4+\lambda}\right)+O\left(x^{1 / 4-\lambda+\phi / 2+2 \lambda \phi}\right)
\end{aligned}
$$

The same is true for $(G-1) b,(G+1) a$ and $(G+1) b$. One can check that $\frac{1}{4}+\lambda \geq$ $\frac{1}{4}-\lambda+\frac{\phi}{2}+2 \lambda \phi$ if and only if $\lambda \geq \frac{\phi}{4-4 \phi}$.

Let $\theta=\frac{1}{4}+\lambda$ and $\lambda=\frac{\phi}{4-4 \phi}$. Then the exponent in (1) satisfies $\frac{3}{4}-\lambda-\frac{\phi}{2}-2 \lambda \phi=$ $1-\theta(1+2 \phi)$. Therefore, for any $\frac{1}{4}+\frac{\phi}{4-4 \phi} \leq \theta \leq \frac{1}{2}$, there exists a $\left(\theta, C^{\prime}\right)$-almost square of type 2 within a distance of $O\left(x^{1-\theta(1+2 \phi)+\epsilon}\right)$ from x for some $C^{\prime}>0$.

Given $\frac{1}{3} \leq \theta \leq \frac{1}{2}$, the bigger the ϕ, the better the above result. Since $\frac{\phi}{4-4 \phi}$ is an increasing function of ϕ, the biggest ϕ we can use is when $\frac{1}{4}+\frac{\phi}{4-4 \phi}=\theta$. This gives $\phi=1-\frac{1}{4 \theta} \leq \frac{1}{2}$ as $\theta \leq \frac{1}{2}$. Using this value of ϕ, we have a $\left(\theta, C^{\prime}\right)$-almost square of type 2 within a distance of $O\left(x^{3 / 2-3 \theta+\epsilon}\right)$ from x. This proves Theorem 7 as ϵ can be arbitrarily small.

Remark. The exponent $\frac{3}{2}-3 \theta \rightarrow 0$ as $\theta \rightarrow \frac{1}{2}$. However $\frac{3}{2}-3 \theta$ is always greater than the conjectural value $1-2 \theta$ for $g(\theta)$ which is no surprise as part of the almost square has the special form $G^{2}-1$. It would be interesting to see how one could incorporate the extra degree of freedom, namely $G^{2}-g^{2}$ for some g, for further improvements.

References

[1] T.H. Chan, Finding almost squares, Acta Arith. 121 (2006), no. 3, 221-232.
[2] T.H. Chan, Finding almost squares II, Integers 5 (2005), no. 1, A23, 4 pp. (electronic).
[3] T.H. Chan, Finding almost squares III, in Combinatorial Number Theory, 7-16, Walter de Gruyter, Berlin, 2009.
[4] T.H. Chan, Finding almost squares IV, Arch. Math. (Basel) 92 (2009), no. 4, 303-313.

