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Abstract
Let α > 1 be an algebraic number and ξ > 0. Denote the fractional parts of ξαn

by {ξαn}. In this paper, we estimate a lower bound for the number λN (α, ξ) of
integers n with 0 ≤ n < N and

{ξαn} ≥ min
{

1
L+(α)

,
1

L−(α)

}
.

Our results show, for example, the following: Let α be an algebraic integer with
Mahler measure M(α) and ξ > 0 an algebraic number with ξ #∈ Q(α). Put [Q(α, ξ) :
Q(α)] = D. Then there exists an absolute constant c satisfying

λN (α, ξ) ≥ c
(log α)2

(log M(α))2(log(6D))1/2

(log N)3/2

(log log N)1/2

for all large N .

1. Introduction

A normal number in an integer base α is a positive number for which all finite words
with letters from the alphabet {0, 1, . . . ,α− 1} occur with the proper frequency. It
is easily checked that a positive number ξ is a normal number in base α if and only if
the sequence ξαn (n = 0, 1, . . .) is uniformly distributed modulo 1. Borel [6] proved
that almost all positive ξ are normal numbers in every integer base. Moreover,
Koksma [16] showed that if any real number α > 1 is given, then the sequence ξαn

(n = 0, 1, . . .) is uniformly distributed modulo 1 for almost all positive ξ, which is
a generalization of Borel’s result. However, it is generally difficult to check a given
geometric sequence is uniformly distributed modulo 1 or not. For instance, we even
do not know whether the numbers

√
2, 3
√

5 and π are normal in base 10.
Borel [7] conjectured that each algebraic irrational number is normal in every

integer base. However, we know no such number whose normality was proved. We
now introduce some partial results.
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Let α be a natural number greater than 1 and ξ a positive algebraic irrational
number. For simplicity, assume that ξ < 1. Write its α-ary expansion as

ξ =
−1∑

i=−∞
si(ξ)αi = .s−1(ξ)s−2(ξ) · · ·

with si(ξ) ∈ {0, 1, . . . ,α−1}. First, we measure the complexity of the infinite word
s = s−1(ξ)s−2(ξ) · · · by the number p(N) of distinct blocks of length N appearing
in the word s. If ξ is normal in base α, then p(N) = αN for any positive N . Ferenczi
and Mauduit [13] showed that

lim
N→∞

(p(N)−N) =∞.

Adamczewski and Bugeaud [1] improved their result as follows:

lim
N→∞

p(N)
N

=∞.

Moreover, Bugeaud and Evertse [10] showed for any positive ξ with η < 1/11 that

lim sup
N→∞

p(N)
N(log N)η

=∞.

Bugeaud and Evertse [10] gave a lower bound of the number ch(N) of digit changes
among the first (N + 1) digits of the α-ary expansion of ξ. Namely,

ch(N) = Card{i ∈ N|1 ≤ i ≤ N, s−i(ξ) #= s−i−1(ξ)},

where Card denotes the cardinality. They showed for an algebraic irrational ξ > 0
of degree D(≥ 2) that there exist an effectively computable absolute constant c1 and
an effectively computable constant c2(α, ξ), depending only on α and ξ, satisfying

ch(N) ≥ c1
(log N)3/2

(log 6D)1/2(log log N)1/2

for any N with N ≥ c2(α, ξ).
Next, we count the number λN (α, ξ) of nonzero digits among the first N digits

of the α-ary expansion of ξ, where

λN (α, ξ) = Card{i ∈ N|1 ≤ i ≤ N, s−i(ξ) #= 0}. (1)
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Let ξ be an algebraic irrational number of degree D with 1 < ξ < 2. In the case
of α = 2, Bailey, Borwein, Crandall, and Pomerance [4] showed that an arbitrary
positive ε is given, then

λN (α, ξ) > (1− ε)(2AD)−1/DN1/D

for all sufficiently large N , where AD(> 0) is the leading coefficient of the minimal
polynomial of ξ. Moreover, in the same way as the proof of the inequality above,
we can show for any natural number α ≥ 2 that there exists a positive constant
c3(α, ξ) depending only on α and ξ satisfying

λN (α, ξ) ≥ c3(α, ξ)N1/D

for every sufficiently large N .
In what follows, we consider the fractional parts of geometric progressions whose

common ratios are algebraic numbers. Let α > 1 be an algebraic number with
minimal polynomial adXd + ad−1Xd−1 + . . . + a0 ∈ Z[X], where ad > 0 and
gcd(ad, ad−1, . . . , a0) = 1. Put

L+(α) =
∑

ai>0

ai, L−(α) =
∑

ai≤0

|ai|. (2)

Moreover, write the Mahler measure of α by

M(α) = ad

d∏

k=1

max{1, |αk|},

where α1 = α,α2, . . . ,αd are the conjugates of α. We now recall the definition of
a Pisot and Salem number. A Pisot number is an algebraic integer greater than 1
whose conjugates different from itself have absolute values strictly less than 1. A
Salem number is an algebraic integer greater than 1 which has at least one conjugate
with modulus 1 and exactly one conjugate outside the unit circle. Take a positive
number ξ. If α is a Pisot or Salem number, then assume ξ #∈ Q(α). Dubickas [11]
showed for infinitely many n ≥ 1 that

{ξαn} ≥ min
{

1
L+(α)

,
1

L−(α)

}
,

where {ξαn} means the fractional part of ξαn. In what follows we estimate the
number of such n, namely, we give a lower bound of the number

λN (α, ξ) = Card
{

n ∈ Z
∣∣∣∣0 ≤ n < N, {ξαn} ≥ min

{
1

L+(α)
,

1
L−(α)

}}
. (3)
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(3) is generalization of (1). In fact, assume that α is a natural number greater than
1 and that ξ is a positive number with ξ < 1. Then, for n ≥ 0,

{ξαn} ≥ min
{

1
L+(α)

,
1

L−(α)

}
=

1
α

if and only if the (n + 1)-th digit of α-ary expansion of ξ is nonzero.
Dubickas’s result above implies

lim
N→∞

λN (α, ξ) =∞.

He verified this by showing that, for infinitely many n ≥ 0,

s−n(ξ) #= 0,

where s−n(ξ) will be defined in Section 2. Moreover, in the same way as that of
Theorem 3 of [11], we can show the following: Assume that α has at least one
conjugate different from itself outside the unit circle. Then

lim inf
N→∞

λN (α, ξ)
log N

≥
(

log
(

log M(α)
log M(α)− log(adα)

))−1

. (4)

At the beginning of Section 5, we give another proof of (4). In this paper we
improve this estimation in the case where α > 1 and ξ > 0 are algebraic numbers
with ξ #∈ Q(α) by using a version of the quantitative parametric subspace theorem
of Bugeaud and Evertse [10]. First, we consider the case where α > 1 is an algebraic
integer.

Theorem 1. Let α > 1 be an algebraic integer with Mahler measure M(α). Let ξ
be a positive algebraic number with ξ #∈ Q(α). Put

D = [Q(α, ξ) : Q(α)].

Then there exists an effectively computable absolute constant c > 0 such that

λN (α, ξ) ≥ c
(log α)2

(log M(α))2(log(6D))1/2

(log N)3/2

(log log N)1/2

for every sufficiently large N .

Next we give a lower bound of λN (α, ξ) in the case where α > 1 is not an algebraic
integer.
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Theorem 2. Let α > 1 be an algebraic number of degree d with Mahler measure
M(α). We denote the leading coefficient of the minimal polynomial of α by ad(≥ 1).
Let ξ be a positive algebraic number with ξ #∈ Q(α). Assume that α is not an
algebraic integer. Then

lim inf
N→∞

λN (α, ξ)
log N

≥
(

log
(

log M(α)
log M(α)− log ad

))−1

.

Theorem 2 gives an improvement of (4) since
(

log
(

log M(α)
log M(α)− log ad

))−1

>

(
log

(
log M(α)

log M(α)− log(adα)

))−1

.

We introduce a numerical example in the case of α = 4 + 1/
√

2. The minimal
polynomial of α is 2X2 − 16X + 31, so we have ad = 2, M(α) = 31, and

min{ 1
L+(α)

,
1

L−(α)
} = min{ 1

33
,

1
16
} =

1
33

.

Note that the conjugate of α is greater than 1. Thus by (4), for any positive ξ,

lim inf
N→∞

λN (4 + 1/
√

2, ξ)
log N

≥
(

log
(

log(31)
log(31)− log(8 +

√
2)

))−1

= 0.944 . . . .

On the other hand, the second statement of Theorem 2 implies that if ξ > 0 is an
algebraic number with ξ #∈ Q(

√
2), then

lim inf
N→∞

λN (4 + 1/
√

2, ξ)
log N

≥
(

log
(

log(31)
log(31)− log(2)

))−1

= 4.43 . . . .

Remark 3. By using the same method for the proof of Theorem 2 and 1, Bugeaud
[9] gave a lower bound for the number of digit changes in the β-expansion of algebraic
numbers.

2. Preliminaries

Let α > 1 be an algebraic number of degree d and ξ a positive number. Write the
minimal polynomial of α by Pα(X) = adXd + · · · + a0 ∈ Z[X] (ad > 0). In this
section, we study the sequence (sm(ξ))∞m=−∞ defined by

sm(ξ) = −
d∑

i=0

ad−i{ξα−m−i}.
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Let [x] be the integral part of a real number x. Since

0 =
d∑

i=0

ad−iξα
−m−i =

d∑

i=0

ad−i

(
[ξα−m−i] + {ξα−m−i}

)
,

we have

sm(ξ) =
d∑

i=0

ad−i

(
[ξα−m−i]− ξα−m−i

)

=
d∑

i=0

ad−i[ξα−m−i]. (5)

In particular, sm(ξ) is a rational integer. Thus we get the following:

Lemma 4. Let ξ be a positive number.

(1) If sm(ξ) #= 0 ,then

max
−m−d≤n≤−m

{ξαn} ≥ min
{

1
L+(α)

,
1

L−(α)

}
.

(2) sm(ξ) = 0 for all sufficiently large m.

Proof. We first show the first statement. Since sm(ξ) is a nonzero integer, we have

1 ≤ |sm(ξ)| =

∣∣∣∣∣−
d∑

i=0

ad−i{ξα−m−i}

∣∣∣∣∣ .

By using 0 ≤ {ξα−m−i} < 1, we obtain the first statement. The second statement
follows from (5) and [ξα−m] = 0 for each sufficiently large m.

Proposition 5. Write the conjugates of α with moduli greater than 1 by
α1(= α), . . . ,αp. Let ξ be a positive number. Then

(1) For 2 ≤ k ≤ p,

∞∑

i=−∞
αi

ksi(ξ) = 0.
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(2)

∞∑

i=−∞
αisi(ξ) = − ξ

α
(P ∗α)′

(
1
α

)
#= 0,

where P ∗α(X) = ad+ad−1X + · · ·+a0Xd denotes the reciprocal polynomial of Pα(X)
and (P ∗α)′(X) its derivative.

Remark 6. By the second statement of Lemma 4, the series

∞∑

i=−∞
αi

ksi(ξ)

converges for any k with 1 ≤ k ≤ p.

Proof. We first consider the case of 0 < ξ < 1. Then, for any m ≤ 0, [ξαm] = 0,
and so s−m(ξ) = 0 by (5). Put

f(z) =
∞∑

n=0

[ξαn]zn, g(z) =
∞∑

n=0

{ξαn}zn.

Then we have

(
ξ

1− αz
− g(z)

)
P ∗α(z) = f(z)P ∗α(z)

=
∞∑

h=0

∑

i,j≥0
i+j=h

[ξαi]ad−jz
h

=
∞∑

h=0

h∑

i=h−d

[ξαi]ad−h+iz
h =

∞∑

h=0

s−h(ξ)zh.

Consider the region of z ∈ C satisfying

(
ξ

1− αz
− g(z)

)
P ∗α(z) =

∞∑

h=0

s−h(ξ)zh. (6)

Since 0 ≤ {ξαn} < 1 for any n, the left-hand side of (6) is a meromorphic func-
tion on {z : |z| < 1}. Moreover, because the sequence s−m(ξ) (m = 0, 1, . . .) is
bounded, the right-hand side of (6) converges for |z| < 1. Hence (6) holds for
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|z| < 1. In particular, since the left-hand side of (6) has a zero at z = α−1
k with

2 ≤ k ≤ p, we obtain

∞∑

i=−∞
αi

ksi(ξ) =
∞∑

i=0

α−i
k s−i(ξ) = 0.

Let α1 = α, . . . ,αp,αp+1, . . . ,αd be the conjugates of α. P ∗α(z) has a simple zero at
z = 1/α since

P ∗α(z) = zdPα

(
1
z

)
= ad(1− αz)(1− α2z) · · · (1− αdz).

Note that g(z) is holomorphic for |z| < 1. Hence

∞∑

i=−∞
αisi(ξ) =

∞∑

i=0

α−is−i(ξ)

= lim
z→1/α

ξP ∗α(z)
1− αz

= − ξ

α
(P ∗α)′

(
1
α

)
#= 0.

Next, we check the case of ξ ≥ 1. Take a positive integer R satisfying ξα−R < 1.
Then we obtain

∞∑

i=−∞
αi

ksi(ξ) = αR
k

∞∑

i=−∞
αi−R

k si−R(ξα−R) = 0

for 2 ≤ k ≤ p, and

∞∑

i=−∞
αisi(ξ) = αR

∞∑

i=−∞
αi−Rsi−R(ξα−R) = − ξ

α
(P ∗α)′

(
1
α

)
.

3. The Quantitative Subspace Theorem

First, we consider approximations of given algebraic numbers by algebraic numbers
which lies in a fixed number field. We fix an algebraic closure Q of Q. In what
follows, assume that all algebraic number fields are subfields of Q. Let us begin
with some notation about the absolute values on K, where K is a number field
of degree d. Let Marc(K) be the set of archimedean places of K and Mnon(K)
the set of non-archimedean places of K, respectively. Moreover, put M(K) =
Marc(K)∪Mnon(K). We define the absolute values | · |v and || · ||v associated with
a place v ∈ K. In the case of K = Q, we have

M(Q) = {∞} ∪ {primes}.
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In the case of v =∞, let | · |∞ be the ordinary archimedean absolute value on Q. If
v = p is a prime number, then denote by | · |p the p-adic absolute value, normalized
such that |p|p = p−1.

Next, we consider the case where K is an arbitrary number field. Suppose a place
v ∈ M(K) lies above the place pv ∈ M(Q). We choose the normalized absolute
value | · |v in such a way that the restriction of | · |v to Q is | · |pv . Let Kv (resp.
Qpv) be the completion of (K, | · |v) (resp. (Q, | · |pv)). Put

d(v) =
[Kv : Qpv ]

[K : Q]
.

and

|| · ||v = | · |d(v)
v .

Define the height of x by

H(x) =
∏

v∈M(K)

max{1, ||x||v}.

By Lemma 3.10 of [20], we have

H(x)deg x = M(x) (7)

Moreover, the product formula (for instance see [20], p. 74) implies for any nonzero
x ∈ K that

H(x−1) = H(x). (8)

Now we introduce Theorem 2 of [17] in the case of d = 1, which we use to prove
Theorem 2. Suppose every valuation of K to be extended to Q.

Theorem 7 (Locher [17]). Let 0 < ε ≤ 1 and F/K be an extension of number
fields of degree D. Let S be a finite set of places of K with cardinality s. Suppose
that for each v ∈ S, a fixed element θv ∈ F is given. Let H be a real number with
H ≥ H(θv) for all v ∈ S. Consider the inequality

∏

v∈S

min{1, ||θv − γ||v} < H(γ)−2−ε (9)

to be solved in elements γ ∈ K. Then there are at most

e7s+19ε−s−4 log(6D) log
(
ε−1 log(6D)

)

solutions γ ∈ K of (9) with

H(γ) ≥ max
{
H, 44/ε

}
.
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Next, we consider approximations of given algebraic numbers by algebraic num-
bers with arbitrary degree. Let us introduce the quantitative subspace theorem
proved by Bugeaud and Evertse [10]. Let L = (Liv : v ∈ M(K), i = 1, 2) be a
tuple of linear forms with the following properties:






Liv ∈ K[X,Y ] for v ∈M(K), i = 1, 2,

L1v = X, L2v = Y for all but finitely many v ∈M(K),

det(L1v, L2v) = 1 for v ∈M(K),

Card
(⋃

v∈M(K){L1v, L2v}
)
≤ r.

(10)

Put
⋃

v∈M(K)

{L1v, L2v} = {L1, . . . , Ls}

and

H = H(L) =
∏

v∈M(K)

max
1≤i<j≤s

||det(Li, Lj)||v. (11)

Moreover, let c = (civ : v ∈M(K), i = 1, 2) be a tuple of reals with the following
properties:






c1v = c2v = 0 for all but finitely many v ∈M(K),
∑

v∈M(K)

∑2
i=1 civ = 0,

∑
v∈M(K) max{c1v, c2v} ≤ 1.

(12)

Next, take any finite extension E of K and any place w ∈M(E). Let v ∈M(K)
be the place lying below w. Write the completion of (E, | · |w) (resp. (K, | · |v)) by
Ew (resp. Kv). For i = 1, 2, define the linear forms L1w, L2w and the real numbers
c1w, c2w by

Liw = Liv and ciw = d(w|v)civ, (13)

where

d(w|v) =
[Ew : Kv]
[E : K]

.

Note that

||x||w = ||x||d(w|v)
v for x ∈ K (14)
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and that

∑

w∈M(E)
w|v

d(w|v) = 1 for v ∈M(K). (15)

Take a positive number Q and x = (x, y) ∈ Q2. We define the twisted height
HQ,L,c(x). There exists a number field E including the field K(x, y). Then put

HQ,L,c(x) =
∏

w∈M(E)

max
1≤i≤2

||Liw(x)||wQ−ciw ,

which is a finite product by the assumption of L and c. We show that HQ,L,c(x)
does not depend on the choice of E. Let E′ be another number field including
K(x, y). Take a number field F with F ⊃ E ∪E′. By (13), (14), and (15)

∏

u∈M(F)

max
1≤i≤2

||Liu(x)||uQ−ciu

=
∏

w∈M(E)

∏

u∈M(F)
u|w

max
1≤i≤2

||Liw(x)||d(u|w)
w Q−d(u|w)ciw

=
∏

w∈M(E)

max
1≤i≤2

||Liw(x)||wQ−ciw .

Similarly, we get

∏

w′∈M(E′)

max
1≤i≤2

||Liw′(x)||w′Q−ciw′ =
∏

u∈M(F)

max
1≤i≤2

||Liu(x)||uQ−ciu

=
∏

w∈M(E)

max
1≤i≤2

||Liw(x)||wQ−ciw .

Now we consider the inequality

HQ,L,c(x) ≤ Q−δ, (16)

where x ∈ Q
2 and Q, δ > 0.

Theorem 8 (Bugeaud and Evertse [10]). Let L = (Liv : v ∈M(K), i = 1, 2)
be a tuple of linear forms satisfying (10) and c = (civ : v ∈M(K), i = 1, 2) a tuple
of reals fulfilling (12). Moreover, let 0 < δ ≤ 1.
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Then there are proper linear subspaces T1, . . . , Tt1 of Q2, all defined over K, with

t1 = t1(r, δ) = 225δ−3 log(2r) log
(
δ−1 log(2r)

)
(17)

such that the following holds: for every real Q with

Q > max
(
H1/( r

2 ), 22/δ
)

(18)

there is a subspace Ti ∈ {T1, . . . , Tt1} which contains all solutions x ∈ Q
2 of (16).

This is Proposition 4.1 of [10] in the case of n = 2.

4. Systems of Inequalities

In this section we apply Theorem 8 to certain systems of inequalities, which are
generalization of Theorem 5.1 in [10]. Let K ⊂ Q be a number field of degree d. We
define some notation about linear forms with algebraic coefficients. Take a linear
form L(X,Y ) = αX + βY ∈ Q[X,Y ] and put

K(L) = K(α,β).

Define the inhomogeneous height H∗(L) of L by

H∗(L) =
∏

v∈M(K(L))

max{1, ||α||v, ||β||v}.

Note that, for a number field E including K(L),
∏

w∈M(E)

max{1, ||α||v, ||β||v}

=
∏

v∈M(K(L))

∏

w∈M(E)
w|v

max{1, ||α||v, ||β||v}d(w|v) = H∗(L) (19)

by (15). In what follows we put, for w ∈ E,

||L||w = max{||α||w, ||β||w}.

Moreover, if an automorphism σ : Q→ Q is given, let

σ(L) = σ(α)X + σ(β)Y.
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Write the Archimedean place associated with the inclusion map K ↪→ C by ∞,
namely,

||x||∞ = |x|1/d for x ∈ K. (20)

Let ε be a real with 0 < ε ≤ 1/2 and S a finite subset of M(K) including all
archimedean places of K. Moreover, let Liv (v ∈ S, i = 1, 2) be linear forms in
X,Y with coefficients in Q such that






det(L1v, L2v) = 1 for v ∈ S,

Card
(⋃

v∈S{L1v, L2v}
)
≤ R,

[K(Liv) : K] ≤ D for v ∈ S, i = 1, 2,

H∗(Liv) ≤ H for v ∈ S, i = 1, 2,

(21)

and eiv (v ∈ S, i = 1, 2) be reals satisfying

∑

v∈S

2∑

i=1

eiv = −ε. (22)

Put

A = 1 +
∑

v∈S

max{0, e1v, e2v} (≥ 1).

Finally, let Ψ be a function from O2
K to R≥0, where OK is the ring of integers of

K. Suppose every valuation v of K to be extended to Q. Consider the system of
inequalities

||Liv(x)||v ≤ Ψ(x)eiv (v ∈ S, i = 1, 2), (23)

where x ∈ O2
K with Ψ(x) #= 0.

Proposition 9. The set of solutions x ∈ O2
K of (23) with

Ψ(x) > max{2H, 24/ε} (24)

is contained in the union of at most

231A4ε−3 log(2RD) log
(
ε−1 log(2RD)

)

proper linear subspaces of K2.
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Proof. We can prove this proposition in the same way as Theorem 5.1 in [10]. Let
E be a finite normal extension of K, containing the coefficients of Liv as well as the
conjugates over K of these coefficients, for v ∈ S, i = 1, 2. Let S̃ denote the set
of places of E lying above the places in S. Note that S̃ ⊃Marc(E). Take a place
w ∈M(E) above the place v ∈M(K). For simplicity, put

dw = d(w|v).

If w ∈ S̃, then there exists an automorphism σw of E satisfying

||x||w = ||σw(x)||dw
v for x ∈ E.

For i = 1, 2, we define the linear forms Liw and the real numbers eiw by

Liw =






σ−1
w (Liv) (w ∈ S̃),

X (i = 1, w #∈ S̃)

Y (i = 2, w #∈ S̃)

and

eiw =

{
dweiv (w ∈ S̃),

0 (w #∈ S̃),

respectively. Take an x ∈ O2
K with (23). If w #∈ S̃, then w is non-archimedean, so

||Liw(x)||w ≤ 1.

Moreover, since

||Liv(x)||dw
v = ||σw

(
Liw(x)

)
||dw

v = ||Liw(x)||w,

x satisfies the system of inequalities

||Liw(x)||w ≤ Ψ(x)eiw (w ∈M(E), i = 1, 2). (25)

By using (15) and (22) we get

∑

w∈M(E)

2∑

i=1

eiw =
∑

v∈S

∑

v∈M(E)
w|v

2∑

i=1

dweiv

=
∑

v∈S

2∑

i=1

eiv = −ε. (26)
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By the definition of Liw with 1 ≤ i ≤ 2 and w ∈M(E)

Card




⋃

w∈M(E)

{L1w, L2w}



 ≤ 2 + DR.

Let L = (Liw : w ∈ M(E), i = 1, 2). Define the tuple of reals c = (ciw : w ∈
M(E), i = 1, 2) by

ciw = A−1



eiw −
1
2

2∑

j=1

ejw



 .

We apply Theorem 8 with L, c, r = 2 + DR(≥ 4), and

δ =
ε

2A
.

It is easy to check the condition (10). We verify the condition (12). The first
statement is clear by the definition of ciw and eiw. The second statement follows
from c1w + c2w = 0 for each w ∈ M(E). Moreover, by using (22) and (26), we
obtain

A
∑

w∈M(E)

max{c1w, c2w} =
∑

w∈M(E)

max{e1w, e2w}−
1
2

∑

w∈M(E)

2∑

j=1

ejw

=
∑

v∈S

∑

w∈M(E)
w|v

max{dwe1v, dwe2v}+
ε

2

≤ ε

2
+

∑

v∈S

max{0, e1v, e2v}
∑

w∈M(E)
w|v

dw

≤ 1 +
∑

v∈S

max{0, e1v, e2v} = A.

Therefore we proved the last inequality of (12).
Let x ∈ O2

K be a solution of (23) with (24). Then x also fulfills (25). Put

Q = Ψ(x)A.

Finally, we show that such an x satisfies (16) and (18). By (25) and the definition
of ciw,

||Liw(x)||wQ−ciw = ||Liw(x)||wΨ(x)−eiwΨ(x)(e1w+e2w)/2

≤ Ψ(x)(e1w+e2w)/2
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for w ∈M(E), i = 1, 2. By taking product over w ∈M(E) and using (26), we get

HQ,L,c(x) =
∏

w∈M(E)

max
1≤i≤2

||Liw(x)||wQ−ciw

≤
∏

w∈M(E)

Ψ(x)(e1w+e2w)/2

= Ψ(x)−ε/2 = Q−δ.

Thus (16) is verified. Put
⋃

w∈M(E)

{L1w, L2w} = {L1, . . . , Ls},

where s ≤ r. We check H∗(Liw) ≤ H for w ∈M(E) and i = 1, 2. We may assume
that w ∈ S̃. There exists an automorphism σw of E such that Liw = σ−1

w (Liv),
where v ∈ S is the place below w. By (19) and (21)

H∗(Liw) =
∏

u∈M(E)

max{1, ||σ−1
w (Liv)||u}

=
∏

u∈M(E)

max{1, ||Liv||u} = H∗(Liv) ≤ H.

Let D̃ = [E : Q] and 1 ≤ i < j ≤ s. If w is an Archimedean place, then

||det(Li, Lj)||w ≤ 2[Ew:R]/D̃||Li||w||Lj ||w

≤ 2[Ew:R]/D̃
s∏

l=1

max{1, ||Ll||w}.

Similarly, if w is non-Archimedean, then by the ultrametric inequality

||det(Li, Lj)||w ≤ ||Li||w||Lj ||w ≤
s∏

l=1

max{1, ||Ll||w}.

Since
∑

w∈Marc(E)[Ew : R] = D̃, we conclude that

H(L) =
∏

w∈M(E)

max
1≤i<j≤s

||det(Li, Lj)||w

≤
∏

w∈Marc(E)

2[Ew:R]/D̃
s∏

l=1

H∗(Ll) ≤ 2Hr,
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hence

max
{
H(L)1/( r

2 ), 22/δ
}
≤ max

{
21/( r

2 )Hr/( r
2 ), 24A/ε

}

≤ max
{
2H, 24/ε

}A
< Ψ(x)A = Q.

Let t1 = t1(r, δ) be defined as (17). Theorem 8 implies the following: there are
proper subspaces T1, . . . , Tt1 of Q all defined over E such that any solution x ∈ O2

K

of (23) with (24) satisfies

x ∈
t1⋃

i=1

(Ti \ K2).

Therefore, for the proof of the proposition it suffices to check

t1 ≤ 231A4ε−3 log(2RD) log
(
ε−1 log(2RD)

)
(27)

Since DR ≥ 2, we have

log(2r) ≤ 2 log(2DR).

Moreover, by 0 < ε ≤ 1/2

log
(
δ−1 log(2r)

)
≤ log

(
4Aε−1 log(2DR)

)

≤ 4A log
(
ε−1 log(2DR)

)
.

Thus (27) follows.

5. Proof of Main Results

We give another proof of the inequality (4). Without loss of generality, we may
assume that 1/α ≤ ξ < 1. In fact, there is an integer R with 1/α ≤ ξαR < 1. Then
since ξαn = (ξαR)αn−R, we have

|λN (α, ξ)− λN (α, ξαR)| ≤ |R|.

In particular, for any n ≤ 0, [ξαn] = 0, and so s−n(ξ) = 0 by (5).
Recall that s−n(ξ) #= 0 for infinitely many positive n, which we introduced in

Section 1. Define the increasing sequence of positive integers (nj)∞j=1 by s−n(ξ) #= 0
if and only if n = nj for some j ≥ 1. By the first statement of Lemma 4, it suffices
to show that

lim inf
j→∞

j

log nj
≥

(
log

(
log M(α)

log M(α)− log(adα)

))−1

.
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Write the conjugates of α by α1 = α,α2, . . . ,αd. Without loss of generality, we may
assume that

|αk| > 1 (1 ≤ k ≤ p),

where p is the number of the conjugates of α whose absolute values are greater than
1. In what follows, C1(α), C2(α), . . . denote positive constants depending only on
α. We first check

C1(α)αnj ≤

∣∣∣∣∣

nj∑

i=0

αisi−nj (ξ)

∣∣∣∣∣ ≤ C2(α)αnj (28)

for any sufficiently large j ≥ 1. By using sm(ξ) = 0 for any m > 0 and the second
statement of Proposition 5, we get

nj∑

i=0

αisi−nj (ξ) =
∞∑

i=0

αisi−nj (ξ)

= αnj

∞∑

i=−∞
αi−nj si−nj (ξ)−

−1∑

i=−∞
αisi−nj (ξ)

= −ξα−1+nj (P ∗α)′
(

1
α

)
−

−1∑

i=−∞
αisi−nj (ξ),

where (P ∗α)′ is defined in Proposition 5. Thus

∣∣∣∣∣

nj∑

i=0

αisi−nj (ξ) + ξα−1+nj (P ∗α)′
(

1
α

)∣∣∣∣∣ ≤ max{L+(α), L−(α)}
−1∑

i=−∞
αi

≤ C3(α).

By considering (P ∗α)′(1/α) #= 0, we obtain (28). Recall that, for any nonempty
subset I of {1, 2, . . . , d}, the number

ad

∏

k∈I

αk

is an algebraic integer (for example, see pages 71 and 72 of [20]). So (28) implies
that

1 ≤

∣∣∣∣∣a
nj

d

d∏

k=1

( nj∑

i=0

αi
ksi−nj (ξ)

)∣∣∣∣∣ (29)
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since the right-hand side of this inequality is the absolute value of a nonzero rational
integer. By the first statement of Proposition 5, for 2 ≤ k ≤ p,

∣∣∣∣∣

nj∑

i=0

αi
ksi−nj (ξ)

∣∣∣∣∣ =

∣∣∣∣∣∣
−

∞∑

i=1+nj

αi
ksi−nj (ξ)−

−1∑

i=−∞
αi

ksi−nj (ξ)

∣∣∣∣∣∣
.

Because si−nj (ξ) = 0 for each i with i ≥ 1 + nj , we have

∣∣∣∣∣

nj∑

i=0

αi
ksi−nj (ξ)

∣∣∣∣∣ ≤ max {L+(α), L−(α)}
nj−n1+j∑

i=−∞
|αi

k|

≤ C4(α)|αk|nj−n1+j . (30)

Similarly, if p + 1 ≤ k ≤ d, then

∣∣∣∣∣

nj∑

i=0

αi
ksi−nj (ξ)

∣∣∣∣∣ ≤ C5(α)nj . (31)

Take an arbitrary positive ε. By combining (28), (29), (30), and (31), we conclude
for sufficiently large j that

1 ≤ C6(α)anj

d αnj

(
p∏

k=2

|αk|nj−n1+j

)


d∏

k=1+p

nj





≤ |α2 · · ·αp|−n1+j ((1 + ε)M(α))nj .

Hence, for j ≥ j0,

n1+j

nj
≤ log((1 + ε)M(α))

log M(α)− log(adα)
=: F1(ε)

and

nj ≤ nj0F1(ε)j−j0 .

Therefore we conclude that

lim inf
j→∞

j

log nj
≥ 1

log F1(ε)
.

Since ε is an arbitrary positive number, (4) is proved.
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Proof of Theorem 2. Theorem 3 of [11] shows for infinitely many n ≥ 0 that s−n(ξ) #=
0. There exists the unique increasing sequence of positive integers (nj)∞j=1 such that
s−n(ξ) #= 0 if and only if n = nj for some j ≥ 1. Put

ξ′ =
−1∑

i=−∞
αisi(ξ) and ξj =

−1∑

i=−nj

αisi(ξ).

We may assume ξ ∈ [1/α, 1). Then sn(ξ) = 0 for any n ≥ 0. By Proposition 5,
ξ′ #∈ Q(α). Thus we get ξ′ #= ξj for any j ≥ 1. Recall that ∞ is the archimedean
place defined by (20). In what follows, let C1(α), C2(α), . . . be positive constants
depending only on α. Then

{
0 < ||ξ′ − ξj ||∞ ≤ C1(α)α−n1+j/d,

||ξj ||∞ ≤ C1(α).
(32)

Take an arbitrary positive number ε. Apply Theorem 7 with

K = Q(α), S = Marc(K) ∪
{
v ∈Mnon(K)

∣∣||α||v < 1
}

,

and

θv =
{

1/ξ′ (if v =∞),
0 (otherwise).

Consider solutions γ of (9) satisfying γ = 1/ξj for some j. Let us take any j0 ≥ 0.
By (32) there exists at most finitely many j ≥ 1 with ξj = ξj0 . Thus by Theorem
7 there exist at most finitely many j such that γ = 1/ξj fulfills (9). Namely, for all
sufficiently large j,

∏

v∈S

min
{

1,
∣∣∣∣

∣∣∣∣θv −
1
ξj

∣∣∣∣

∣∣∣∣
v

}
≥ H

(
1
ξj

)−2−ε

= H(ξj)−2−ε. (33)

We have
∏

v∈S

min
{

1,
∣∣∣∣

∣∣∣∣θv −
1
ξj

∣∣∣∣

∣∣∣∣
v

}

=
∥∥∥∥

1
ξ′
− 1

ξj

∥∥∥∥
∞

∏

v∈S\{∞}

min
{

1,
∥∥∥∥

1
ξj

∥∥∥∥
v

}

=
∥∥∥∥

1
ξ′
− 1

ξj

∥∥∥∥
∞

max{1, ||ξj ||∞}
(

∏

v∈S

max{1, ||ξj ||v}
)−1

≤ C1(α)2α−n1+j/d

(
∏

v∈S

max{1, ||ξj ||v}
)−1

.
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Note that if v ∈M(K)\S, then ||ξj ||v ≤ 1 by the ultrametric inequality. Hence

∏

v∈S

min
{

1,
∣∣∣∣

∣∣∣∣θv −
1
ξj

∣∣∣∣

∣∣∣∣
v

}

≤ C1(α)2α−n1+j/dH(ξj)−1
∏

v∈M(K)\S

max{1, ||ξj ||}

≤ C1(α)2α−n1+j/dH(ξj)−1.

By combining the inequality above and (33), we obtain, for any sufficiently large j,

αn1+j ≤ C1(α)2dH(ξj)(1+ε)d.

Write the conjugates of α by α1 = α,α2, . . . ,αd. Let p (resp. q) be the number
of the conjugates of α whose absolute values are greater (resp. smaller) than 1.
Without loss of generality we may assume |αk| > 1 if 1 ≤ k ≤ p, |αk| < 1 if
p + 1 ≤ k ≤ p + q, and |αk| = 1 otherwise. By the ultrametric inequality

∏

v∈Mnon(K)

max{1, ||ξj ||v} ≤
∏

v∈Mnon(K)

max{1, ||α−1||v}nj .

Since sn(ξ) ≤ max{L+(α), L−(α)} for every integer n

d∏

k=p+1

∣∣∣∣∣∣

−1∑

i=−nj

αi
ksi(ξ)

∣∣∣∣∣∣

1/d

≤
p+q∏

k=p+1

∣∣∣C2(α)α−nj

k

∣∣∣
1/d d∏

k=p+q+1

(C2(α)nj)
1/d

= C2(α)(d−p)/dn(d−p−q)/d
j

p+q∏

k=p+1

|αk|nj/d.

By using the first statement of Proposition 5 and sn(ξ) = 0 for any n ≥ 0,

p∏

k=1

∣∣∣∣∣∣

−1∑

i=−nj

αi
ksi(ξ)

∣∣∣∣∣∣

1/d

=

∣∣∣∣∣∣

−1∑

i=−nj

αisi(ξ)

∣∣∣∣∣∣

1/d
p∏

k=2

∣∣∣∣∣

−n1+j∑

i=−∞
αi

ksi(ξ)

∣∣∣∣∣

1/d

≤ C3(α)1/d
p∏

k=2

∣∣∣C3(α)α−n1+j

k

∣∣∣
1/d

= C3(α)p/d
p∏

k=2

∣∣∣α−n1+j

k

∣∣∣
1/d

.
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Hence we obtain

∏

v∈Marc(K)

max{1, ||ξj ||v} =
d∏

k=1

∣∣∣∣∣∣

−1∑

i=−nj

αi
ksi(ξ)

∣∣∣∣∣∣

1/d

≤ C4(α)n(d−p−q)/d
j

∏

v∈Marc(K)

max{1, ||α−1||v}nj

×
p∏

k=2

∣∣∣α−n1+j

k

∣∣∣
1/d

and so

H(ξj) ≤ C4(α)n(d−p−q)/d
j H(α−1)nj

p∏

k=2

∣∣∣α−n1+j

k

∣∣∣
1/d

.

Finally, we conclude for sufficiently large j that

αn1+j ≤ C5(α)n(1+ε)(d−p−q)
j H(α−1)(1+ε)dnj

p∏

k=2

∣∣∣α−n1+j

k

∣∣∣
(1+ε)

≤ H(α−1)(1+2ε)dnj

p∏

k=2

∣∣∣α−n1+j

k

∣∣∣
(1+ε)

= M(α)(1+2ε)nj

p∏

k=2

∣∣∣α−n1+j

k

∣∣∣
(1+ε)

,

where for the last equality we use (7). Taking logarithms of both sides of the
inequality above, we get

n1+j

nj
≤ (1 + 2ε) log M(α)

log α + (1 + ε) log |α2 · · ·αp|
=: F2(ε), (34)

consequently

lim inf
j→∞

j

log nj
≥ 1

log F2(ε)
.

Therefore by the first statement of Lemma 4

lim inf
N→∞

λN (α, ξ)
log N

≥ 1
log F2(ε)

.
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Since ε is an arbitrary positive number, we proved the theorem. In fact,

lim
ε→+0

1
log F2(ε)

=
(

log
(

log M(α)
log M(α)− log ad

))−1

.

Proof of Theorem 1. We may assume ξ ∈ [1/α, 1), and so sn(ξ) = 0 for any n ≥ 0.
Put

ξ′ =
−1∑

i=−∞
αisi(ξ). (35)

By the second statement of Proposition 5, we have ξ′ #∈ Q(α). Let p be the number
of the conjugates of α whose absolute values are greater than 1. Write the conjugates
of α by α1 = α,α2, . . . ,αd, where d is the degree of α. Without loss of generality,
we may assume that |αk| > 1 for k = 1, 2, . . . , p.

First we show the following:

Lemma 10. There is a sequence of integers y = (yn)∞n=1 satisfying the following:

1. yn = 0 or yn = s−n(ξ);

2.
∑∞

i=1 yiα−i = ξ′;

3.
∑∞

i=1 yiα
−i
k = 0 for any k with 2 ≤ k ≤ p;

4. Put

{n ≥ 1|yn #= 0} =: {n1 < n2 < · · · }

and

ξj =
nj∑

i=1

yiα
−i.

Then, for any h and l with h < l, ξh #= ξl.

Proof. We construct the bounded sequences of integers ym = (y(m,n))∞n=1 (m =
1, 2, . . .) by induction on m fulfilling the following:

1. For any n ≥ 1,

y(m,n) = 0 or y(m,n) = s−n(ξ); (36)
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2.
∞∑

i=1

α−iy(m, i) = ξ′; (37)

3. For any k with 2 ≤ k ≤ p,

∞∑

i=1

α−i
k y(m, i) = 0. (38)

In particular, we have, for any m,n ≥ 1,

|y(m,n)| ≤ |s−n(ξ)| ≤ max{L+(α), L−(α)}.

Define y1 = (y(1, n))∞n=1 by

y(1, n) = s−n(ξ) (n ≥ 1).

For m = 1, (36) and (37) hold. Moreover, (38) follows from the first statement of
Proposition 5.

Next, assume that we have a sequence of integers ym with (36), (37), and (38)
for m ≥ 1. Let

Ξm = {n ≥ 1|y(m,n) #= 0}

=: {n(m, 1) < n(m, 2) < · · · }

and

ξ(m, j) =
n(m,j)∑

i=1

α−iy(m, i).

By (37) and ξ′ #∈ Q(α), Ξm is an infinite set. If ξ(m,h) #= ξ(m, l) for any h #= l,
then then y = ym satisfies the last condition of Lemma 10. Moreover, first, second,
and third conditions of Lemma 10 follow immediately from (36), (37), and (38).
Otherwise, we define ym+1 by using ym. There exists an h ≥ 1 such that ξ(m,h) =
ξ(m, l) for some l > h. For such an h, write the minimal value by hm. Put

Λm = {l > hm|ξ(m, l) = ξ(m,hm)}.

Then Λm is a finite set. In fact, if Λm is an infinite set, then

ξ′ = lim
n→∞
n∈Λm

ξ(m,n) = ξ(m,hm) ∈ Q(α),
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which contradicts to ξ #∈ Q(α). So let

lm = maxΛm.

We define ym+1 = (y(m + 1, n))∞n=1 by

y(m + 1, n) =

{
0 (if 1 + n(m,hm) ≤ n ≤ n(m, lm)),

y(m,n) (otherwise).

Note that

ξ(m + 1, j) =

{
ξ(m, j) (if j ≤ hm)

ξ(m, j + lm − hm) (if j > hm).
(39)

Now we verify that ym+1 fulfills (36), (37), and (38). (36) is obvious by the definition
of ym+1. By the inductive hypothesis and

0 = ξ(m, lm)− ξ(m,hm) =
n(m,lm)∑

i=1+n(m,hm)

α−iy(m, i), (40)

we get

∞∑

i=1

α−iy(m + 1, i) =
∞∑

i=1

α−iy(m, i)−
n(m,lm)∑

i=1+n(m,hm)

α−iy(m, i) = ξ′.

By taking the conjugate of (40), we deduce for any k with 2 ≤ k ≤ p that

0 =
n(m,lm)∑

i=1+n(m,hm)

α−i
k y(m, i).

Thus

∞∑

i=1

α−i
k y(m + 1, i) =

∞∑

i=1

α−i
k y(m, i)−

n(m,lm)∑

i=1+n(m,hm)

α−i
k y(m, i)

=
∞∑

i=1

α−i
k y(m, i) = 0.

For the proof of Lemma 10 we may assume that, for any m ≥ 1, y = ym is defined
and does not satisfy the conditions of Lemma 10. We verify that hm+1 > hm for
each m ≥ 1. It suffices to check for 1 ≤ h < l with h ≤ hm that

ξ(m + 1, l) #= ξ(m + 1, h).
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In the case of h < hm, this follows from (39) and the definition of hm. So consider
the case of h = hm. Since l + lm − hm > lm we get

ξ(m + 1, l) = ξ(m, l + lm − hm) #= ξ(m,hm) = ξ(m + 1, hm)

by the definition of lm. Hence the sequence hm (m = 1, 2, . . .) is strictly increasing.
In particular, hm ≥ m.

Let n ≥ 1. Take an integer m with m ≥ n. Note that

n ≤ m ≤ hm ≤ n(m,hm).

So, by the definition of ym+1, we have y(m + 1, n) = y(m,n). Thus

y(m,n) = y(n, n) for any m ≥ n. (41)

We define the sequence y = (yn)∞n=1 by

yn = y(n, n).

In what follows we check the conditions of Lemma 10. The first condition is clear.
Let m ≥ 1 be any integer. Then by (41)

∣∣∣∣∣ξ
′ −

∞∑

i=1

α−iyi

∣∣∣∣∣ =

∣∣∣∣∣

∞∑

i=1

α−i(y(m, i)− y(i, i))

∣∣∣∣∣

=

∣∣∣∣∣

∞∑

i=m+1

α−i(y(m, i)− y(i, i))

∣∣∣∣∣

≤ 2max{L+(α), L−(α)} 1
(α− 1)αm

.

Similarly, for 2 ≤ k ≤ p,
∣∣∣∣∣

∞∑

i=1

α−i
k yi

∣∣∣∣∣ =

∣∣∣∣∣

∞∑

i=1

α−i
k (y(m, i)− y(i, i))

∣∣∣∣∣

=

∣∣∣∣∣

∞∑

i=m+1

α−i
k (y(m, i)− y(i, i))

∣∣∣∣∣

≤ 2max{L+(α), L−(α)} 1
(αk − 1)αm

k

,

where for the first equality we use (38). Since m is arbitrary, we obtain the second
and third conditions.
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Finally, assume that ξh = ξl for some h < l. Take an integer m with m > l.
Then by (41)

ξ(m,h) = ξh = ξl = ξ(m, l).

By the definition of hm, we get hm ≤ h < m, which contradicts to hm ≥ m.
Therefore, the last condition follows.

For N ≥ 1 put

τN = Card{n ∈ Z|1 ≤ n ≤ N, yn #= 0}.

By the first condition of Lemma 10

τN ≤ Card{n ∈ Z|1 ≤ n ≤ N, s−n(ξ) #= 0}. (42)

In what follows, we verify for all sufficiently large N that

τN ≥ c
(log α)2

(log M(α))2(log(6D))1/2

(log N)3/2

(log log N)1/2
. (43)

Theorem 1 follows from (42), (43), and the first statement of Lemma 4.
Put K = Q(α). Let ∞ be the Archimedean place in K which is defined by (20).

In what follows, let C1(α, ξ), C2(α, ξ), . . . be positive constants depending only on
α and ξ. Put

C1(α, ξ) = max{L+(α), L−(α)}1/d max
1≤k≤p

(
1

1− |α−1
k |

)1/d

.

Then we have

0 < ||ξ′ − ξj ||∞ =

∣∣∣∣∣∣

∞∑

i=n1+j

yiα
−i

∣∣∣∣∣∣

1/d

≤ C1(α, ξ)||α||−n1+j
∞ . (44)

Let ε be an arbitrary positive number with ε ≤ 1/2 and F2(ε) be defined by (34).
In the same way as the proof of Theorem 2, we can verify that

n1+j

nj
≤ F2(ε)

for sufficiently large j. In particular, since

lim
ε→+0

F2(ε) = 1,
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we get, for j ≥ C2(α, ξ),

n1+j ≤ 2nj . (45)

We count the numbers of j fulfilling

n1+j ≥ (1 + 2ε)nj . (46)

Assume (46) and

nj ≥ C3(α, ξ)ε−9/8. (47)

We determine C3(α, ξ) later. Let

S = Marc(K) ∪
{
v ∈Mnon(K)

∣∣||α||v < 1
}

.

Define the linear forms Li,v (v ∈ S, i = 1, 2) by

L1v =

{
X − ξ′Y for v =∞,

X for v ∈ S\{∞},

L2v = Y for v ∈ S.

Then (21) is satisfied with R = 3, D = [Q(α, ξ) : Q(α)], and H = H(ξ). Consider
the system of inequalities (23) with

e1v =






−(5ε)/4 for v =∞,

ε/(4d′) for v ∈Marc(K)\{∞},
0 for v ∈Mnon(K) \ S,

e2v = (log ||α||v)/(log ||α||∞), for v ∈ S

Ψ(x, y) = ||y||∞,

where d′ = Card(Marc(K)\{∞}). Then (22) follows from the product formula.
Apply Proposition 9 with

xj =

( nj∑

i=1

yiα
−i+nj ,αnj

)
∈ O2

K.

If C3(α, ξ) is sufficiently large, then (24) follows from (47). In fact,

log Ψ(xj) = nj log ||α||∞ > max
{

log(2H),
4
ε

log 2
}

.
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We check that xj satisfies the system of inequalities (23). If i = 2, then

||L2v(xj)||v = ||αnj ||v = ||αnj ||(log ||α||v)/(log ||α||∞)
∞

= Ψ(xj)e2v .

In the case of v ∈ S \ Mnon(K), by the ultrametric inequality

||L1v(xj)||v =

∥∥∥∥∥

nj∑

i=1

yiα
−i+nj

∥∥∥∥∥
v

≤ 1 = Ψ(xj)e1v .

Now we show that

n1/d
j C1(α, ξ) ≤ ||αnj ||ε/(4d′)

∞ = Ψ(xj)ε/(4d′). (48)

Note that (48) is equivalent to

4d′

log ||α||∞

(
1
d

+
log C1(α, ξ)

log nj

)
≤ εnj

log nj
.

In what follows, constants implied by the Vinogradov symbols -, . are absolute.
If nj ≥ C3(α, ξ)ε−9/8, then

εnj

log nj
. εn8/9

j ≥ C3(α, ξ)8/9.

Thus, if C3(α, ξ) is sufficiently large, then (48) follows. By (44), (46), and (48), we
get

||L1∞(xj)||∞ = ||αnj ||∞||ξj − ξ′||∞
≤ C1(α, ξ)||α||nj−n1+j

∞ ≤ C1(α, ξ)||αnj ||−2ε
∞

≤ ||αnj ||−(5ε)/4
∞ = Ψ(xj)−(5ε)/4.

Let v ∈Marc(K)\{∞}. Then there exists an embedding σ : K ↪→ C such that

||x||v = ||σ(x)||∞

for any x ∈ K. Let σ(α) = αk, where 2 ≤ k ≤ d. If 2 ≤ k ≤ p, then by (48) and
the third condition of Lemma 10

||L1v(xj)||v =

∥∥∥∥∥

nj∑

i=1

yiα
−i+nj

k

∥∥∥∥∥
∞

=
∥∥α

nj

k

∥∥
∞

∥∥∥∥∥∥

∞∑

i=n1+j

yiα
−i
k

∥∥∥∥∥∥
∞

≤ C1(α, ξ)
∥∥∥α

nj−n1+j

k

∥∥∥
∞

≤ C1(α, ξ) ≤ Ψ(xj)ε/(4d′) = Ψ(xj)e1v .
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In the case of k ≥ p + 1, by using |αk| ≤ 1 and (48), we obtain

||L1v(xj)||v =

∥∥∥∥∥

nj∑

i=1

yiα
−i+nj

k

∥∥∥∥∥
∞

≤ |nj max{L+(α), L−(α)}|1/d ≤ n1/d
j C1(α, ξ)

≤ Ψ(xj)ε/(4d′) = Ψ(xj)e1v .

Since

A = 1 +
∑

v∈S

max{0, e1v, e2v}

≤ 1 +
ε

4
+

p∑

k=1

log ||αk||∞
log ||α||∞

- log M(α)
log α

,

Proposition 9 indicates that the vectors xj satisfying (46) and (47) lie in

-
(

log M(α)
log α

)4

ε−3 log(6D) log(ε−1 log(6D))

one-dimensional linear subspaces of K2. By the last condition of Lemma 10, if j #= l,
then xj and xl are linearly independent over K. Thus we obtain

Card{j ≥ 0|nj≥C3(α, ξ)ε−9/8, n1+j ≥ (1 + 2ε)nj}

-
(

log M(α)
log α

)4

ε−3 log(6D) log(ε−1 log(6D)). (49)

Let j1 be the smallest j such that nj ≥ C2(α, ξ) and J an integer with

J > max{n3
j1 , 2

12C3(α, ξ)12}. (50)

Moreover, let j2 be the largest integer with nj2 ≤ 2C3(α, ξ)J5/12. Then since

nj1 ≤ J1/3 ≤ 2C3(α, ξ)J5/12,

we get

nj2 ≥ nj1 ≥ C2(α, ξ). (51)

So by (45)

nj2 ≥
n1+j2

2
≥ C3(α, ξ)J5/12.
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For a positive integer u(≥ 2), put

ε1 =
(log(6D))1/3(log M(α))4/3

(log α)4/3

(
log J

J

)1/3

, εu =
1
2
.

Note that if C3(α, ξ) is sufficiently large, then log(ε−1
1 ) ≥ log(6D). Next, let

ε2, . . . , εu−1 be any reals satisfying

ε1 < ε2 < · · · < εu−1 < εu.

Then we have

nj2 ≥ C3(α, ξ)ε−9/8
h (52)

for h = 1, . . . , u. In fact,

nj2C3(α, ξ)−1ε9/8
h ≥ J5/12ε9/8

1 ≥ J5/12 · J−3/8 ≥ 1.

Let S0 = {j2, 1 + j2, . . . , J} and, for h = 1, . . . , u, let Sh denote the set of positive
integers j such that j2 ≤ j < J and n1+j ≥ (1 + 2εh)nj . Moreover, write the
cardinality of Sh by Th for h = 1, . . . , u. Then S0 ⊃ S1 ⊃ · · · ⊃ Su. If j ∈ S0, then
by (51) and (52) we have

n1+j

nj
≤ 2

and

nj ≥ C3(α, ξ)ε−9/8
h for h = 1, . . . , u.

Thus we get

nJ

nj2

=
nJ

n−1+J

n−1+J

n−2+J
· · · n1+j2

nj2

≤




∏

j∈Su

n1+j

nj




u−1∏

h=0




∏

j∈Sh\S1+h

n1+j

nj





≤ 2Tu(1 + 2ε1)J
u−1∏

h=1

(1 + 2εh+1)Th−T1+h .
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Taking logarithms, we obtain

log
(

nJ

nj2

)
≤ Tu log 2 + 2ε1J +

u−1∑

h=1

2ε1+h(Th − T1+h)

≤ Tu log 2 + 2ε1J + 2ε2T1 + 2
u−1∑

h=2

(ε1+h − εh)Th − Tu.

(49) implies

Th -
(

log M(α)
log α

)4

log(6D)ε−3
h log(ε−1

h log(6D))

for h = 1, . . . , u, and so

log
(

nJ

nj2

)
- ε1J +

(
log M(α)

log α

)4

log(6D)

×
(

log(log(6D)) + ε2ε
−3
1 log(ε−1

1 log(6D))

+
u−1∑

h=2

(ε1+h − εh)ε−3
h log(ε−1

h log(6D))
)

.

If u tends to infinity and if max1≤h≤u−1(ε1+h − εh) tends to zero, then the sum
converges to a Riemann integral, so

lim
u→∞

u−1∑

h=2

(ε1+h − εh)ε−3
h log(ε−1

h log(6D))

=
∫ 1/2

ε1

x−3 log(x−1 log(6D))dx

- ε−2
1 log(ε−1

1 ) + log(log(6D))ε−2
1 - ε−2

1 log(ε−1
1 ).

Thus,

log
(

nJ

nj2

)
- ε1J +

(
log M(α)

log α

)4

log(6D)ε−2
1 log(ε−1

1 )

-
(

log M(α)
log α

)4/3

(log(6D))1/3J2/3(log J)1/3,
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where for the second inequality we use log(ε−1
1 ) ≤ log J . By using (50) and the

definition of j2 we obtain

nj2

n1/2
J

≤ nj2

J1/2
≤ 2C3(α, ξ)J−1/12 ≤ 1,

and so

log nJ -
(

log M(α)
log α

)4/3

(log(6D))1/3J2/3(log J)1/3 =: G(J).

Hence

J . (log α)2

(log M(α))2(log(6D))1/2

(log nJ)3/2

(log log nJ)1/2
.

In fact, since the function x3/2(log x)−1/2 is monotone increasing for x > e,

(log nJ)3/2

(log log nJ)1/2
- (log G(J))3/2

(log log G(J))1/2
-

(
log M(α)

log α

)2

(log(6D))1/2J.

Therefore, we proved the theorem.
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