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Abstract
Let a > 1 be an algebraic number and £ > 0. Denote the fractional parts of £a™
by {£a™}. In this paper, we estimate a lower bound for the number Ay (c, &) of
integers n with 0 <n < N and

{&a"} > min{ﬁ7%(a)}.

Our results show, for example, the following: Let « be an algebraic integer with
Mahler measure M (o) and £ > 0 an algebraic number with £ € Q(«). Put [Q(a, &) :
Q(a)] = D. Then there exists an absolute constant ¢ satisfying

(log a)? (log N)3/2

A0 8) 2 € M ()2 (10g(6))1/2 (log log N)1/2

for all large N.

1. Introduction

A normal number in an integer base « is a positive number for which all finite words
with letters from the alphabet {0,1,...,a — 1} occur with the proper frequency. It
is easily checked that a positive number £ is a normal number in base « if and only if
the sequence £a™ (n =0, 1,...) is uniformly distributed modulo 1. Borel [6] proved
that almost all positive ¢ are normal numbers in every integer base. Moreover,
Koksma [16] showed that if any real number a > 1 is given, then the sequence £a™
(n=0,1,...) is uniformly distributed modulo 1 for almost all positive £, which is
a generalization of Borel’s result. However, it is generally difficult to check a given
geometric sequence is uniformly distributed modulo 1 or not. For instance, we even
do not know whether the numbers \/5, /5 and 7 are normal in base 10.

Borel [7] conjectured that each algebraic irrational number is normal in every
integer base. However, we know no such number whose normality was proved. We
now introduce some partial results.
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Let a be a natural number greater than 1 and £ a positive algebraic irrational
number. For simplicity, assume that £ < 1. Write its a-ary expansion as

§= Z Si(f)ai = .8_1(5)5_2(5) -

with s;(§) € {0,1,...,a—1}. First, we measure the complexity of the infinite word
s =35-1(£)s—2(&) - - - by the number p(N) of distinct blocks of length N appearing
in the word s. If ¢ is normal in base «, then p(N) = oV for any positive N. Ferenczi
and Mauduit [13] showed that

lim (p(N)— N) = 0.

N—o0

Adamczewski and Bugeaud [1] improved their result as follows:

lim PV _

N—o0

Moreover, Bugeaud and Evertse [10] showed for any positive & with < 1/11 that

lim sup ﬂ = 00.
N—oo N(log N)"]

Bugeaud and Evertse [10] gave a lower bound of the number ch(N) of digit changes
among the first (N + 1) digits of the a-ary expansion of {. Namely,

ch(N) =Card{i e N|1 <i < N,s_;(§) #s-;-1(§)},

where Card denotes the cardinality. They showed for an algebraic irrational £ > 0
of degree D(> 2) that there exist an effectively computable absolute constant ¢; and
an effectively computable constant ca(a, £), depending only on « and &, satisfying

(log N)*/2

h(N) >
<h(N) 2 &1 (log 6D)1/2(log log N)1/2

for any N with N > ca(«, §).
Next, we count the number Ay (c, &) of nonzero digits among the first N digits
of the a-ary expansion of &, where

An (e, &) = Card{i € N|1 <i < N,s_;(&) # 0}. (1)
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Let £ be an algebraic irrational number of degree D with 1 < £ < 2. In the case
of @ = 2, Bailey, Borwein, Crandall, and Pomerance [4] showed that an arbitrary
positive € is given, then

An (e, €) > (1 —¢)(24p) VP NP

for all sufficiently large N, where Ap(> 0) is the leading coefficient of the minimal
polynomial of £&. Moreover, in the same way as the proof of the inequality above,
we can show for any natural number a > 2 that there exists a positive constant
c3(a, &) depending only on « and & satisfying

An (e, €) > es(a, NP

for every sufficiently large N.

In what follows, we consider the fractional parts of geometric progressions whose
common ratios are algebraic numbers. Let a > 1 be an algebraic number with
minimal polynomial ag X% + ag_1 X% ! + ... + ap € Z[X], where ag > 0 and
ged(ag, ag—1,...,a0) = 1. Put

Li@) =Y a Lo(a)= 3 |ail. (2)

a;>0 a;<0

Moreover, write the Mahler measure of a by

d
M(a) = aq H max{1,|ax|},
k=1

where a1 = «, ao, ..., aq are the conjugates of a. We now recall the definition of
a Pisot and Salem number. A Pisot number is an algebraic integer greater than 1
whose conjugates different from itself have absolute values strictly less than 1. A
Salem number is an algebraic integer greater than 1 which has at least one conjugate
with modulus 1 and exactly one conjugate outside the unit circle. Take a positive
number £. If « is a Pisot or Salem number, then assume § ¢ Q(«). Dubickas [11]
showed for infinitely many n > 1 that

{fa”}zmm{%@,%@},

where {£a™} means the fractional part of {o”. In what follows we estimate the
number of such n, namely, we give a lower bound of the number

An(a,€) = Card{n € Z‘O <n<N,{€a"} > min{%@,%@} } 3)
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(3) is generalization of (1). In fact, assume that « is a natural number greater than
1 and that £ is a positive number with ¢ < 1. Then, for n > 0,

R SR

if and only if the (n + 1)-th digit of a-ary expansion of £ is nonzero.
Dubickas’s result above implies

Jim Ay (@, &) = oo
He verified this by showing that, for infinitely many n > 0,

s—n(§) #0,

where s_,,(£) will be defined in Section 2. Moreover, in the same way as that of
Theorem 3 of [11], we can show the following: Assume that « has at least one
conjugate different from itself outside the unit circle. Then

ipnint S > (1 lecvg>ﬂf(13;<ada>>)l' ®

At the beginning of Section 5, we give another proof of (4). In this paper we
improve this estimation in the case where a > 1 and £ > 0 are algebraic numbers
with £ € Q(a) by using a version of the quantitative parametric subspace theorem
of Bugeaud and Evertse [10]. First, we consider the case where « > 1 is an algebraic
integer.

Theorem 1. Let o > 1 be an algebraic integer with Mahler measure M (). Let &
be a positive algebraic number with £ & Q(«). Put

D = [Q(a,€) : Qo))
Then there exists an effectively computable absolute constant ¢ > 0 such that

(log )2 (log N)*/2
(log M (c))?(log(6D))1/2 (loglog N)1/2

An(a,8) > ¢

for every sufficiently large N.

Next we give a lower bound of Ay (a, §) in the case where & > 1 is not an algebraic
integer.
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Theorem 2. Let a > 1 be an algebraic number of degree d with Mahler measure
M(a). We denote the leading coefficient of the minimal polynomial of o by aq(> 1).
Let & be a positive algebraic number with & ¢ Q(«). Assume that « is not an
algebraic integer. Then

liming 248 5 (log( log M(a) ))1

Nooo  log N log M (a) —log ay

Theorem 2 gives an improvement of (4) since

log M -t log M -t
o 1oz M(@) - (rog [ lozM(@) |
log M (a) —log ay log M (a) — log(agqa)
We introduce a numerical example in the case of @« = 4 + 1/ V2. The minimal
polynomial of v is 2X?2 — 16X + 31, so we have ag = 2, M(a) = 31, and

1 1 o101 1

min{ 7=y Ty T e 6 T

Note that the conjugate of « is greater than 1. Thus by (4), for any positive &,

AN+ 1/VEE) ( ( log(31) ))1 _
1}\rfri}£10f —1ogN > | log log(31) — log(8 1 \/Q) =0.944....

On the other hand, the second statement of Theorem 2 implies that if £ > 0 is an
algebraic number with ¢ ¢ Q(v/2), then

L ANE+ VR log(31) o

Remark 3. By using the same method for the proof of Theorem 2 and 1, Bugeaud
[9] gave a lower bound for the number of digit changes in the S-expansion of algebraic
numbers.

2. Preliminaries

Let @ > 1 be an algebraic number of degree d and £ a positive number. Write the
minimal polynomial of a by Py (X) = agX? + --- + ag € Z[X] (ag > 0). In this
section, we study the sequence (s,,,(£))5° defined by

m=—oQ

d
sm(§) == agi{€a™™ "}
=0
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Let [z] be the integral part of a real number x. Since
d d
0= as-ica™™ " =3 aq-i(l6a™" ] + {ga " }),
i=0 i=0

we have

d
su(©) = Y asi(fga™ 7~ a7 )
z;0 |
= Zad_i[gofmﬂ]. (5)
=0

In particular, s,,(€) is a rational integer. Thus we get the following:

Lemma 4. Let £ be a positive number.

(1) If s, (&) #0 ,then

o 1 1
x| fge”h 2 min { (@) T () } '

(2) sm (&) =0 for all sufficiently large m.

Proof. We first show the first statement. Since s,,(£) is a nonzero integer, we have

d
< Jom(®)] = | 3" s idga )
1=0

By using 0 < {éa™™~%} < 1, we obtain the first statement. The second statement
follows from (5) and [a™™] = 0 for each sufficiently large m. O

Proposition 5. Write the conjugates of « with moduli greater than 1 by
ar(=a),...,ap. Let & be a positive number. Then

(1) For2 <k <p,

oo

Y aisi(&) =0

1=—00
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(2)

ffa%x@—guﬁy(§)¢a

1=—00

where PX(X) = ag+aq_1X +---+agX? denotes the reciprocal polynomial of P, (X)
and (PX)(X) its derivative.

Remark 6. By the second statement of Lemma 4, the series

oo

Z agsi(€)

converges for any k with 1 <k < p.

Proof. We first consider the case of 0 < ¢ < 1. Then, for any m < 0, [£a™] = 0,
and so s_,,(§) =0 by (5). Put

f(z) = [€am]z", g(z) = > {€a"}2".
n=0 n=0

Then we have

( § _g(z)>Pg;(z) = f(2)P;(2)

1—az
> [katlag ;2"

h=0 #,j=0

iti=h
0o h 0o

= > Y [ballagnyiz" = s a(€)2".
h=0i=h—d h=0

Consider the region of z € C satisfying

(1 _gaz - 9(2)> Pi(z) =Y s_n(€)". ©)
h=0

Since 0 < {€a™} < 1 for any n, the left-hand side of (6) is a meromorphic func-
tion on {z : |z|] < 1}. Moreover, because the sequence s_,,(§) (m = 0,1,...) is
bounded, the right-hand side of (6) converges for |z| < 1. Hence (6) holds for
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|z < 1. In particular, since the left-hand side of (6) has a zero at z = a; ' with
2 < k < p, we obtain

oo
E ag.8; (€ E oy, s il
i=—00

Let on = @, ..., Qp, Qpt1, - - ., g be the conjugates of a. P(z) has a simple zero at
z =1/ since

Pi(z) = 2P, <l> =aq(l —az)(1 —azz) - (1 — agz).

z

Note that g(z) is holomorphic for |z| < 1. Hence

Y alsi(§) = D alsLi()
i=—00 =0
g PR & e (L
B z1—1>11r}a l—az oz(Po‘) (oc) 70.

Next, we check the case of &€ > 1. Take a positive integer R satisfying £a™F < 1.
Then we obtain

oo
E alsi(€) = alt E ai Bsi_p(éa™) =0

i=—00 i=—00

for 2 < k < p, and

> as@=a" 3 o Fantea) =Sy (1),

1=—00 1=—00

3. The Quantitative Subspace Theorem

First, we consider approximations of given algebraic numbers by algebraic numbers
which lies in a fixed number field. We fix an algebraic closure Q of Q. In what
follows, assume that all algebraic number fields are subfields of Q. Let us begin
with some notation about the absolute values on K, where K is a number field
of degree d. Let Mg..(K) be the set of archimedean places of K and M,,,,,(K)
the set of non-archimedean places of K, respectively. Moreover, put M(K) =
Mre(K)U Mo, (K). We define the absolute values |- |, and || - ||, associated with
a place v € K. In the case of K = Q, we have

M(Q) = {oo} U {primes}.
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In the case of v = 00, let | - | be the ordinary archimedean absolute value on Q. If
v = p is a prime number, then denote by |- |, the p-adic absolute value, normalized
such that [p|, = p~!.

Next, we consider the case where K is an arbitrary number field. Suppose a place
v € M(K) lies above the place p, € M(Q). We choose the normalized absolute
value | - |, in such a way that the restriction of |- |, to Q is |- [,. Let K, (resp.
Qp,) be the completion of (K, |- |,) (resp. (Q,]-|p,))- Put

_ [Kv : va]
1) ="&q

and

- o =1 - 15
Define the height of z by
H(z)= [] max{1,|[z[}.

veM(K)
By Lemma 3.10 of [20], we have
H(x)5® = M(x) (7)

Moreover, the product formula (for instance see [20], p. 74) implies for any nonzero
x € K that

H(z ') = H(x). (8)

Now we introduce Theorem 2 of [17] in the case of d = 1, which we use to prove
Theorem 2. Suppose every valuation of K to be extended to Q.

Theorem 7 (Locher [17]). Let 0 < ¢ < 1 and F/K be an extension of number
fields of degree D. Let S be a finite set of places of K with cardinality s. Suppose
that for each v € S, a fixed element 0, € F is given. Let H be a real number with
H > H(0,) for allv e S. Consider the inequality

[T min{1, 110, = 4l[} < H(y) > 9)

veSs

to be solved in elements v € K. Then there are at most
e 197574 16g(6 D) log (5_1 log(GD))
solutions v € K of (9) with

H(y) > maX{H,44/E}.
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Next, we consider approximations of given algebraic numbers by algebraic num-
bers with arbitrary degree. Let us introduce the quantitative subspace theorem
proved by Bugeaud and Evertse [10]. Let £ = (L, : v € M(K), i = 1,2) be a
tuple of linear forms with the following properties:

L, e KIX,Y] forve M(K),i=1,2,
Ly, = X, Ly, =Y for all but finitely many v € M(K),

det(L1y, Lay) = 1 for v € M(K), (10)
Card (Uyeanqae) {Lros Lao}) <.
Put
U {leaLQv} == {L17"'7LS}
veM(K)
and
M=HE)= [  max ([det(LiL)ll. (11)
veM(K)

Moreover, let ¢ = (¢;, : v € M(K), i = 1,2) be a tuple of reals with the following
properties:

€1y = Cayp = 0 for all but finitely many v € M(K),
2
ZUEM(K) i1 Civ =0, (12)

Z’UGM(K) ma’X{clvv C2v} <1

Next, take any finite extension E of K and any place w € M(E). Let v € M(K)
be the place lying below w. Write the completion of (E,| - |,) (resp. (K,|-|,)) by
E, (resp. K,). For i = 1,2, define the linear forms Ly,,, La,, and the real numbers
Clw, C2w DY

Liw = Liy and ¢y = d(w|v)cjo, (13)
where
[E, : K]
d =
(wv) E: K]
Note that

el = [[]51*) for z € K (14)
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and that

E d(wlv) =1 for v € M(K). (15)

weM(E)

wlv

Take a positive number @ and x = (z,y) € @2. We define the twisted height
Hq r,c(x). There exists a number field E including the field K(z,y). Then put

Hq.re(x) = H max || Ly (x)||w@ ™,

1<i<2
weM(E)

which is a finite product by the assumption of £ and c. We show that Hg r o(x)
does not depend on the choice of E. Let E’ be another number field including
K(z,y). Take a number field F with F > EUE’. By (13), (14), and (15)

11’21£%<X2||L1u( X) [ Q™
ueM(F) —

IT II max [|Liy (x) || Lulw) @d(ulw)ei

weM(E) weEM(F) —

ulw

1I£1a<X2 | Liw (%)] 0@ .
weM(E) — =

Similarly, we get

[T o llLiw(ollw@ e LGl Q"
w' e M(E’) wEM(F)

H jax [ Liw (%) [ @
weME) T T

Now we consider the inequality

Hgre(x) <Q7°, (16)
where x € 62 and @, > 0.
Theorem 8 (Bugeaud and Evertse [10]). Let £L = (L;, : v € M(K), i =1,2)

be a tuple of linear forms satisfying (10) and ¢ = (¢cip : v € M(K), i =1,2) a tuple
of reals fulfilling (12). Moreover, let 0 < 6 < 1.
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Then there are proper linear subspaces 11, ..., Ty, of @2, all defined over K, with

t1 = t1(r,6) = 22°6 % log(2r) log (6~ ' log(2r)) (17)

such that the following holds: for every real QQ with
Q > max (Hl/(:’?),22/5) (18)

there is a subspace T; € {11, ..., T:, } which contains all solutions x € 62 of (16).

This is Proposition 4.1 of [10] in the case of n = 2.

4. Systems of Inequalities

In this section we apply Theorem 8 to certain systems of inequalities, which are
generalization of Theorem 5.1 in [10]. Let K C Q be a number field of degree d. We
define some notation about linear forms with algebraic coefficients. Take a linear
form L(X,Y) = aX + 8Y € Q[X,Y] and put

K(L) = K(a, §).
Define the inhomogeneous height H*(L) of L by

H' ()= ][I max{1llall. 5}

vEM(K(L))

Note that, for a number field E including K (L),

H max{1, ||a||v, [|8]]v}

weM(E)

= TI I max{vllall 18,39 = B*(L) (19)

vEM(K(L)) weM(E)

wlv
by (15). In what follows we put, for w € E,
1L = max{||c] |, |[B]|w}-
Moreover, if an automorphism ¢ : Q — Q is given, let

o(L) =0(a)X 4+ c(B)Y.
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Write the Archimedean place associated with the inclusion map K — C by oo,
namely,

Vd for z € K. (20)

||2]loo = ||

Let € be a real with 0 < ¢ < 1/2 and S a finite subset of M(K) including all
archimedean places of K. Moreover, let L;, (v € S, i = 1,2) be linear forms in
X, Y with coefficients in Q such that

det(L1y, Loy) =1 for v € S,

Card (U,cg{L1v; L2v}) < R,
[K(Liy): K]<DforvesS,i=1,2,
H*(Ly) < HforveS i=12,

(21)

and e;, (v € S, i=1,2) be reals satisfying

Z Z eiv = —E. (22)

veS i=1

Put

A=1+4) max{0,e1y, 2.} (> 1).
veS

Finally, let ¥ be a function from O% to R>q, where Ok is the ring of integers of
K. Suppose every valuation v of K to be extended to Q. Consider the system of
inequalities

ILiw ()]0 < U(x)™ (v e S,i=1,2), (23)

where x € O% with ¥(x) # 0.

Proposition 9. The set of solutions x € O% of (23) with
U(x) > max{2H,2%/¢} (24)
18 contained in the union of at most
231 A%« 73 log(2RD) log (5_1 log(2RD))

proper linear subspaces of K2.
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Proof. We can prove this proposition in the same way as Theorem 5.1 in [10]. Let
E be a finite normal extension of K, containing the coefficients of L, as well as the
conjugates over K of these coefficients, for v € S, i = 1,2. Let S denote the set
of places of E lying above the places in S. Note that 5o Mc(E). Take a place
w € M(E) above the place v € M(K). For simplicity, put

dy = d(w|v).
If we §, then there exists an automorphism o, of E satisfying
2]l = llow(@)]|5* for z € E.
For i = 1,2, we define the linear forms L;,, and the real numbers e;,, by

ol (Liv) (w e g),

Liw = X (i=1, wdS)
Y (i=2 wdS)

and

respectively. Take an x € O with (23). If w ¢ 5, then w is non-archimedean, so
[ Liw () < 1.
Moreover, since

1L (NS = llow (Liw ()15 = 1| Liw ()|l

x satisfies the system of inequalities
[|Liw (%)| ] < ¥(x) (w € M(E), i =1,2). (25)
By using (15) and (22) we get

Y Y = XY Y

weM(E) i=1 vES vEM(E) i=1

wlv

2
= Z Z €ip = —E. (26)

veS i=1
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By the definition of L;,, with 1 <4 < 2 and w € M(E)

Card [ |J {Liw Low}| <2+ DR.
weM(E)

Let £ = (Ljy : w € M(E), i = 1,2). Define the tuple of reals ¢ = (¢;y : w €

2
_ 1
Ciw:A eiw_§ E €jw
Jj=1

We apply Theorem 8 with £, ¢, r = 2+ DR(> 4), and

e

It is easy to check the condition (10). We verify the condition (12). The first
statement is clear by the definition of ¢;,, and e;,. The second statement follows
from ¢14 + 2y = 0 for each w € M(E). Moreover, by using (22) and (26), we
obtain

2
A Z max{Ciy, Cowy} = Z max{em,egw}—% Z €jw
1

weM(E) weM(E) weM(E) j=

Z Z max{dwelv,dwegv}—&—%

VES weEM(E)

wlv

%JFZmax{Oa@lvv@?v} Z dw

veES weM(E)

wlv

IA

< 1+ Z max{0, e1,, €2, } = A.

veSs

Therefore we proved the last inequality of (12).
Let x € O% be a solution of (23) with (24). Then x also fulfills (25). Put

Q= ¥ (x)4.

Finally, we show that such an x satisfies (16) and (18). By (25) and the definition
of Ciw,

| Liw () [0 Q@™ = || Lin (%) oo ¥ (3) = W (x) (1w Fezu)/2
\Ij(x)(elw+62w)/2

IN
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for w € M(E), i = 1,2. By taking product over w € M(E) and using (26), we get

H lrgaé(QHLW( x)|[w@
weME) T T

H \Ij (elw+e2w)/2
weM(E)

Hg r.e(x)

IN

= Yx)T=Q
Thus (16) is verified. Put

U {Zww Low} ={L1,..., L},

weM(E)

where s < r. We check H*(L;,,) < H for w € M(E) and i = 1,2. We may assume
that w € S. There exists an automorphism o, of E such that L;, = o,(Ly,),
where v € S is the place below w. By (19) and (21)

H'(Liw) = I max{1llog"(Li)llu}
ueM(E)

= H max{l, ||Lw”u} = H*(Li'u) S .
ueM(E)

Let D=[E: Q] and 1 <i < j <s. If wis an Archimedean place, then

||det(Li7LJ’)||w 2[Ew:R]/D||Li||w||Lj||w

IA

< 2[Ew:R]/5 Hmax{l, ||Ll||w}'
=1

Similarly, if w is non-Archimedean, then by the ultrametric inequality
S
[l det(Li, Ly)llw < [ LilluwllLjllw < T max{1, ]| L]}
1=1

Since -, m,, . (m) [Ew : R] = D, we conclude that

H(L) = H 1<r:z(1ax || det(Li, Lj)||w
weM(E)

H 9[E,:R]/D HH*(Lz) < 2H",
WEMgrc(E) =1

IN



INTEGERS: 10 (2010) 47

hence

max {H(ﬁ)l/(;),Qz/‘s}

IN

max{21/(g)HT/(;),24A/€}

IN

max{2H, 24/5}A <U(x)=Q.

Let 1 = t1(r,d) be defined as (17). Theorem 8 implies the following: there are
proper subspaces 71, . .., T;, of Q all defined over E such that any solution x € O%
of (23) with (24) satisfies

X € U(T \ K?).
i=1
Therefore, for the proof of the proposition it suffices to check
t1 <231 A% log(2RD) log (¢~ " log(2RD)) (27)
Since DR > 2, we have
log(2r) < 2log(2DR).
Moreover, by 0 < e < 1/2

log (6 'log(2r)) < log (4A5_110g(2DR))

A

4Alog (671 10g(2DR)> .

Thus (27) follows. O

5. Proof of Main Results

We give another proof of the inequality (4). Without loss of generality, we may
assume that 1/a < ¢ < 1. In fact, there is an integer R with 1/a < £aft < 1. Then
since £a” = (€aft)a™ ', we have

An (e, €) = An(a, €a®)] < |R).

In particular, for any n <0, [£a”] =0, and so s_,(§) =0 by (5).

Recall that s_, (&) # 0 for infinitely many positive n, which we introduced in
Section 1. Define the increasing sequence of positive integers (n;)32, by s_,(§) # 0
if and only if n = n; for some j > 1. By the first statement of Lemma 4, it suffices
to show that

o j log M () !
1 f > (1 .
e logn; — ( 8 (log M(a) — log(aqa)
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Write the conjugates of a by a3 = @, aa, . . ., ag. Without loss of generality, we may
assume that

lax| > 1 (1 <k <p),

where p is the number of the conjugates of o whose absolute values are greater than
1. In what follows, C4(«),Ca(e),... denote positive constants depending only on
«. We first check

Cr(a)a™ < < Co(a)a™ (28)

D atsin, ()

=0

for any sufficiently large 7 > 1. By using s,,(£) = 0 for any m > 0 and the second
statement of Proposition 5, we get

Do alsia,(©) = D alsin (€
1=0 1=0

o —1
S @ 3 et ©

-1
= —ta Mi(PrY <$) - Z o'si_n, (),

where (P)’ is defined in Proposition 5. Thus

max{L4(a),L_(a)} i o

1=—00

IN

S aisin (€) + Ea (PR (é) ‘
=0
S 03(0().

By considering (P¥)'(1/a) # 0, we obtain (28). Recall that, for any nonempty
subset I of {1,2,...,d}, the number

adHak

kel

is an algebraic integer (for example, see pages 71 and 72 of [20]). So (28) implies
that

d nj
ai’ 11 <Z 0hSin, (5)) ‘ (20)
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since the right-hand side of this inequality is the absolute value of a nonzero rational
integer. By the first statement of Proposition 5, for 2 < k < p,

nj e8] -1
Za;@si—nj (5)’ == Z O/]‘.gsi—nj (5) - Z Oé;'csi—’ﬂj (g) .
i=0

i=1+n; i=—00

Because s;_n,(£§) = 0 for each i with i > 1 + n;, we have

n; i —N14gj
D aision, (f)' < max{Ly(a),L_(a)} Y |of]
=0 i=—00
< Ca(a)|ag[™ 7, (30)
Similarly, if p+ 1 < k < d, then
> aision, ()| < Cs(a)n;. (31)
=0

Take an arbitrary positive €. By combining (28), (29), (30), and (31), we conclude
for sufficiently large j that

P d
Co(a)aly a™ (H '“k'”jn”j> I1
k

k=2 =1+p

>—~
IN

IN

oy -y | (L €)M (@)
Hence, for j > jo,

miey _ og((1+)M(a)
n; ~ logM(a) — log(aqa)

=: Fi(¢)
and

nj < g Fi(e)’ 0.
Therefore we conclude that

o J 1
| f >
ljrggol logn,; ~ log Fi(e)

Since ¢ is an arbitrary positive number, (4) is proved.
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Proof of Theorem 2. Theorem 3 of [11] shows for infinitely many n > 0 that s_,,(§) #
0. There exists the unique increasing sequence of positive integers (nj)?; such that
s_n(&) # 0 if and only if n = n; for some j > 1. Put

—1 -1

¢= 3 a'si(and =Y a's(é).

1=—00 i=—n;

We may assume ¢ € [1/a,1). Then s,(§) = 0 for any n > 0. By Proposition 5,
& ¢ Q(ov). Thus we get & # &; for any j > 1. Recall that oo is the archimedean
place defined by (20). In what follows, let Cy (), C2(a), ... be positive constants
depending only on . Then

{ 0 < [[¢' = &lloo < Cr(a)amm+i/d, (32)

1€]loe < Ci().

Take an arbitrary positive number . Apply Theorem 7 with
K =Q(a), §=Mar(K)U {U € Mnon(K)ma”v < 1} )

and

b - { 1 =)

0  (otherwise).

Consider solutions v of (9) satisfying v = 1/, for some j. Let us take any jo > 0.
By (32) there exists at most finitely many j > 1 with &; = &;,. Thus by Theorem
7 there exist at most finitely many j such that v = 1/¢; fulfills (9). Namely, for all
sufficiently large 7,

—2—¢
Hmm{L o, L }2 H<i) = H(g) > (33)
vES 5] v gj
We have
Hmin{l, a'u_i }
e i lly
1 1
=z - = H min{l, — }
’f fj © yeS\{oo} gj v
1 1 -
_ ‘ &g L) (H max{l, llﬁf'v}>
J oo vES

-1
< Ci(a)?a il (H max{1, |£j||v}> ’

veES
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Note that if v € M(K)\S, then |||, < 1 by the ultrametric inequality. Hence
1

_v}

< Ci(a)Pa /M ()™ [T max{1, |11}
vEMK\S

< Ci(a)?a /M H(E)

By combining the inequality above and (33), we obtain, for any sufficiently large j,
ot < Oy (a)* H (&)

Write the conjugates of & by ay = a,aa,...,aq. Let p (resp. ¢) be the number
of the conjugates of o whose absolute values are greater (resp. smaller) than 1.
Without loss of generality we may assume |ag| > 1if 1 < k < p, Jag| < 1 if
p+1<k<p+gq, and |ag| = 1 otherwise. By the ultrametric inequality

[T wax{llgllL} < [T wax{lfla Y}

’UeMnon(K) UeMnon(K)

Since s,(€) < max{L(«a), L_(a)} for every integer n

1/d

d -1 ) p+q 1/d d 1d
IIY as© < I @™ I1 ©en)
k=p+1 |i=—n; k=p+1 k=p+q+1
p+q
— CQ(Q)(d—p)/dny,pfq)/d H ‘ak|nj/d-
k=p+1

By using the first statement of Proposition 5 and s, (£) = 0 for any n > 0,

» 1 1/d . 1/d p |—nirs 1/d
I11 > as©) = | > @' ]| aisi®
k=1 |i=—n; i=—n; k=2 |i=—o0

1/d

IN

P
Ca(a) /T |Cala)ag ™
k=2

p 11/d
_ C3(Oé)p/d H ’a;nwd
k=2
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Hence we obtain

d . 1/d
[T max{niigll} =]1| D0 aisi©®
UEMarc(K) k=1 |i=—n;

< Oy T max{1, [Ja” ]}

VEMare(K)
P 1/d
T o™
k=2
and so
d 1/d
d—p—q)/d l\n, —
H(g) < Calayn{ "= H (a1 I ‘% i
k=2
Finally, we conclude for sufficiently large j that
1+e)(d L (1)
oM < 05(01)77,; +e)( *P*q)H<a—1)(1+s)dnj H a—n1+_7
k=2
Ld (1+¢)
< H(afl)(1+25)dnj H ’Oé]:nurj
k=2
(14¢)

)

p
— M(a)(1+2€)nj H ‘a;nwrj
k=2

where for the last equality we use (7). Taking logarithms of both sides of the
inequality above, we get

ST (14 2¢)log M(c)
n; ~ loga+ (1+¢)loglas---ap

= Fy(e), (34)

consequently

P | 1
1 f > .
s logn; ~ log Fy(e)

Therefore by the first statement of Lemma 4

.. o AN(e8) 1
lim inf >
Nie logN = log Fa(e)
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Since ¢ is an arbitrary positive number, we proved the theorem. In fact,

. 1 log M () !
1 _— = 1 .
o log F5(¢) ( 8 (log M(a) —logag

O

Proof of Theorem 1. We may assume & € [1/a, 1), and so s,(§) = 0 for any n > 0.
Put

) (35)

1=—00

By the second statement of Proposition 5, we have ¢’ ¢ Q(«). Let p be the number
of the conjugates of o whose absolute values are greater than 1. Write the conjugates
of @ by a1 = a, s, ..., ag, where d is the degree of a. Without loss of generality,
we may assume that |ag| > 1 for k=1,2,...,p.

First we show the following:

Lemma 10. There is a sequence of integers y = (yn )52 satisfying the following:
1oy =0 oryn = 5-n(E);
2. Y2 yiat =¢
CR Dt yia,:i =0 for any k with 2 < k < p;
4. Put
{n>1y, #0} =1 {n1 <na <---}

and
&= via".
i=1
Then, for any h and l with h <1, &, # &.

Proof. We construct the bounded sequences of integers y,, = (y(m,n))>2, (m =
1,2,...) by induction on m fulfilling the following:

1. For any n > 1,

y(m,n) =0 or y(m,n) = s_,(&); (36)
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2.
> ay(m,i) = ¢ (37)
i=1

3. For any k with 2 < k < p,
Z o 'y(m,i) = 0. (38)
i=1

In particular, we have, for any m,n > 1,
ly(m,n)| < |s—n(§)] < max{L(a), L_(a)}.
Define y1 = (y(1,n))52, by
y(1,n) = s-n(§) (n = 1).

For m =1, (36) and (37) hold. Moreover, (38) follows from the first statement of
Proposition 5.

Next, assume that we have a sequence of integers y,, with (36), (37), and (38)
for m > 1. Let

Zn = {n=1ly(m.n)# 0}

= {n(m,1) <n(m,2)<---}

and

nmg)
Em,j) = > a'y(m,i).
i=1

By (37) and ¢ ¢ Q(«), Z,, is an infinite set. If £(m,h) # £(m,l) for any h # I,
then then y = y,, satisfies the last condition of Lemma 10. Moreover, first, second,
and third conditions of Lemma 10 follow immediately from (36), (37), and (38).
Otherwise, we define y,,,+1 by using y,,. There exists an h > 1 such that {(m, h) =
&(m, 1) for some [ > h. For such an h, write the minimal value by h,,. Put

Ap = {l > h’m|€(m7l) = §(m7hm)}

Then A,, is a finite set. In fact, if A,,, is an infinite set, then

¢ = lim &£(m,n) = &(m, hm) € Q(a),

n=oo
n€Am
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which contradicts to & € Q(«). So let
Iy, = max A,,.

We define yo, 1 = (y(m +1,n))72, by

{ 0 (if 1+ n(m,hpy) <n <n(m,ly)),
yim+1,n) = )
y(m,n) (otherwise).
Note that
O ( gmy) (i J < huy)
s td) _{ Em, 4l — hn) (5> B, )

Now we verify that y,,1 fulfills (36), (37), and (38). (36) is obvious by the definition
of y;nt1- By the inductive hypothesis and

n(m,lm)
0=¢&(m,lm) — &(m, hy,) = Z a”'y(m, i), (40)
i=1+n(m,hy,)
we get
o0 ) () ) n(me) )
Z a'ym+1,i) = Z a 'y(m,i) — Z a 'y(m,i) =¢'.
i=1 i=1 i=14n(m,hm)

By taking the conjugate of (40), we deduce for any k with 2 < k < p that

n(m,lm)

0= Z 'y (m, ).

i=14+n(m,hp,)

Thus

n(m,lm)

dogtylmyi)— Y agty(myi)
=1

i=14+n(m,hy)

> opy(m+1,0)
i=1

= Za;iy(m,i) = 0.
i=1

For the proof of Lemma 10 we may assume that, for any m > 1, y = y,, is defined
and does not satisfy the conditions of Lemma 10. We verify that h,,+1 > hy, for
each m > 1. It suffices to check for 1 < h < [ with h < h,,, that

Em+1,1) #&(m+1,h).
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In the case of h < hyy, this follows from (39) and the definition of h,,. So consider
the case of h = h,,. Since [ + I, — by, > 1y, we get

Em+1,1) = &(m, L+ 1 — hin) # §(m, hy) = E(m+ 1, hyy)

by the definition of ,,,. Hence the sequence h,, (m =1,2,...) is strictly increasing,.
In particular, hA,, > m.
Let n > 1. Take an integer m with m > n. Note that

n<m < hy < n(m, hy).

So, by the definition of y,,+1, we have y(m + 1,n) = y(m, n). Thus

y(m,n) = y(n,n) for any m > n. (41)

We define the sequence y = (y,)52, by

Yn = y(n,n).

In what follows we check the conditions of Lemma 10. The first condition is clear.
Let m > 1 be any integer. Then by (41)

o0
¢ - Z o'y
=1

S aiylm, i)~ o(i i))‘

= | Y ayima) - y(zpz'))’
1=m-+1
< 2max{L; (), L,(a)}m-
Similarly, for 2 < k < p,
S| =[S e wm.i) - (i)
i=1 i=1
= Z O‘];i(y(m/i) —y(Z,Z))‘
i=m-+1
< 2max{L;(a),L_ (a)}m7

where for the first equality we use (38). Since m is arbitrary, we obtain the second
and third conditions.
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Finally, assume that &, = & for some h < [. Take an integer m with m > [.
Then by (41)

f(ma h) = gh = gl = g(mv l)

By the definition of h,,, we get h,, < h < m, which contradicts to h,, > m.
Therefore, the last condition follows. O

For N > 1 put
7n = Card{n € Z|1 <n < N,y, # 0}.

By the first condition of Lemma 10

v < Card{n € Z|1 <n < N,s_,(&§) # 0}. (42)

In what follows, we verify for all sufficiently large N that

(log o)? (log N)3/2

(log M ()2 (log(6D))1/2 (log log N)1/2" (43)

TN 2> C

Theorem 1 follows from (42), (43), and the first statement of Lemma 4.

Put K = Q(«). Let co be the Archimedean place in K which is defined by (20).
In what follows, let C;(a, &), Ca(a, €),. .. be positive constants depending only on
a and £. Put

1/d
1
C1(a,€) = max{L (a), L_(a)}"/ (7) |
1(a, &) = max{L () (@)} 1211?%2 1— oy
Then we have
1/d

0<[lg —&lle = | Y o™

1=n14j

IN

Cue, ) llaf |+ (44)

Let € be an arbitrary positive number with e < 1/2 and F»(g) be defined by (34).
In the same way as the proof of Theorem 2, we can verify that

M < Fy(e)
nj

for sufficiently large j. In particular, since

lim F: =1
s—l}EO 2<E> ’
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we get, for j > Coy(a, &),
ni4; < 2n;. (45)

We count the numbers of j fulfilling

niy; > (14 2e)n;. (46)
Assume (46) and

nj > Cy(a, €)e™/8. (47)
We determine Cs(a, £) later. Let

S = Mare(K) U {v € Myon(K)|l|e][o < 1}.

Define the linear forms L;, (v € S, i =1,2) by

I X -¢Y forwv=o0,
T X for v € S\{o0},
Ly, = Y forvelsS.

Then (21) is satisfied with R = 3, D = [Q(«,&) : Q(a)], and H = H(&). Consider
the system of inequalities (23) with

—(5e)/4  for v = oo,

ey = e/(dd")  for v € Mgre(K)\{oo},
0 for v € Myon(K) \ S,
e20 = (logllall,)/(log]lal[wc), for ve S
U(x,y) = ||Ylloos

where d' = Card(M,(K)\{oco}). Then (22) follows from the product formula.
Apply Proposition 9 with

Xj = (Z yiof”"j,a"’) € Ok-
i=1
If C5(c, €) is sufficiently large, then (24) follows from (47). In fact,

4
log ¥(x;) = n;log||a|| > max {log(QH), B log 2} .



INTEGERS: 10 (2010) 59

We check that x; satisfies the system of inequalities (23). If i = 2, then

IE2oGelle = lla™ [l = [Ja™ |[dos el Gos el

= W)™

In the case of v € S\ Mo, (K), by the ultrametric inequality

j
L1 (e)lo = || D wia™ 7| < 1= (x;).
i=1

v

Now we show that
d n; £ / £ /
ny'Ci(a, €) < [Jam [0 = w(x;)=/ U, (48)
Note that (48) is equivalent to

ad’ (1 logC'l(oz,f)> < N

log [|o]]oe \ d log n; ~ logn;’

In what follows, constants implied by the Vinogradov symbols <, > are absolute.
If n; > Cs(a, &)e™%/%, then

ﬂ > ETL?/Q > Cg(a’é‘)S/Q.

logn;
Thus, if C5(«, ) is sufficiently large, then (48) follows. By (44), (46), and (48), we
get

IEroolloe = 0 llcllgs — €'l
< G lallz T < Cilala I
< [l 5 = W),

Let v € Myrc(K)\{oo}. Then there exists an embedding o : K — C such that

[|z[lo = llo (@)

for any = € K. Let o(a) = ay, where 2 < k < d. If 2 < k < p, then by (48) and
the third condition of Lemma 10

g —i+n; n; - —1
L)l = || wia, = [l Ml || D= wie
i=1 oo 1=n14j oo
S
o0
< Ci(a,€) < U(xy) ) = w(x).
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In the case of k > p+ 1, by using |ag| < 1 and (48), we obtain

—i4n;

[[L1o(x)|[le = 10

o0

IN

[y max{L (), L—(a)}* < nj/"Cr (e )
< W)U = w(xp)e
Since

A = 1+Zmax{0,elv,egv}
veS

< 14— +210gllak\loo log M ()
a logHaHoo loga ’

Proposition 9 indicates that the vectors x; satisfying (46) and (47) lie in

4
< (%) £ %log(6D) log(s ™" log(6D))

one-dimensional linear subspaces of K2. By the last condition of Lemma 10, if j # I,
then x; and x; are linearly independent over K. Thus we obtain

Card{j > O|n; 203(a,£)5_9/8,n1+j > (1+2e)n,}

log M () \*
(%) e %log(6D)log(c ' log(6D)). (49)
Let ji be the smallest j such that n; > Cs(a,§) and J an integer with

J > max{n? ,2'2C3(a, £)'?}. (50)

31
Moreover, let jo be the largest integer with nj;, < 2C5(c, §)J5/12. Then since
nj, < JY3 <2C5(a, €) %12,
we get
nj, = nj, = Cy(a,g). (51)
So by (45)

ny 2 TR > Gy, )07
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For a positive integer u(> 2), put

_ (log(GD))1/3(logM<a))4/3 log J 1/3 _ :1
: (log 0)1/3 A

Note that if C3(a,€) is sufficiently large, then log(e7!) > log(6D). Next, let
€9,...,E4—1 be any reals satisfying

€1 <ég << gyl < Ey.

Then we have

nj, > Cs(a, &), ' (52)

for h=1,...,u. In fact,

njog(a,f)*lsz/s > J5/12€?/8 > Jo/12, g=3/8 > 1.

Let So = {j2, 1+ jo,...,J} and, for h =1,...,u, let S;, denote the set of positive
integers j such that jo < j < J and niy; > (1 + 2e,)n;. Moreover, write the
cardinality of Sy by Ty, for h=1,...,u. Then §§ D &1 D -+ D Sy. If j € Sp, then
by (51) and (52) we have

N
Dty <2
nj
and
—-9/8
n; > Cs(o, &), "% for h=1,...,u.
Thus we get
ny o _ Ny N-14g Nt
Mja N—14J N—2+4J Mgy
u—1
<

IT==) 10 I ==
J€Su 7 ) =0 \jeSp\Sitn 7
u—1

2Tu(1 =+ 281)‘] H(l + 2€h+1)Th—T1+h.
h=1

IN
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Taking logarithms, we obtain

u—1
n
log (nJ> S Tu10g2+2€1j+2261+h(Th 7T1+h)
J2 h=1
u—1
< Tylog2+2e1J + 2eT + 2 Z(EHh —ep)Th — Ty

h=2

(49) implies

log M () 4
Th < (iga> log(6D)e),” log(e), ! log(6D))

for h=1,...,u, and so

log M ()
log (m) < aJ+ (ogm)) log(6D)
N, log o

X <log(log(6D)) + e967 2 log(e7 ! log(6D))

u—1
+ Y (eren = en)ey (e 0g(6D) ).
h=2

If v tends to infinity and if maxj<p<y—1(€14n — €1) tends to zero, then the sum
converges to a Riemann integral, so

u—1

lim Z(EH;L — en)e;, 2 log(e;, F log(6D))

U—00

h=2

1/2
= / z 3 log(x ! log(6D))dx

€1

< e7?log(erh) +log(log(6D))er? < 7% log(er ).

Thus,

log M(a)\*
log <ﬂ> < e+ <Og—@) log(6D)e; ?log(e )
nj, log o

log M (a) \** :
1 D /3 2/31 1/3
(5 ) ™ ostom)) 52 105 1)1
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where for the second inequality we use log(e; ') < log.J. By using (50) and the

definition of jo we obtain
Nja Mo

< 205(a, &) J 12 <1,
W2 = = 3(e,) =

and so

log M ()

logny; < <
log av

Hence
(log a)? (logn.)*/?

7 (log M(0))2(10g(6D)) 72 (log log n)) 172

In fact, since the function #3/2(logx)~!/? is monotone increasing for = > e,

(logn.y)3/? < (log G(J))?/? <logM

(loglogn;)t/2 = (loglog G(J))'/2 log o

Therefore, we proved the theorem.

>4/3 (log(6D))'/3.J%/3(log J)/3 =: G(J).

(O‘)>2 (log(6D))"/2.J.
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