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Abstract
Expansions in noninteger positive bases have been intensively investigated since the
pioneering works of Rényi (1957) and Parry (1960). The discovery of surprising
unique expansions in certain noninteger bases by Erdős, Horváth and Joó (1991)
was followed by many studies aiming to clarify the topological and combinatorial
nature of the sets of these bases. In the present work we extend some of these
studies to more general, negative or complex bases.

1. Introduction

Given a noninteger real number q > 1 in his seminal paper [9] Rényi initiated the
study of expansions of the form

x =
∞∑

k=1

ck

qk

on the digit set {0, 1, . . . , [q]}. Following a subsequent work of Parry [8] it turned out
that the properties of these expansions are radically different in many aspects from
the usual expansions in integer bases. Since most interesting phenomena appear
already for 1 < q < 2, we restrict ourselves in the sequel to expansions using only
the digits zero and one.

While the expansions in base q = 2 are unique for all but countably many real
numbers, for which there are exactly two different expansions, in bases 1 < q < 2
the situation is quite the opposite: Sidorov [10] proved that almost all real numbers
0 < x < 1/(q − 1) have continuum many different expansions. The golden mean
G plays a special role here: for q < G every real number 0 < x < 1/(q − 1) has
continuum many different expansions [3], while for q = G, for instance, the set of
expansions of x = 1 has countably infinite [2]. More surprisingly, Erdős, Horváth
and Joó [2] discovered that the expansion of x = 1 is unique for continuum many
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bases 1 < q < 2. Subsequently the set U of such bases was characterized in [3]
and their nature was clarified in [5] and [6]. For example, we have the following
properties:

• the set U is nowhere dense and it has zero Lebesgue measure, but its Hausdorff
dimension is equal to one;

• the set U is closed from above and it has a smallest element q ≈ 1.787;

• U \ U is a countable dense set in U ; consequently the closure of U is a Cantor
set (i.e., a closed set having no isolated or interior points) of zero Lebesgue
measure.

Since in bases q close to 1 all real numbers satisfying 0 < x < 1/(q − 1) have
continuum many different expansions, it was natural to ask whether there exist
expansions with special properties, for instance universal expansions which contain
all possible finite variations of the digits zero and one. A positive answer to the last
question was given in [4].

The definition of expansions remains meaningful for negative or even complex
bases; the set of complex numbers having at least one expansion in a given complex
base was investigated by Daróczy and Kátai [1] and then in [7]. The purpose of this
paper is to extend some of the above mentioned results to negative and complex
bases.

In the following by a sequence we mean a sequence of zeroes and ones. Given a
real or complex number q of modulus |q| > 1, by an expansion of a real or complex
number x in base q we mean a sequence (ck) satisfying

∞∑

k=1

ck

qk
= x.

We denote by Jq the set of numbers having at least one expansion in base q.

2. Expansions in Positive Bases

Fix a positive real number q > 1. It is well-known and easy to verify that Jq ⊂[
0, 1

q−1

]
with equality if and only if q ≤ 2; for q > 2 the set Jq is not connected.

The endpoints of Jq always have the unique expansions 0∞ and 1∞.

We recall from [2], [3] and [4] the following results:

Theorem 1. The following hold:

(a) If q = 1+
√

5
2 , then the set of expansions of x = 1 is countably infinite.
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(b) If q < 1+
√

5
2 , then each interior point of Jq has continuum many expansions.

(c) If, moreover, q < 4
√

2 and q2 is different from the second Pisot number, then
each interior point of Jq has a universal expansion, i.e., an expansion containing
all possible finite blocks of zeroes and ones.

We recall that the second Pisot number P2 is the unique real root of the polyno-
mial x3 − x2 − 1. We have P2 ≈ 1.38 and

√
P2 ≈ 1.175.

3. Expansions in Negative Bases

In this section we fix a negative real number q = −p with p > 1. The identity

∞∑

k=1

ck

qk
=

−p

p2 − 1
+

∞∑

k=1

1− c2k−1

p2k−1
+

c2k

p2k

establishes a bijection between the expansions in bases q and p: (ck) is an expansion
of x in base q if and only if (1 − c1, c2, 1 − c3, c4, . . .) is an expansion of x + p

p2−1

in base p. This identity allows us to translate many known results concerning
expansions in positive bases to negative bases.

In particular, we deduce from the identity the equality

Jq =
−p

p2 − 1
+ Jp.

Using the results of the preceding section it follows that

Jq ⊂
[

q

q2 − 1
,

1
q2 − 1

]
=

[
−p

p2 − 1
,

1
p2 − 1

]

with equality if and only if p ≤ 2; for p > 2 the set Jq is not connected. The
endpoints of Jq always have the unique expansions (10)∞ and (01)∞.

Let us observe that the sequences (ck) and (1− c1, c2, 1− c3, c4, . . .) are universal
at the same time. Indeed, this is the case m′ = 1 of the following lemma:

Lemma 2. Fix a positive integer m′ and for each sequence d = (di) of zeroes and
ones let us define another sequence d′ = (d′i) = T (d) of zeroes and ones by the
formula

d′m′i+j :=

{
1− dm′i+j for i = 0, 2, . . . and j = 1, . . . ,m′,
dm′i+j for i = 1, 3, . . . and j = 1, . . . ,m′.

(1)

Then d and d′ are universal at the same time.
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Proof. First we show that if d is universal, then d′ contains any fixed finite block
B′. We may assume that the length of B′ is a multiple of m′. It will be convenient
to define the transform T by the same formula (1) for finite sequences as well.

By the universality of d it contains the finite block

B := T (B′)0m−1T (B′)0m−2T (B′) . . . T (B′)00T (B′)0T (B′)

and, depending on the position of B in d one of these m blocks T (B′) will be
transformed into T (T (B′)) = B′ in d′ = T (d), so that, indeed, d′ contains the
block B′. (If the index of the first element of the block B in d is m′i + j for some
1 ≤ j ≤ m′, then the jth subblock T (B′) will be transformed into a block B′.)
Since T (T (d)) = d for all sequences, by symmetry the universality of d′ implies that
of d, too.

We deduce from Theorem 1 and Lemma 2 the following results:

Theorem 3. The following hold:

(a) If q = −1+
√

5
2 , then the set of expansions of x = 0 is countably infinite.

(b) If −1+
√

5
2 < q < −1, then each interior point of Jq has continuum many expan-

sions.

(c) If, moreover, − 4
√

2 < q < −1 and q2 is different from the second Pisot num-
ber, then each interior point of Jq has a universal expansion, i.e., an expansion
containing all possible finite blocks of zeroes and ones.

4. Expansions in Purely Imaginary Bases

If q = ±ip for some p > 1, then by distinguishing the even and odd powers of q we
obtain that

Jq = qJq2 + Jq2 = ±ipJ−p2 + J−p2 .

Identifying C with R2 we deduce from the results of the preceding section that

Jip ⊂
[
−p2

p4 − 1
,

1
p4 − 1

]
×

[
−p3

p4 − 1
,

p

p4 − 1

]

and

J−ip ⊂
[
−p2

p4 − 1
,

1
p4 − 1

]
×

[
−p

p4 − 1
,

p3

p4 − 1

]
,



INTEGERS: 10 (2010) 673

with equality if and only if |q| ≤
√

2. The four vertices of this closed rectangle
always have the unique expansions (1000)∞, (0100)∞, (0010)∞ and (0001)∞.

Furthermore, we deduce from Theorem 3 the following result:

Theorem 4. Let q = ±ip for some p > 1. The following hold:

(a) If |q| =
√

1+
√

5
2 , then the set of expansions of x = 0 is countably infinite.

(b) If |q| <
√

1+
√

5
2 , then each point of Jq except the four vertices has continuum

many expansions.

The existence of universal expansions follows from the case m = 4 of the more
general Theorems 6 and 8 in Section 5 below.

5. Complex Bases

Set CR := {z ∈ C : |z| ≤ R} for brevity.

Theorem 5. Fix a nonreal complex number ω of modulus one and a positive real
number R. If p > 1 is sufficiently close to 1, then every complex number z ∈ CR

has continuum many expansions in base q := pω.

Proof. For ω = ±i the result follows from Theorem 4 (b): the condition

1 < p < min






√
1 +

√
5

2
,

4

√
R + 1

R






is sufficient. We may therefore assume henceforth that ω4 (= 1.
Applying Proposition 2.1 from [7] with ω2 and 2R instead of ω and R we obtain

that if p > 1 is sufficiently close to 1, then every complex number w ∈ C2R has at
least one expansion in base q2. Now fix a sufficiently large positive integer n such
that

1
p2n+1

+
1

p2n+3
+ · · · < R.

Now given z ∈ CR and an arbitrary subset A ⊂ {2n + 1, 2n + 3, . . .}, applying this
result with

w := z −
∑

k∈A

1
qk
∈ C2R

we obtain an expansion

z −
∑

k∈A

1
qk

=
c2

q2
+

c4

q4
+ · · · .

This yields a different expansion of z in base q for every subset A.
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Now fix a positive integer m ≥ 3, a complex number satisfying ωm = 1 and
consider q = pω with 1 < p ≤ 21/m. It follows from the identity

∞∑

i=1

di

qi
=

m∑

j=1

(pω)m−j
∞∑

i=0

dmi+j

pm(i+1)
(2)

and from the inequalities 1 < pm ≤ 2 that Jq coincides with the set of numbers

m∑

j=1

(pω)m−jαj

with
0 ≤ αj ≤

1
pm − 1

for all j.

We will prove the following theorem:

Theorem 6. If 1 < p < 21/4m and p2m is different from the second Pisot number,
then each interior point of (pm − 1)Jq has a universal expansion in base q = pω,
i.e., an expansion containing all possible finite blocks of zeroes and ones.

For ω = ±1 the theorem follows from Theorem 1 (c) and Theorem 3 (c). Hence-
forth we assume that ω is not real. We divide the proof into three steps.

First step. Every interior point z of (pm − 1)Jq may be written in the form

z =
m∑

j=1

(pω)m−jαj

with suitable real numbers satisfying 0 < αj < 1 for all j. Indeed, since tz ∈
(pm−1)Jq for a sufficiently small t > 1, dividing by t a representation of tz we may
assume that 0 ≤ αj < 1 for all j. Adding a small positive multiple of the equality

0 =
m∑

j=1

ωm−j

we may also assume that 0 < αj < 1 for all j.
Using the identity (2) it suffices to construct a universal sequence (di) satisfying

the equalities

αj =
∞∑

i=0

dmi+j

pm(i+1)
, j = 1, . . . ,m. (3)

Second step. The construction will be based on the following generalization of
Lemma 4.1 in [4].
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Lemma 7. Let m and p be as in the statement of the theorem. Given 0 < αj ≤ 1,
j = 1, . . . ,m and a finite sequence c1 . . . cmN of integers ∈ {0, 1} there exists another
finite sequence d1 . . . dmn+mN of integers ∈ {0, 1} ending with c1 . . . cmN :

dmn+i = ci, i = 1, . . . ,mN,

and satisfying the inequalities

0 < αj −
n+N−1∑

i=0

dmi+j

pm(i+1)
<

1
pm(n+N)

, j = 1, . . . ,m.

Proof. Let 0 = y0 < y1 < · · · be the sequence of numbers of the form P (pm) where
P runs over the polynomials with coefficients belonging to the set {0, 1}. We know
from [4] that yk →∞ and yk+1 − yk → 0. Set

Aj =
N−1∑

i=0

cmi+j

pm(i+1)
, j = 1, . . . ,m.

If n is sufficiently large, then

pmnαj > Aj , j = 1, . . . ,m,

so that there exist indices k1, . . . , km satisfying

ykj < pmnαj −Aj ≤ ykj+1, j = 1, . . . ,m.

Since ykj < pmn for all j, we have

ykj = aj,0 + aj,mpm + · · · + aj,(n−1)mp(n−1)m, j = 1, . . . ,m,

with suitable coefficients aj,km ∈ {0, 1}.
Since n →∞ implies kj →∞ for each j, choosing a sufficiently large n we also

have

0 < ykj+1 − ykj < p−mN , j = 1, . . . ,m.

It follows that

0 < αj − p−mnykj − p−mnAj < p−m(n+N), j = 1, . . . ,m.

Third step. We fix a sequence B1, B2, . . . of finite blocks, containing all possi-
ble finite variations of the digits 0 and 1. Let c1 . . . cmN := B10 . . . 0 with addi-
tional zeroes if necessary. Applying the preceding lemma with c1 . . . cmN we obtain
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a finite sequence d1, . . . , dmi1 (with i1 := n + N) ending with the block B1 and
satisfying the inequalities

0 < αj −
i1−1∑

i=0

dmi+j

pm(i+1)
<

1
pmi1

, j = 1, . . . ,m.

Repeating the construction with the numbers

αj,2 := pmi1

(
αj −

i1−1∑

i=0

dmi+j

pm(i+1)

)
, j = 1, . . . ,m

instead of αj and with the block B2 instead of B1, we may extend the sequence
d1, . . . , dmi1 to a sequence d1, . . . , dmi2 ending with the block B2 and satisfying the
inequalities

0 < αj,2 −
i2−1∑

i=i1

dmi+j

pm(i+1−i1)
<

1
pm(i2−i1)

, j = 1, . . . ,m.

This can be rewritten in the following form:

0 < αj −
i2−1∑

i=0

dmi+j

pm(i+1)
<

1
pmi2

, j = 1, . . . ,m.

Proceeding by induction we construct in this way a sequence (di) and an infinite
sequence of indices i1 < i2 < · · · such that d1, . . . , dmik ends with the block Bk,
and

0 < αj −
ik−1∑

i=0

dmi+j

pm(i+1)
<

1
pmik

, j = 1, . . . ,m

for each k = 1, 2, . . . ., so that the equalities (3) are satisfied.
If m is even, then we may weaken the assumptions on p in order to obtain

universal expansions.

Theorem 8. Assume that m = 2m′ is even, ωm′
= −1, 1 < p < 21/2m and pm is

different from the second Pisot number. Then every number of the form

z =
m′∑

j=1

(pω)m′−jαj (4)
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with real numbers

− pm′

p2m′ − 1
< αj < 1− pm′

p2m′ − 1
=

p2m′ − pm′ − 1
p2m′ − 1

has a universal expansion.

Proof. It follows from the identity

∞∑

i=1

di

qi
=

∞∑

i=1

di

(pω)i

=
m′∑

j=1

(pω)m′−j
∞∑

i=0

dm′i+j

(pω)m′(i+1)

=
m′∑

j=1

(pω)m′−j
∞∑

i=0

dm′i+j

(−pm′)i+1

and from the results of Section 3 (our assumption on p implies that 1 < pm′ ≤ 2)
that a complex number z belongs to Jq if and only if z has the form (4) with suitable
real numbers

αj ∈
[
−pm′

p2m′ − 1
,

1
p2m′ − 1

]
.

Rewriting the above identity in the form

( ∞∑

i=1

di

qi

)
+

pm′

p2m′ − 1

m′∑

j=1

(pω)m′−j

=
m′∑

j=1

(pω)m′−j

(
1− dj

pm′ +
dj+m′

(pm′)2
+

1− dj+2m′

(pm′)3
+

dj+3m′

(pm′)4
− · · ·

)
(5)

we also see that z ∈ Jq if and only if

z′ := z +
pm′

p2m′ − 1

m′∑

j=1

(pω)m′−j =
m′∑

j=1

(pω)m′−jαj

with suitable real numbers
αj ∈

[
0,

1
pm′ − 1

]
.
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Furthermore, the identity (5) establishes a bijection between the expansions

z =
∞∑

i=1

di

qi
=

m′∑

j=1

(pω)m′−j
∞∑

i=0

(−1)i+1 dm′i+j

(pm′)i+1
(6)

of an element z ∈ Jq and the expansion

z′ =
∞∑

i=1

d′i
qi

=
m′∑

j=1

(pω)m′−j
∞∑

i=0

d′m′i+j

(pm′)i+1
(7)

of its translate

z′ := z +
pm′

p2m′ − 1

m′∑

j=1

(pω)m′−j , (8)

where the sequence (d′i) of zeroes and ones is obtained from (di) by the transforma-
tion (1) of Lemma 2.

If z satisfies the hypotheses of the theorem, then by what we have shown in the
first step, its translate z′ defined by (8) may be written in the form

z′ =
m′∑

j=1

(pω)m′−jαj

with real numbers 0 < αj < 1. Repeating the second and third part of the proof
of Theorem 6 we conclude that z′ has a universal expansion (7). By Lemma 2 its
transform d := T (d′) provides a universal expansion (6).
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[9] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Hungar.
8 (1957), 477-493.

[10] N. Sidorov, Almost every number has a continuum of β-expansions, Amer. Math. Monthly
110 (2003), 9, 838–842.


