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Abstract
Let ϕ(n) be the number-theoretic Euler’s function. It is well-known that the

sequence ϕ(n)/n, n = 1, 2, 3, . . . has a singular asymptotic distribution function
g0(x) (0 ≤ x ≤ 1). P. Erdős in 1946 found a sufficient condition on sequences of
intervals (km, km + Nm] (km, Nm tend to infinity with m), such that the sequence
of step distribution functions F(km,km+Nm](x) := #{n∈(km,km+Nm] ; ϕ(n)/n<x}

Nm
, also

converges to g0(x). In this note, a necessary and sufficient condition is given to
have such a convergence, and the Erdős result is refined by giving error terms.
Also, H. Davenport in 1933 gave an explicit construction of g0(x). Using that,
we obtain g0(x) ≤ g(x) for every limit distribution function g(x) of F(k,k+N ](x).
Finally, applying a result of A. Schinzel and Y. Wang (1958) asserting the density
of

(
ϕ(k+2)
ϕ(k+1) ,

ϕ(k+3)
ϕ(k+2) , . . . ,

ϕ(k+N)
ϕ(k+N−1)

)
, k = 1, 2, 3, . . . in [0,+∞)N−1, we show that

such a limit distribution function g(x) can have the form g̃(x/α), where g̃(x) is an
arbitrary distribution function and α is a related suitable constant.

1. Introduction

Many papers have been devoted to the study of the distribution of the sequenceϕ(n)
n ,

n = 1, 2, 3, . . . , where ϕ denotes the classical Euler totient function. I. J. Schoenberg
[19], [20] established, among other results, that this sequence has a continuous and
strictly increasing asymptotic distribution function (basic properties of distribution
functions can be found in [12, p. 53], [3, p. 138–157] and [21, p. 1–7]) and P. Erdős
[6] showed that this function is singular (i.e., the derivative exists almost everywhere

1Partially supported by the VEGA grant 2/0206/10 and 1/0753/10
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on [0, 1] and is zero, see [21, p. 2–191]). Recall that the asymptotic distribution
function g0(x) of ϕ(n)/n, n = 1, 2, 3 . . . , is defined as

g0(x) := lim
N→∞

1
N

N∑

n=1

c[0,x)

(
ϕ(n)

n

)
, for any x ∈ [0, 1],

where c[0,x)(t) denotes the characteristic function of the subinterval [0, x) of [0, 1].
An explicit construction of g0(x) can be found in B. A. Venkov [22]. For any interval
(k, k + N ] define the step distribution function

F(k,k+N ](x) =
1
N

∑

k<n≤k+N

c[0,x)

(
ϕ(n)

n

)
(x ∈ [0, 1)) and F(k,k+N ](1) = 1.

In this paper, convergence properties of F(kn,kn+Nn] are investigated for sequences of
intervals (km, km+Nm], m = 1, 2, 3, . . . using and mixing mainly two methods. The
first one designed as the P. Erdős’s approach introduces a parameter t to separate
the prime divisors of integers into those greater that t and the others. The second
one associated to the name of H. Davenport, takes also his foundation from the
works of S. Ramanujan [16], P. Erdős [5, 8], B. A. Venkov [22], and many other
people, is related to the notion of primitive x-abundant number introduced about
the divisor function.

The initial source of this paper is the following result asserted by P. Erdős in [7]
without providing details of the proof: if

lim
m→∞

log log log km

Nm
= 0

(for given increasing subsequences km and Nm of integers) then

lim
m→∞

F(km,km+Nm](x) = g0(x), for every x ∈ [0, 1] . (1)

As the Referee point out to the authors, a complete proof of (1) derives from the
work of Galambos and I. Kátai in [11] where the method of characteristic func-
tions is exploited in a somewhat more general setting. In the opposite direction,
P. Erdős completed his theorem by constructing sequences km and Nm such that
limm

log log log km

Nm
= 1

2 and the sequence of distribution functions F(km,km+Nm] does
not converge in distribution to g0.

In the sequel, for short, the index m will be omitted but keeping in mind that
Nm and km both go to infinity. In that case we write simply k,N → ∞ if the
constraints on these sequences are unambiguous.
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In Part 2, a necessary and sufficient condition to have (1) is given, that de-
pends on divisors d of n, d > N , with n ∈ (k, k + N ]. In Part 3, we analyze
the Erdős approach and improve his result by exhibiting some error terms. In
Part 4, examples of sequences of intervals (k, k + N ] (k,N → ∞) are given such
that limN→∞

log log log k
N = +∞ but (1) still holds. Next, in Part 5, we analyze

the H. Davenport’s method and find a necessary and sufficient condition such that
F(k,k+N ](x) converges to a given distribution function g(x) (as N → ∞). Finally,
applying Schinzel–Wang’s Theorem [18] in Part 6, we show that asymptotic distri-
bution g(x) of F(k,k+N ](x) (k,N →∞), can have the form g(x) = g̃

(
x
α

)
(x ∈ [0, 1]),

where g̃(x) is an arbitrary given distribution function and α is a related constant
depending on g̃(x).

2. A Necessary and Sufficient Condition

Theorem 1. For any two increasing sequences of natural numbers Nm and km, the
limit (1) holds if and only if for every positive integer s,

lim
m→∞

1
Nm

∑

km<n≤km+Nm

∑

d>Nm
d | n

Φs(d) = 0,

where Φs is given by Φs(1) := 1,

Φs(d) :=
∏

p | d
(p prime)

((
1− 1

p

)s

− 1
)

for any square-free integer d and Φs(d) := 0 otherwise.

Proof. By applying Weyl’s limit relation (see [21, p. 1–12, Th. 1.8.1.1]) we get (1)
if and only if, for all positive integers s,

lim
m→∞

1
Nm

∑

km<n≤km+Nm

(
ϕ(n)

n

)s

=
∫ 1

0
xsdg0(x).

Notice that Φs(·) is a multiplicative arithmetic function (i.e., Φs(1) = 1 and
Φs(mn) = Φs(m)Φs(n) if m, n are coprime integers). From a result of I. Schur, re-
ported by Schoenberg in [19], page 194 (see [4], page 214 and also a general theorem
of H. Delange ([2, Théorème 2])) one has

lim
N→∞

1
N

N∑

n=1

(
ϕ(n)

n

)s

=
∏

p

(
1− 1

p
+

1
p

(
1− 1

p

)s)
. (2)
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Now we use the easy equality

∑

d |n

Φs(d) =
(

ϕ(n)
n

)s

to expand 1
N

∑
k<n≤k+N

(
ϕ(n)

n

)s
. To this aim, we write

∑

k<n≤k+N

∑

d|n

Φs(d) =
k+N∑

d=1

Φs(d)
(⌊k + N

d

⌋
−

⌊k

d

⌋)

=
k+N∑

d=1

N
Φs(d)

d
+

k+N∑

d=1

Φs(d)
({

k

d

}
−

{
k + N

d

})
,

where &x' denotes the integer part of x and {x} the fractional part of x. Since

{
k

d

}
−

{
k + N

d

}
=

{
−

{
N
d

}
if

{
k
d

}
+

{
N
d

}
< 1,

1−
{

N
d

}
otherwise,

(3)

the summation up to k + N can be reduced to N to get

1
N

∑

k<n≤k+N

(
ϕ(n)

n

)s

=
N∑

d=1

Φs(d)
d

+
1
N

N∑

d=1

Φs(d)
({

k

d

}
−

{
k + N

d

})

+
1
N

∑

N<d≤k+N

{ k
d}+ N

d ≥1

Φs(d). (4)

Let us prove that
∑

N<d≤k+N

{ k
d}+ N

d ≥1

Φs(d) =
N∑

j=1

∑

d|k+j
d>N

Φs(d)

for any positive integers s, k and N by using the following lemma:

Lemma 2. Let d > N , then
{

k
d

}
+ N

d ≥ 1 if and only if there exists 1 ≤ j ≤ N
such that

d | k + j,

and in that case, j is unique.
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Proof. The unicity is clear due to d > N and k can be assumed non negative and
strictly less than d. Now the inequality

{
k
d

}
+ N

d ≥ 1 means that k + N ≥ d which
is equivalent to d | k + j for j = d− k with 1 ≤ j ≤ N as required. !

Applying Lemma 2 in (4) we obtain the following basic equality:

1
N

∑

k<n≤k+N

(
ϕ(n)

n

)s

=
N∑

d=1

Φs(d)
d

+
1
N

N∑

d=1

Φs(d)
({

k

d

}
−

{
k + N

d

})

+
1
N

∑

k<n≤k+N

∑

d>N, d |n

Φs(d) . (5)

Clearly, |Φs(d)| ≤ sω(d)

d , if d is square free, where ω(d) denotes the number of
different primes which divide d and successively, from A. G. Postnikov [15, p. 361–
363 or English trans. p. 264–266],

N∑

d=1

|Φs(d)| ≤ (1 + log N)s, (6)

∞∑

d=N+1

|Φs(d)|
d

≤ 3s(1 + log N)s−1

N
, (7)

∞∑

d=1

Φs(d)
d

=
∏

p

(
1− 1

p
+

1
p

(
1− 1

p

)s)
.

Consequently, Theorem 1 follows from (2), (5) and the above relations. !

Remark 3. Using (5) and

1
N

∑

k<n≤k+N

∑

d>N
d | n

Φs(d) +
1
N

∑

k<n≤k+N

∑

d≤N
d | n

Φs(d) =
1
N

∑

k<n≤k+N

(
ϕ(n)

n

)s

we obtain

1
N

∑

k<n≤k+N

∑

d≤N
d | n

Φs(d) =
N∑

d=1

Φs(d)
d

+ O
(

(1 + log N)s

N

)
,

the error term being independent of k and thus, when the integer N goes to infinity,
the left-hand side of this equality converges to

∏
p

(
1− 1

p + 1
p

(
1− 1

p

)s)
uniformly

with respect to k.
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3. The Erdős Approach

For any positive integer n and real number t ≥ 2, set

n(t) :=
∏

p|n
p≤t

p, n′(t) :=
∏

p|n
p>t

p, and P (t) :=
∏

p≤t

p, (8)

where p are primes and the empty product is 1. P. Erdős in [7] proved the following
lemma but without any explicit error term and only for s = 1:

Lemma 4. For all positive integers k, N and for t = N , the equality

1
N

∑

k<n≤k+N

(
ϕ(n(t))

n(t)

)s

=
1
N

N∑

n=1

(
ϕ(n)

n

)s

+ O
(

3s(1 + log N)s

N

)
(9)

holds for all integers s ≥ 1 and N ≥ 2, the constant involved in the big O being
absolute.

Proof. As above, from the definition of Φs, we have for any t ≥ 2

∑

k<n≤k+N

(
ϕ(n(t))

n(t)

)s

=
∑

k<n≤k+N

∑

d |n(t)

Φs(d)

=
∑

d |P (t)

Φs(d)
(⌊

k + N

d

⌋
−

⌊
k

d

⌋)

= N
∑

d |P (t)

Φs(d)
d

+
∑

d |P (t)

Φs(d)
({

k

d

}
−

{
k + N

d

})
.

Observe that
∑

d|P (t)

|Φs(d)| ≤
∑

d|P (t)

sω(d)

d
=

∏

p≤t

(
1 +

s

p

)

and using the classical estimate
(∏

p≤t

(
1− 1

p

))−1
≤ (eγ log t)

(
1 + c(log t)−2)

)

with an absolute constant c > 0 (see [17] for explicit value of c) we get

∏

p≤t

(
1 +

s

p

)
≤

∏

p≤t

(
1− 1

p2

)s ∏

p≤t

(
1− 1

p

)−s

≤ (3/4)ses(γ+c(log t)−2)(log t)s .
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In particular, there exists an integer t0 ≥ 2 (which is explicit, in fact t0 = 286 works
well) such that

∑

d|P (t)

|Φs(d)| ≤ 3s(log t)s .

for any t ≥ t0 and s ≥ 1.
Now, due to the multiplicativity of n )→ Φs(n)/n,

∑

d|P (t)

Φs(d)
d

=
∏

p≤t



1 +

(
1− 1

p

)s
− 1

p





and from [15, p. 363, or English trans. p. 264 and p. 265] one has the quantitative
form of the above result of Schur

1
N

N∑

n=1

(
ϕ(n)

n

)s

=
∏

p

(
1− 1

p
+

1
p

(
1− 1

p

)s)
+ O

(
3s(1 + log N)s

N

)

where the constant involved by the big O is absolute and also (see (7)),
∣∣∣∣∣∣
1−

∏

p>N

(
1− 1

p
+

1
p

(
1− 1

p

)s)
∣∣∣∣∣∣
≤

∑

n>N

|Φs(n)|
n

≤ 3s(1 + log N)s−1

N
.

Consequently, for all integers s ≥ 1 and N ≥ 2,
∣∣∣

∏

p≤N

(
1− 1

p
+

1
p

(
1− 1

p

)s)
−

∏

p

(
1− 1

p
+

1
p

(
1− 1

p

)s) ∣∣∣

≤ (3/4)
3s(1 + log N)s−1

N
.

Taking into account all these bounds leads to (9). !

In his work, Erdős used implicitly the following theorem:

Theorem 5. For every two increasing sequences of integers km and Nm and for
t = Nm if

lim
m→∞




∏

km<n≤km+Nm

ϕ(n′(t))
n′(t)





1
Nm

= 1

then
lim

m→∞
F(km,km+Nm](x) = g0(x)

holds for all x ∈ [0, 1].
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Proof. We claim that for any integer s ≥ 1, the assumption means that for all ε in
(0, 1] there exists an integer Ms such that the inequality m ≥ Ms implies

#{n ∈ N; km < n ≤ km + Nm and xs
n ≤ 1− ε} ≤ εNm (10)

with xn = ϕ(n′(t))
n′(t) (t = Nm). This result is a consequence of the following elemen-

tary lemma:

Lemma 6. Let y1 . . . , yN be a finite sequence of nonnegative real numbers and
assume that

N∑

n=1

yn ≤ η1η2N

for positive real numbers η1 and η2. Then

#{n ∈ N; 1 ≤ n ≤ N and yn > η2} < η1N .

The proof is straightforward.

The assumption of Theorem 5, by taking the logarithm, leads to

∑

km<n≤Km+Nm

−s log
(ϕ(n′(t))

n′(t)

)
≤ log(1− ε) log(1− ε/2)Nm

for m large enough. Consequently, (10) follows from Lemma 6 with N = Nm,
km < n ≤ km + Nm, η1 = − log(1 − ε

2 ) and η2 = − log(1 − ε). This proves our
claim.

Now we assume m ≥ Ms in order to have (10) and define

A(m, ε) := {n ∈ N; km < n ≤ km + Nm : and xs
n ≤ 1− ε} .

Using
ϕ(n)

n
=

ϕ(n(t))
n(t)

ϕ(n′(t))
n′(t)

we obtain on one side

1
Nm

km+Nm∑

n=km+1

(ϕ(n)
n

)s
≥ (1− ε)

( 1
Nm

km+Nm∑

n=km+1

(ϕ(n(t))
n(t)

)s)
− (1− ε)

#A(m, ε)
Nm

(11)

and, on the other side,

1
Nm

km+Nm∑

n=km+1

(ϕ(n)
n

)s
≤ 1

Nm

km+Nm∑

n=km+1

(ϕ(n(t))
n(t)

)s
.
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Lemma 4 implies

(1− ε)
∫ 1

0
xsdg0(x) ≤ lim

m→∞

1
Nm

∑

km<n≤km+Nm

(ϕ(n)
n

)s
≤

∫ 1

0
xsdg0(x) ,

proving Theorem 5. !

Notice that limm→∞
1

Nm

∑
km<n≤km+Nm

ϕ(n′(t))
n′(t) = 1 is equivalent to the assump-

tion of Theorem 5. In other words,

Proposition 7. For any two increasing sequences of integers km and Nm, if

lim
m→∞

1
Nm

∑

k<n≤km+Nm

ϕ(n′(Nm))
n′(Nm)

= 1

then
lim

m→∞
F(km,km+Nm](x) = g0(x)

holds for all x ∈ [0, 1].

Remark 8. The converse of Theorem 5 is not true. In fact, replacing in Equa-
tion (11) the right-hand side by the following more accurate expression

(1− ε)
( 1

N

∑

k<n≤k+N

(ϕ(n(t))
n(t)

)s)
− (1− ε)

( 1
N

∑

k<n≤k+N
n∈A(m,ε)

(ϕ(n(t))
n(t)

)s)
,

it may appear that simultaneously lim
m→∞

( 1
N

∑

k<n≤k+N
n∈A(m,ε)

(ϕ(n(t))
n(t)

)s)
= 0 and

lim
m→∞

#A(m, ε)
Nm

= δ with δ > 0.

Finally, Erdős proved the following theorem but we give here a more readable
proof for the convenience of the reader.

Theorem 9. For any increasing sequences of integers km and Nm such that

lim
m→∞

log log log km

Nm
= 0

one has
lim

m→∞
F(km,km+Nm](x) = g0(x)

for all x ∈ [0, 1].
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Proof. The basic fact is that for t = N the integers n′(t) such that k < n ≤ k + N
are pairwise relatively prime, because the interval (k, k + N ] cannot contain two
different integers divisible by the same prime number p > N . Set

M ′(k,N, t) :=
∏

k<n≤k+N

n′(t) (12)

but use notation M ′(t) for short and let x = x(k,N) be defined such that the
number of prime numbers p, N < p ≤ x, is equal to ω(M ′(t)), where t = N . From
the classical Mertens’ formula

∏

p≤y

(
1− 1

p

)
=

e−γ

log y

(
1 + O

( 1
log y

))

(see [14, p. 259, VII. 29] for example) we get

ϕ(M ′(t))
M ′(t)

≥
∏

N<p≤x

(
1− 1

p

)
≥ c1

log N

log x

for a constant c1 > 0. Therefore, for any increasing sequences km and Nm, if( log Nm

log x(km,Nm)

)1/Nm converges to 1 then the corresponding sequence
(ϕ(M ′(Nm))

M ′(Nm)

)1/Nm

also converges to 1. Having in mind the Landau inequalities

log 2 ≤ lim inf
x→∞

1
x

∑

p≤x

log p ≤ lim sup
x→∞

1
x

∑

p≤x

log p ≤ 2 log 2 (13)

(see [13, p. 83]) we conclude there exist suitable absolute positive constants c2, c3

such that
ec2x(k,N)−c3N ≤

∏

N<p≤x(k,N)

p

and, after considering the obvious inequalities
∏

N<p≤x(k,N)

p ≤ (k + 1)(k + 2) . . . (k + N) < (k + N)N ,

we obtain x(k,N) < c4N log(k + N) with c4 > 0.
Consequently, if the sequence

( log Nm

log(Nm log(km+Nm))

)1/Nm converges to 1, the same

is true for the sequence
( log Nm

log x(km,Nm)

)1/Nm , hence the corresponding sequence
(ϕ(M ′(t))

M ′(t)

)1/Nm also converges to 1 and so, F(km,km+Nm](x) converges to g0(x) for
all x ∈ [0, 1] by Theorem 5. The proof ends after noticing that

lim
m→∞

1
Nm

(
log

log Nm

log(Nm log(km + Nm))

)
= 0
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if, and only if,

lim
m→∞

log log log km

Nm
= 0.

!

Remark 10. Assume that P (t) | k, where P (t) =
∏

p≤t p and t = N . As in (8), we
introduce for divisors d of n the integers

d(t) =
∏

p | d
p≤t

p and d′(t) =
∏

p | d,
p>t

p.

Since d(t) |n, n = k + j with j ≤ N and d(t) | k, it follows that d(t) ≤ N . Hence, if
d > N one has d′(t) > 1. Therefore

∑

d>N
d | n

Φs(d) =
∑

d |n(t)

Φs(d)
∑

d′ | n′(t)
d′ &=1

Φs(d′)

=
(

ϕ(n(t))
n(t)

)s ((
ϕ(n′(t))

n′(t)

)s

− 1
)

leading to ∣∣∣∣
∑

d>N
d | n

Φs(d)
∣∣∣∣ ≤ 1−

(
ϕ(n′(t))

n′(t)

)s

.

Thus, for all s = 1, 2, 3, . . . one has

lim
m→∞

1
Nm

∑

km<n≤km+Nm

(
ϕ(n′(t))

n′(t)

)s

= 1

for a given subsequence of integers km and for Nm with P (Nm) | km. By Theorem 1,
we may conclude (1), but in fact Proposition 7 gives the same conclusion without
such a constraint on km.

Notice that due to ϕ(M ′(k,N,t))
M ′(k,N,t) ≤ ϕ(n′(t))

n′(t) for k < n ≤ k + N (with M ′(k,N, t) =∏
k<n≤k+N n′(t) as above in (12)) one obtains

Corollary 11. If the sequence ϕ(M ′(km,Nn,Nm))
M ′(km,Nn,Nm) converges to 1 for increasing se-

quences of integers km and Nm, then the sequence of distribution functions F(km,km+Nm]

converges to the distribution function g0.

To end this section we prove the following quantitative version of Theorem 1.
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Theorem 12. For any positive integers k, N and s,

1
N

∑

k<n≤k+N

∑

d>N
d | n

Φs(d) =
1
N

∑

k<n≤k+N

(ϕ(n)
n

)s
− 1

N

N∑

n=1

(ϕ(n)
n

)s

+ O
( (1 + log N)s

N

)
(14)

and the constant in the big O can be chosen equal to 2.

Proof. Let t = N . Notice that

∑

d>N
d | n

Φs(d) =
∑

d>N
d | n(t)

Φs(d) +
∑

d | n(t)n′(t)
d′(t)&=1

Φs(d)

and the second sum is equal to
(

ϕ(n(t)
n(t)

)s ((
ϕ(n′(t))

n′(t)

)s
− 1

)
. Summing from k + 1

to k + N gives

1
N

∑

k<n≤k+N

∑

d>N
d|n

Φs(d) =
1
N

∑

k<n≤k+N

∑

d>N
d|n(t)

Φs(d) +
1
N

∑

k<n≤k+N

(ϕ(n)
n

)s

− 1
N

∑

k<n≤k+N

(ϕ(n(t))
n(t)

)s
. (15)

Now, successively

1
N

∑

k<n≤k+N

∑

d |n(t)

Φs(d) =
1
N

∑

k<n≤k+N

(
ϕ(n(t))

n(t)

)s

=
1
N

∑

k<n≤k+N

∑

d≤N
d | n(t)

Φs(d) +
1
N

∑

k<n≤k+N

∑

d>N
d | n(t)

Φs(d)

=
N∑

d=1

Φs(d)
d

+
1
N

N∑

d=1

Φs(d)
({

k

d

}
−

{
k + N

d

})

+
1
N

∑

k<n≤k+N

∑

d>N
d | n(t)

Φs(d)

=
N∑

d=1

Φs(d)
d

+
1
N

∑

k<n≤k+N

∑

d>N
d | n(t)

Φs(d)+O
(

(1 + log N)s

N

)
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and after inserting

N∑

d=1

Φs(d)
d

=
N∑

n=1

(
ϕ(n)

n

)s

+ O
(

(1 + log)s

N

)
,

which can be obtained from (5) with k = 0, we get

1
N

∑

k<n≤k+N

∑

d>N
d|n(t)

Φs(d) =
1
N

∑

k<n≤k+N

(ϕ(n(t))
n(t)

)s
−

N∑

n=1

(ϕ(n)
n

)s

+O
( (1 + log N)s

N

)
.

Inserting this equality in (15) gives (14). Finally, notice that the error term comes
from the bound (6) used twice. !

4. Examples

To show that his assumption in Theorem 3 is optimal, Erdős gave the following
example.

Example 13. Take t large enough to write P (t) =
∏

p≤t p as the product of N
numbers A1, A2, . . . , AN such that

(i) Ai, i = 1, . . . , N , are relatively prime,

(ii) ϕ(Ai)
Ai

< 1
2 for i = 1, . . . , N ,

(iii) if p is the maximal prime in Ai, then for A′i = Ai/p one has ϕ(A′i)
A′i

> 1
2 .

Part (iii) implies ϕ(Ai)
Ai

> 1
4 and thus

(
1
4

)N

<
∏

p≤t

(
1− 1

p

)
=

ϕ(A1)
A1

. . .
ϕ(AN )

AN
<

(
1
2

)N

.

From that, applying (12), we find N < c1 log log t. By the Chinese remainder
theorem there exists k0 < A1 . . . AN such that k0 ≡ −i(mod Ai) for i = 1, . . . , N .
Put k = k0 + A1 . . . AN ; then

ec2t < P (t) = A1 . . . AN < k
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which implies t < c3 log k and log log t < c4 log log log k. Thus

log log log k

N
>

1
c1c4

log log t

log log t
.

Furthermore, for these k and N , the sequence of distribution functions F(k,k+N ](x)
does not converge to g0(x) due to (ii), that gives

1
N

∑

k<n≤k+N

ϕ(n)
n

<
1
2

<
1
N

N∑

n=1

ϕ(n)
n

=
6
π2

+ O
(

log N

N

)
.

Example 14. In Example 1, replace in (ii) the ratio 1/2 by 1/N and use the corre-
sponding definition of the An as above. Then, by the Chinese remainder theorem,
for every N we can find k such that An|k + n, n = 1, . . . , N , and consequently

1
N

∑

k<n≤k+N

(
ϕ(n)

n

)
≤ 1

N

N∑

n=1

(
ϕ(An)

An

)
≤ 1

N
.

Now select sequences of such integers k and N , but with a distribution function
g(x) such that limk,N→∞ F(k,k+N ](x) = g(x) a.e. in [0, 1]. With this construction
we obtain

∫ 1
0 xdg(x) = 0. Therefore, g(x) is the Heaviside distribution function

(jump 1 at x = 0).

In the next example we construct sequences of integers k, N , for which (1) holds
but limN→∞

log log log k
N = +∞.

Example 15. For any integer N ≥ 1, let x = x(N) be a real number, x > N ,
that will be chosen later but very large with respect to N (like x(N) = eeeN

for
example). Let k :=

∏
p≤x p, (where p are primes), consider the interval (k,N + k]

and define M∗ :=
∏

x<p≤x+y(x) p where y(x) is chosen such that M∗ has the same
number of prime divisors than the product M ′(k,N, t) (t = N) defined in (12).
Presently, if a prime number p verifies p > N and p|k + j with j ≤ N then p > x.
Thus, ϕ(M∗)

M∗ ≤ ϕ(M ′(t))
M ′(t) and to satisfy the assumption of Corollary 11 it suffices

that the ratio ϕ(M∗)
M∗ =

∏
x<p≤x+y(x)

(
1− 1

p

)
converges to 1 as x tends to infinity.

According to Mertens’ formula, this is equivalent to having

lim
x→∞

log
(
1 + y(x)

x

)

log x
= 0 . (16)
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The inequalities

M∗ ≤ M ′ =
∏

k<n≤k+N

n′(t) ≤ (k + N)N ≤ (2k)N

lead to
∑

x<p≤x+y(x) log p ≤ 2N
∑

p≤x log p and thus

∑

p≤x+y(x)

log p ≤ (2N + 1)
∑

p≤x

log p. (17)

Using (13) in (17), we see that for any ε > 0, there exists x0(ε) such that x ≥ x0(ε)
implies

(log 2− ε)(x + y(x)) ≤ (2N + 1)(2 log 2 + ε)x ,

so that y(x)
x ≤ cN for a positive constant c. Therefore, (16) holds and conse-

quently (1) holds also, if we chose x = x(N) ≥ eN . Since k(N) =
∏

p≤x(N) p ≥

ec1x(N), by taking x(N) = eeeN

the limit

lim
N→∞

log log log k

N
= +∞

holds as expected.

5. Davenport’s Approach

Let f : N → (0, 1] be a multiplicative function. Assume that 0 < f(n) ≤ 1 for
all n; it is useful to introduce for any x ∈ (0, 1) the increasing sequence ak(x) of
all integers a such that f(a) ≤ x but f(d) > x for every divisor d of a, d += a. In
the case f(n) = n/σ(n) (where σ(n) is the sum of divisors of n) such an integer a
is classically called primitive x-abundant number. In 1933, H. Davenport [1] using
this notion proved that the sequence n/σ(n) has a distribution function and found
an explicit construction of it. In addition he gave sufficient conditions for f to
have a distribution function. These conditions are easily verified for both sequences
n/σ(n) and ϕ(n)/n.

B.A. Venkov applied the same method in his paper [22] but for the sequence
of ratios ϕ(n)

n . Following him, we introduce, for convenience, the definition of x-
numbers (also called primitive x-numbers in [15]), that is to say integers a > 0 such
that ϕ(a)

a ≤ x and for every d | a but d += a one has ϕ(d)
d > x. We denote by A(x)

the set of all x-numbers ordered in increase magnitude i.e.,

a1(x) < a2(x) < a3(x) < · · ·
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From now on, the sequence p1, p2, p3, . . . denotes the increasing sequence of all prime
numbers.

Remark 16. From the above definitions we get the following properties.

(i) Every x-number is square-free.

(ii) Every square-free a is an x-number for some x. Concretely, if a = q1q2 . . . qm

with q1 < q2 < · · · < qm, all prime numbers, then a is x-number for every x

in the interval
[∏m

i=1

(
1− 1

qi

)
,
∏m−1

i=1

(
1− 1

qi

))
.

(iii) For every i < j we have ai(x) ! aj(x).

(iv) Let ps be the s-th prime number and choose x ∈
[
1− 1

ps
, 1

)
. Then a1(x) =

p1 = 2, a2(x) = p2 = 3, . . . , as(x) = ps. Furthermore, if x < 1 − 1
ps+1

then for every j > s, the integer aj(x) cannot be a prime and pi ! aj(x) for
i = 1, 2, . . . , s.

Proof. By (ii), prime numbers p1, p2, . . . , ps are x-numbers for x ≥ 1− 1
ps

. If
for some j we have p1 ≤ aj(x) ≤ ps and p | aj(x), p prime, then p ≤ ps and
aj(x) = p, since pq | aj(x) with q > 1 contradicts (iii).

Now, x < 1− 1
ps+1

implies that ps+1 and any pk > ps are not x-numbers, and
by (iii) pi ! aj(x) for i = 1, . . . , s. !

(v) If x ∈
[∏s

i=1

(
1− 1

pi

)
,
∏s−1

i=1

(
1− 1

pi

))
then a1(x) =

∏s
i=1 pi.

Proof. By contradiction. The integer a =
∏s

i=1 pi is an x-number, hence
a1(x) ≤ a. Assume that a1(x) < a and let a1(x) = pi1pi2 . . . pik with i1 <
i2 < · · · < ik, then k < s. By definition,

x ∈




k∏

j=1

(
1− 1

pij

)
,
k−1∏

i=1

(
1− 1

pij

)




hence
∏k

j=1

(
1− 1

pij

)
<

∏s−1
i=1

(
1− 1

pi

)
which implies k > s− 1, a contradic-

tion. !

(vi) For every positive integer n and every x ∈ (0, 1) we have

ϕ(n)
n

≤ x ⇐⇒ ∃ i ∈ N (ai(x)|n).

(vii) Assume that 0 < x < x′ < 1. Then for every x-number ai(x) there exists an
x′-number aj(x′) such that aj(x′)|ai(x). This property follows from (vi) and
the fact that for n = ai(x) one has ϕ(n)

n < x′.
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(viii) Let [b1, . . . , bj ] denote the least common multiple of the integers b1, . . . , bj ,
then the asymptotic density of the set

{n ∈ N; am(x)|n, a1(x) ! n, a2(x) ! n, . . . , am−1(x) ! n}

is given by

Am(x) =
1

am(x)
+

m−1∑

u=1

∑

1≤j1<j2<···<ju<m

(−1)u

[aj1(x), . . . , aju(x), am(x)]
.

(ix) Define
Bn(x) = {a ∈ N ; a |n and ∃ i ∈ N (a = ai(x))}. (18)

In this paper we have defined F(k,k+N ](x) = 1
N

∑
k<n≤k+N c[0,x)

(ϕ(n)
n

)
but in

this part, due to the definition of x-number, we use c[0,x] in place of c[0,x).
Applying (vi), we see that

F(k,k+N ](x) =
#{n ∈ (k, k + N ];Bn(x) += ∅}

N
. (19)

(x) As suggested by (vi) and (ix) we have by B.A. Venkov [22] (see also H. Dav-
enport [1]) the following theorem:

The asymptotic distribution function g0(x) of the sequence ϕ(n)
n ,

n = 1, 2, 3 . . . , can be expressed by

g0(x) =
∞∑

m=1

Am(x) . (20)

In fact, the right-hand side of (20) is the asymptotic density of all integers n
divisible by some x-number.

Below we prove that the asymptotic distribution function g(x) in (1) cannot be
arbitrary. A similar result was known by Erdős for asymptotic averages (see [7],
Theorem 8). The proof combines Lemma 4 and (20).

Theorem 17. Assume that limm→∞ F(km,km+Nm](x) = g(x) for all x ∈ [0, 1]. Then
g0(x) ≤ g(x) for all x ∈ [0, 1].
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Proof. Set

R(1)
(k,k+N ](x) :=

#{n ∈ (k, k + N ];Bn(x) += ∅,∃ a ∈ Bn(x)
(
∀ p (pprime and p|a ⇒ p ≤ N)

)
}

N
,

R(2)
(k,k+N ](x) :=

#{n ∈ (k, k + N ];Bn(x) += ∅,∀ a ∈ Bn(x)
(
∃ p (pprime, p|a and p > N)

)
}

N

where Bn(x) is given in (18). By (19),

F(k,k+N ](x) = R(1)
(k,k+N ](x) + R(2)

(k,k+N ](x). (21)

The monotonicity of R(1)
(k,k+N ](x) (x ∈ [0, 1]) follows from (vii) and then for the

distribution functions F(k,k+N ](x) and R(1)
(k,k+N ](x) we can apply Helly selection

principle to exhibit a subsequence of the intervals (km, km + Nm], still denoted
(km, km +Nm], such that for all x ∈ (0, 1) we have both limm→∞ F(km,km+Nm](x) =
g(x) and limm→∞R(1)

(km,km+Nm](x) = g(1)(x) for a suitable distribution function
g(1)(x). Therefore, we also have the limit

lim
m→∞

R(2)
(km,km+Nm](x) = g(2)(x) = g(x)− g(1)(x).

Now we prove the equality
g(1)(x) = g0(x) (22)

for all x, that is to say
g(x) = g0(x) + g(2)(x). (23)

For the sequence ϕ(n(t))
n(t) , n ∈ (k, k + N ], n(t) =

∏
p|np≤t

p, where t = N , define

F̃(k,k+N ](x) :=
#{n ∈ (k, k + N ]; ϕ(n(t))

n(t) ≤ x}
N

.

By property (vi), if ϕ(n(t))
n(t) ≤ x, then there exists x-number ai(x) such that

ai(x) |n(t). Since n(t) |n it follows that ai(x)|n and furthermore for all prime num-
bers p, p | ai(x) implies p ≤ t (= N). Reciprocally, if ai(x)|n and for all prime
numbers p, p | ai(x) implies p ≤ t, then ai(x) |n(t) and ϕ(n(t))

n(t) ≤ x. Thus

F̃(k,k+N ](x) = R(1)
(k,k+N ](x)
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and consequently, F̃(k,k+N ](x) → g(1)(x) too. By Erdős’ Lemma 4
∫ 1

0
xsdg(1)(x) =

∫ 1

0
xsdg0(x)

for s = 1, 2, 3 . . . and thus g(1)(x) = g0(x) for x ∈ (0, 1) a.e. !

Theorem 18. For every distribution function g(x) such that

lim
m→∞

F(km,km+Nm](x) = g(x)

a.e. on [0, 1] (with km, Nm →∞), there exists a constant c1 such that

∫ 1

0
xsdg(x) ≤

∫ 1

0
xsdg0(x) ≤ c1

log(s + 1)
, (24)

for every positive integer s.

Proof. The first inequality in (24) follows from Lemma 4, since
(

ϕ(n)
n

)s
≤

(
ϕ(n(t))

n(t)

)s
.

It also follows from Theorem 17, because
∫ 1
0 xsdg(x) ≤

∫ 1
0 xsdg0(x) is equivalent to∫ 1

0 xs−1g(x)dx ≥
∫ 1
0 xs−1g0(x)dx. The second inequality in (24) was proved by B.

A. Venkov [22, Theorem 3] in the form

lim
s→∞

(∫ 1

0
xsdg0(x)

)
log s = e−γ ,

where γ is the Euler’s constant. !

Theorem 19. For every α ∈ (0, 1) there exists a sequence of intervals (km, km+Nm]
(km, Nm →∞) such that F(km,km+Nm](x) converges to a distribution function g(x)
with g(x) = 1 for α ≤ x ≤ 1.

Proof. Let α ∈ (0, 1) be fixed and let ps be the greatest prime number pi verifying(
1− 1

pi

)
≤ α. The α-numbers being square free, we can select a subsequence of

them as1(α) < as2(α) < as3(α) < . . . pairwise co-prime. By the Chinese remainder
theorem, there exists a positive integer k such that k + i ≡ 0 (mod asi(α)) for
i = 1, . . . , N . Therefore

#{n ∈ (k, k + N ];Bn(α) += ∅} = N

and thus, by (19),
F(k,k+N ](α) = 1.

!
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Remark 20. If 1− 1
ps
≤ x, then readily 1 ≤ g0(x)+

∏s
i=1(1−p−1

i ) since the second
term of this sum is the density of natural numbers coprime to p1 · · · ps. So, inserting
g(x) from Theorem 19 and putting α = x gives

g0(x) ≥ 1−
∏

p≤ 1
1−x

(
1− 1

p

)
≥ 1− c2

log
(

1
1−x

)

for all x ∈ (0, 1). This inequality was first proved by B.A. Venkov [22]. He also
proved

(i) limx→1
x<1

(1− g0(x)) log 1
1−x = e−γ .

(ii) limx→0
x>0

x log log 1
g0(x) = e−γ .

(iii) Let p be a prime number. If 1− 1
p ≤ x, then

1
p

=
∞∑

n=0

(−1)n(p− 1)ng0

(
x
(
1− 1

p

)n)
.

(iv) The function g0(x) at every value x = ϕ(n)
n , n = 1, 2, 3, . . . , has an infinite left

derivative.

In fact, (i), (ii) and (iv) are another way to express results proved or suggested
by Erdős in [7] (Theorems 1 and 3).

The identity (21) can be rewritten as

F(k,k+N ](x) = F(0,N ](x) +
(
R(1)

(k,k+N ](x)− F(0,N ](x)
)

+ R(2)
(k,k+N ](x).

The equality (22) we have proved means

lim
k,N→∞

(
R(1)

(k,k+N ](x)− F(0,N ](x)
)

= 0 (25)

for every every x ∈ (0, 1). In the next theorem we give a quantitative form of (25).
To this aim, we introduce

KN (x) := {a ∈ N ; ∃m
(
a = am(x) and ∀ p (p prime and p | a ⇒ p ≤ N)

)
},

rN (x) :=

1
N

∞∑

m=1

(
−

{
N

am(x)

}
−

m−1∑

u=1

(−1)u
∑

1≤j1<···<ju<m

{
N

[aj1(x), . . . , aju(x), am(x)]

})
.
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and

R̃(k,k+N ](x) =

1
N

∞∑

m=1





∑

{ k
am(x)}+{ N

am(x)}≥1

1 +
m−1∑

u=1

(−1)u
∑

1≤j1<···<ju<m{
k

[aj1 (x),...,aju ,am(x)]

}
+

{
N

[aj1 (x),...,aju ,am(x)]

}
≥1

1




. (26)

Theorem 21. For every interval (k, k + N ] and every x ∈ (0, 1), we have

R(1)
(k,k+N ](x)− F(0,N ](x) =

1
N

∑

m≥1
am(x)∈KN (x)




∑

{ k
am(x)}+{ N

am(x)}≥1

1

+
m−1∑

u=1

(−1)u
∑

1≤j1<···<ju<m{
k

[aj1 (x),...,aju ,am(x)]

}
+

{
N

[aj1 (x),...,aju ,am(x)]

}
≥1

1




. (27)

Proof. With an obvious meaning one has

#{n ∈ (0, N ]; am(x)|n, a1(x) ! n, a2(x) ! n, . . . , am−1(x) ! n}

=
⌊

N

am(x)

⌋
−

∑

j<m

⌊
N

[aj(x), am(x)]

⌋
+

∑

i<j<m

⌊
N

[ai(x), aj(x), am(x)]

⌋
− · · · .

Moreover,

F(0,N ](x) =
1
N

( ∑

m, am(x)≤N

(⌊
N

am(x)

⌋
−

∑

j<m

⌊
N

[aj(x), am(x)]

⌋
+ . . .

))

=
∑

m, am(x)≤N

(
1

am(x)
−

∑

j<m

1
[aj(x), am(x)]

+ . . .

)

+
1
N

( ∑

m, am(x)≤N

(
−

{
N

am(x)

}
+

∑

j<m

{
N

[aj(x), am(x)]

}
− · · ·

))
.

The restriction am(x) ≤ N can be omitted, so that

F(0,N ](x) = g0(x) + rN (x). (28)
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Insert (28) in

NF(k,k+N ](x) = (k + N)F(0,k+N ](x)− kF(0,k](x)

to obtain

F(k,k+N ](x) = g0(x) +
1
N

(
(k + N)rk+N (x)− krk(x)

)

= g0(x) +
1
N

∞∑

m=1

((
−

{
k + N

am(x)

}
+

{
k

am(x)

})

−
∑

j<m

(
−

{
k + N

[aj(x), am(x)]

}
+

{
k

[aj(x), am(x)]

})
+ · · ·

)

and apply (3) to get

F(k,k+N ](x) = g0(x) + rN (x) + R̃(k,k+N ](x)

= F(0,N ](x) + R̃(k,k+N ](x),

where R̃(k,k+N ](x) has the form (26). Now, divide the summation defining R̃(k,k+N ](x)
into two parts, R̃(k,k+N ](x) = R̃(1)

(k,k+N ](x) + R̃(2)
(k,k+N ](x), where in R̃(1)

(k,k+N ](x) the
summation runs over the integers m such that every prime divisor of am(x) is less
or equal to N and in R̃(2)

(k,k+N ](x), the summation runs over the rest of integers,
i.e., over integers m such that there exists a prime divisor of am(x) strictly greater
than N . Using the fact that if there exists a prime divisor p of am(x), p > N and
am(x)|k + u for an integer u, 1 ≤ u ≤ N , then am(x) cannot divide the other inte-
gers of the form k +u′, 1 ≤ u′ ≤ N , and the same property holds for [ai(x), am(x)],
[ai(x), aj(x), am(x)] and so on. By applying Lemma 2,

R̃(2)
(k,k+N ](x)

=
N∑

u=1

∞∑

m=1
∃ p, p|am(x),p>N

am(x)|k+u

(
1−

∑

i<m
[ai(x),am(x)]|k+u

1 +
∑

l<i<m
[al(x),ai(x),am(x)]|k+u

1− · · ·
)

.

If am(x)|k + u, the value of
(

1−
∑

i<m
[ai(x),am(x)]|k+u

1 +
∑

l<i<m
[al(x),ai(x),am(x)]|k+u

1− · · ·
)

(29)



INTEGERS: 10 (2010) 727

is 0 or 1. More precisely, let ai1(x), ai2(x), . . . , ais(x) be all x-numbers ai(x) such
that i < m and ai(x) divides k + u. Then the number of i, i < m, for which
[ai(x), am(x)] | k + u is s; the number of tuples (j, i), with 1 ≤ j < i < m and
[aj(x), ai(x), am(x)] | k + u is s(s− 1)/2, etc. Thus, the expression (29) in this case
has the form (1−1)s and hence equals 0. If such air(x) do not exist, then the value
of (29) is 1. Thus R̃(2)

(k,k+N ](x) = R(2)
(k,k+N ](x) and R̃(1)

(k,k+N ](x) = R(1)
(k,k+N ](x) −

F(0,N ](x). !

Note that for R̃(1)
(k,k+N ](x) we can also apply Lemma 2 in the form:

{
k

d

}
+

{
N

d

}
≥ 1, if and only if there exists j such that

1 ≤ j ≤ Nd (= N − d&N/d') and d|k + j.

Remark 22. The following simple properties of F(k,k+N ](x), rN (x), R(1)
(k,k+N ](x)

and R(2)
(k,k+N (x) hold.

(i) If for x ∈ (0, 1) one has a1(x) > k+N then, by (19), Fk,k+N (x) = F(0,N ](x) =
0. Such a1(x) can be found by (v) in Remark 16.

(ii) A.S. Fajnlejb [10] (see also [15, p. 353 or English trans. p. 258]) proved that
F(0,N ](x) = g0(x) + O

(
1

log log N

)
uniformly in x ∈ [0, 1]. Hence, by apply-

ing (28) we see that rN (x) = O
(

1
log log N

)
.

(iii) The expression (23) implies, for any subsequences of integers k and N ,

lim
k,N→∞

F(k,k+N ](x) = g0(x) if and only if lim
k,N→∞

R(2)
(k,k+N ](x) = 0

for every x ∈ (0, 1) and so, by Erdős’ Theorem 9,

lim
k,N→∞

log log log k

N
= 0 implies lim

k,N→∞
R(2)

(k,k+N ](x) = 0.

(iv) If
∏

p≤N p | k (p are primes) then by Theorem 21, R(1)
(k,k+N ](x) = F(0,N ](x).

(v) If
∏

p≤N p | k′, then R(1)
(k+k′,k+k′+N (x) − F(0,N ](x) = R(1)

(k,k+N (x) − F(0,N ](x)
because in Equation (27) the fractional parts verify, in the first sum under the
main summation,

{
k + k′

am(x)

}
+

{
N

am(x)

}
=

{
k

am(x)

}
+

{
N

am(x)

}

and similarly for the other terms.
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(vi) Define K∗
N (x) := #{m ∈ N; am(x) ≤ N} and assume that k verifies

∏
p≤N p | k.

Since for am(x) ≤ N we have am(x)|k + am(x), then the inequality

R(2)
(k,k+N ](x) ≤ 1− K∗

N (x)
N

implies g(2)(x) ≤ 1 − d(x), where d(x) is the lower asymptotic density of
x-numbers and we know that R(2)

(k,k+N ](x) converges to g(2)(x).

6. Using the Schinzel–Wang Theorem

A. Schinzel and Y. Wang [18] proved that for every fixed integer N the (N − 1)-
dimensional sequence

(
ϕ(k + 2)
ϕ(k + 1)

,
ϕ(k + 3)
ϕ(k + 2)

, . . . ,
ϕ(k + N)

ϕ(k + N − 1)

)
, k = 1, 2, 3, . . . (30)

is dense in [0,∞)N−1. Thus, for any given N -tuple (α1,α2, . . . ,αN−1) in [0,∞)N−1

we can select an increasing sequence of integers km, such that the sequence of N -
tuples

(
ϕ(km + 2)
ϕ(km + 1)

,
ϕ(km + 3)
ϕ(km + 2)

, . . . ,
ϕ(km + N)

ϕ(km + N − 1)

)

converges to (α1,α2, . . . ,αN−1). Using the factorization

ϕ(k + n)
k + n

=
ϕ(k + n)

ϕ(k + n− 1)
ϕ(k + n− 1)
ϕ(k + n− 2)

· · · ϕ(k + 2)
ϕ(k + 1)

ϕ(k + 1)
k + 1

k + 1
k + n

we can chose integers km such that the sequence of ratios ϕ(km+1)
km+1 converges, say

to α, hence

lim
m→∞

(
ϕ(km + 1)

km + 1
,
ϕ(km + 2)

km + 2
, . . . ,

ϕ(km + N)
km + N

)

= (α,αα1,αα1α2, . . . ,αα1α2 . . .αN−1).

In the following we apply the above fact but for an infinite sequence αn, n =
1, 2, 3 . . . .
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Theorem 23. Let g̃(x) be an arbitrary distribution function. There exists α ∈ (0, 1]
and a sequence of intervals (km, km + Nm] such that the sequence of distribution
functions F(km,km+Nm](x) converges to a distribution function g(x) such that for
a.e. x ∈ [0, 1) one has

g(x) =






g̃
(

x
α

)
if x ∈ [0,α),

1 if x ∈ [α, 1].
(31)

Proof. For an arbitrary distribution function g̃(x) there exists a sequence αn, n =
1, 2, . . . in (0,∞) such that for every n = 1, 2, 3, . . . one has α1α2 . . .αn ∈ (0, 1) and
the sequence

α1α2 . . .αn, n = 1, 2, . . .

has asymptotic distribution function g̃(x). Now, using density of (30), for an arbi-
trary sequence ε(N) with ε(N) > 0 and ε(N) converging to 0, there exist integers
k = k(N) such that

∣∣∣∣
ϕ(k + 2)
ϕ(k + 1)

ϕ(k + 3)
ϕ(k + 2)

· · · ϕ(k + n)
ϕ(k + n− 1)

− α1α2 . . .αn−1

∣∣∣∣ < ε(N) (32)

for every n = 2, . . . , N and
∣∣∣∣
k + 1
k + N

− 1
∣∣∣∣ < ε(N). (33)

From the sequence of pairs (k(N), N), N = 1, 2, 3, . . . , select a subsequence (k′, N ′),
k′ = k(N ′), such that

ϕ(k′ + 1)
k′ + 1

→ α as N ′ →∞, (34)

for some α in (0, 1]. Then, from (32), (33) and (34) there exists a sequence of
positive real numbers ε′(N ′) that tends to 0 as N ′ go to infinity along a subsequence
of integers such that

∣∣∣∣
ϕ(k′ + n)

k′ + n
− αα1 . . .αn−1

∣∣∣∣ < ε′(N ′) (35)

for n = 1, . . . , N ′.
Now we use the following fact: let xn and yn in [0, 1) for n = 1, 2, . . . , N and

define on [0, 1] the step distribution functions

F (1)
N (x) :=

1
N

N∑

n=1

c[0,x)(xn), F (2)
N (x) :=

1
N

N∑

n=1

c[0,x)(yn).
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By the triangular inequality,

∫ 1

0

∣∣F (1)
N (x)− F (2)

N (x)
∣∣dx ≤ 1

N

N∑

n=1

∫ 1

0
|c[0,x)(xn)− c[0,x)(yn)|dx

=
1
N

N∑

n=1

|xn − yn| . (36)

Choose

xn =
ϕ(k′ + n)

k′ + n
and yn = αα1 . . .αn−1

for n = 1, . . . , N ′. By construction of yn, the sequence of distribution functions
F (2)

N ′ (x) converges to g̃
(

x
α

)
and from (35) and (36) the distribution function F (1)

N ′ (x),
that is to say F(k′,k′+N ′](x), converges along a subsequence of integers N ′ to g(x)
almost everywhere and so, g(x) satisfies (31). !

Remark 24. The value of α in (34) cannot be arbitrary. Applying (24) we see that
∫ α

0
xsdg̃

(x

α

)
= αs

∫ 1

0
xsdg̃(x) ≤

∫ 1

0
xsdg0(x),

for every positive integer s. Recall that for s = 1 we have the classical result
∫ 1

0
xdg0(x) =

6
π2

and more generally, we have (2). Consequently, with the distribution function
g̃(x) = x2 on [0, 1] and s = 1 we obtain α ≤ 9

π2 and the case where g̃(x) is the step
function with jump 1 at x = 1 gives the inequality α ≤ 6

π2 . It is worth comparing
with Theorem 19 in which α is arbitrary but g(x) is a special distribution function.
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