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Abstract
There are many representations of the Catalan numbers. In this article, we will
examine the ballot problem and extend it beyond the standard p-Catalan extension
to a left weighted extension. This extension reduces naturally to the p-Catalan
numbers (including the standard 2-Catalan numbers). We will then give a variety
of examples of the extension for other representations of the Catalan numbers to
demonstrate its general applicability.

1. Introduction

The Catalan numbers enumerate a wide variety of combinatorial structures. The
generalized p-Catalan numbers (where p = 2 reduces to the Catalan numbers) count
corresponding generalized structures in which some parameters have been adjusted.
Specifically, in structures such as the ballot problem, the p-Catalan version changes
the weight of the “opening” elements (the positive ballots) to p − 1, while the
“closing” elements (the negative ballots) remain the same. In this paper, we will
give a representation that allows the “opening” weights to be non-identical, and
count the number of structures which fit within a specific “weight set” that specifies
allowable weights (including multiplicity) for the opening elements. We will make
frequent references to Stanley’s list of Catalan representations from Enumerative
Combinatorics II [10, 11]. These can be found in Exercise 6.19, where each of the
representations discussed is given as a part of the exercise. Throughout, we will
simply refer to the part of the exercise, such as (r) for exercise 6.19.r, which details
the ballot problem.

2. The Ballot Problem

The ballot problem examines the number of ways a series of 2n votes can occur such
that a given candidate never trails and the voting ends in a tie. This is represented
by looking at arrangements of n copies each of 1 and −1 (which we will represent as
just −), whose partial sums are always non-negative, and whose total sum is zero,
as shown in Figure 1.

1The material presented here is from my dissertation [6].
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111−−− 11− 1−− 11−−1− 1− 11−− 1− 1− 1−

Figure 1: Ballot problem for n = 3

From this representation, it is easy to find natural bijections to most other rep-
resentations of the Catalan numbers. For example, the Dyck paths are given by
reading each 1 as a vertical step up and each − as a horizontal step to the right.

The formula for the Catalan numbers is well established to be Cn =
1

n + 1
(2n

n

)
[10].

A common extension to the Catalan numbers is the p-Catalan numbers [3, 4],
where p > 1. Under this extension, the usual Catalan numbers are considered the
2-Catalan numbers. For the ballot problem, instead of n positive votes of 1 and n
negative votes of −1, we have n positive votes of p− 1 and n(p− 1) negative votes
of -1. (We retain the partial sum and total sum requirements on the sequences.)
For example, for p = 3, n = 2, the three possible sequences are given by Figure 2.
Note that this extension is one-sided: that is, it changes the weights on one side

22−−−− 2− 2−−− 2−−2−−

Figure 2: 3-Catalan ballot problem for n = 2

(the increases) but not on the other (the decreases). The formula for the p-Catalan

numbers is Cn,p =
1

pn + 1

(
pn + 1

n

)
[3, 4].

2.1. One-Sided Generalization

Now consider the case where we allow the weights on the positive side to vary instead
of being equal. For example, fix a weight set B, as a multiset over N such that the
sum of all the elements in B is equal to n. Note that B can also be considered a
partition of n. Now we can ask how many arrangements exist with the elements
of B as our positive numbers and n copies of −1 that have non-negative partial
sums and a total sum of zero. Restricting the multi-set B to {1n} returns us to the
Catalan number case detailed above, and a weight set of {(p−1)n} is the p-Catalan
number case.

Theorem 1. Assume B = {1a1 , 2a2 , . . . , nan}, with
∑

ai = m,
∑

iai = n. The
number of valid ballot arrangements with weighted positive votes given by the mul-
tiset B over N is given by

( n+1+m
n+1,a1,a2,...,an

)
1

n+1+m .

Proof. Define W (B) to be the set of words created by taking n + 1 copies of −1
and the elements of B, and arranging them in any order. There are

( n+m+1
n+1,a1,a2,...,an

)

elements of W (B). Now, we set up an equivalence relation among these words, such
that any two words are equivalent if one is the cyclic shift of the other.
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Given any v = (v1v2 . . . vn+m+1) ∈ W (B), will we find a member of its equivalence
class which has non-negative partial sums excepting the final element (which must
be −1). Let z =min{i :

∑i
j=1 vj < 0 and

∑k
j=i+1 vj > 0 for all k > i}. The set

consists of all points where the partial sum of the letters in the word to the left is
negative and all partial sums of letters to the right are non-negative, and vz is the
first such point. Thus, the elements after vz form the maximal “tail” which has
non-negative partial sums. If z = n + m + 1, let v′ = v. Otherwise, we move the
tail to the front of the sequence, forming v′ = (vz vz+1 . . . vm+n+1 v1 . . . vz−1). Now,
partial sums of v′ will be non-negative up to v′m+n, and the last element of v′ will
be −1. Note the following two properties:

• v′ is in the same equivalence class as v: Since v′ is simply a cyclic shift of v
by z, they are in the same equivalence class.

• v′ is unique for each equivalence class: Assume, to the contrary, that we have
two elements v and w that belong to the same equivalence class and v′ #= w′.
Let x be the cyclic shift of v′ to obtain w′, i.e., w′ = (vx vx+1 . . . vm+n+1 v1

. . . vx−1). Now, by our formation of v′, we know that
∑x−1

i=1 vi is non-negative
and we know that

∑m+n+1
i=1 wi = −1. But this means that

∑m+n+1−x
j=1 wj =

∑m+n+1
i=x+1 vi < 0, which violates the restrictions on w′, giving us a contradic-

tion.

If we remove the final −1 from v′ we see that we have a unique element of B.
Since there are n + m + 1 numbers in each sequence, there are n + m + 1 members
of each equivalence class, so we have that the number of valid arrangements of B is
( n+m+1
n+1,a1,a2,...,an

) 1
n + m + 1

.

The sequences v′ that we found and the equivalence relation on the v is a version
of Lukasiewicz words, as seen in Stanley [10, Example 6.6.7].

We refer to this generalization as the “left weighted Catalan numbers” since we
are only allowing the positive weights to vary, and fixing the negative weights at
negative one. (The term “Left” comes from the parenthesis representation of the
Catalan numbers, where the left parentheses were weighted; this was the original
representation under investigation for use in the Inversion problem given later.)

Central to this problem is the weight set B, which determines the structure we
are looking at, and also acts as a partition of [n] = {1, 2, . . . , n}. Given a parti-
tion, B, we get the formula in Theorem 1 for the number of ballot sequences we
have for that partition. If we sum this over all partitions B of [n], we get the
Large Schröder numbers. We can see this by considering Schröder’s second prob-
lem, stated by Stanley as plane trees with n leaves and no vertex of degree one [10,
Example 6.2.8] and mapping these trees to the ballot structure we have given (see the
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bijection between (r) and (d) later in this article.) Thus, we have found an inter-
mediate step between the Catalan numbers (and the p-Catalan numbers), which we
are generalizing, and the Large Schröder numbers, which is the sum of our formula
over all B.

3. Other Representations

In this section, we extend other representations of the Catalan numbers, based on
a fixed weight set B.

The representations are organized by structure type. For each Catalan version,
we will list the base 2-Catalan case, then give a description of the left weighted
Catalan case. For most items, we will just give a sketch of the bijection, rather
than a full proof. Finally, we will show five of the structures from each Catalan
representation that belong to the weight set B = {11, 22} . We start with a complete
list of the weighted ballots for this B, shown in Figure 3; the first five (bolded)
elements are those we will be repeating for each subsequent Catalan example.

Where we refer to a proof for the standard Catalan case, we are referring to the
one implied or given by Stanley, except as noted otherwise. In our extension, we will
use the following notation: B = {1a1 , 2a2 , . . . , nan} is our weight set, m =

∑n
i=1 ai

is the cardinality of B and n =
∑n

i=1 iai. As previously mentioned, B also functions
as a partition of [n].

221−−−−− 2− 2−−1−− 2−−21−−− 2−−1− 2−−
1− 2− 2−−− 12−−2−−− 1− 22−−−− 12−−− 2−−
12− 2−−−− 122−−−−− 2−−12−−− 2−−2−−1−
2−−2− 1−− 2− 1−−2−− 2− 1− 2−−− 2− 12−−−−
2− 2−−− 1− 2− 2− 1−−− 2− 21−−−− 21−−− 2−−
21−−2−−− 21− 2−−−− 212−−−−− 22−−−−1−
22−−− 1−− 22−−1−−− 22− 1−−−− 1− 2−−2−−

Figure 3: Weighted ballots (Catalan case (r)) B = {11, 22}

4. Trees

(c): The set of binary trees with n nodes.

Generalization (Figure 4): We look at binary trees with n nodes, such that the tree
is partitioned into “straight line” groups of nodes, such that the number of nodes
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in the groups is given by B (i.e., there are ai groups of size i, for all i). To make a
straight line group of nodes, take a node, called the base, and note whether it is a
left or right child. Then take the same child of the base, and that child of the child,
etc., until we have i nodes in a straight line. (Define the root of the tree to be a
left child.) This reduces to the Catalan case where each node is its own group, i.e.,
we always use the trivial partition of singletons.

Figure 4: Weighted Calatan examples for (c)

We can create a bijection to (r) by starting with the root, counting the number
of nodes in its straight line group as the first positive number. Then we examine the
children of this group, in pre-order, and record a − for each missing child. Once a
new group is found, repeat the process on the new group. (As usual, omit the final
−1). This will give us a sequence of positive weights counting the nodes in groups,
and the list of −1 can never exceed the number of nodes, since each node only adds
one additional possibility for -1 (until the final missing child, which we omit).

(d): Plane trees with n internal nodes, all of degree 2. (Each node has 0 or 2
children.) In the p-Catalan case, this becomes plane trees with n internal nodes, all
of degree p. (Each node has 0 or p children.)

Generalization (Figure 5): Trees of type (n + 1, 0, a1, a2, . . . an). (Recall that
this means that the tree has n + 1 leaves, 0 nodes with 1 child, a1 nodes with two
children etc.)

Figure 5: Weighted Calatan examples for (d)
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Bijects to (r): Each positive ballot corresponds to an internal node in the tree
of degree equal to the ballot’s weight plus one, and each negative ballot (plus an
additional one) corresponds to a leaf. The positive ballots increase the number of
active branches of the tree by their weight, and the negative ballots decrease the
number of them by one each. The tree is read in pre-order (parent before leaves)
ordering to recover the ballot sequence.

(e): The set of plane trees with n + 1 nodes.

Generalization (Figure 6): we look at plane trees with n+1 nodes with a partition
on the edges of the tree such that the sizes of the blocks are given by B and in each
block, all but the topmost edge connects to the leftmost child of its parent. This
reduces to the Catalan case where each edge is its own block, i.e., we always use
the trivial partition of singletons.

In the Catalan case, the bijection to (r) is otained by reading the tree in pre-
order, and treat each step downward as a 1 and each step back up as a −1. In the
generalized case, we do the same, but read the entire block of a partition as a single
positive number.

Figure 6: Weighted Calatan examples for (e)

(f): Planted trivalent trees with 2n + 2 nodes.

Generalization (Figure 7): Planted trees with with internal node valences given
by v2 = 0 and for i > 2, vi is the number of i− 2 in B (and the root has valence 1).
In the Catalan case, the internal valences given are of size 3, corresponding to the
n copies of 1 in B.

As in the Catalan case, we find a bijection to (d) by cutting the root to get a
tree of type (n + 1, 0, v3, . . . ).
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Figure 7: Weighted Calatan examples for (f)

(g): Plane trees with n + 2 nodes such that the rightmost path of each subtree
of the root has even length.

Generalization (Figure 8): Plane trees as in (e) (with an extra group of size
1 added, to make n + 2 nodes) with the restrictions that the rightmost path of
any subtree of the root (counting the edges from the root of the subtree along its
rightmost path) is required to be of even length, and the leftmost child of the root
will be its own block in the partition.

Figure 8: Weighted Calatan examples for (g)

The bijection to (e) is the same as in the Catalan case: Examine the tree and
find the rightmost subtree of the root which has an odd rightmost path. Insert a
new node as the leftmost child of the root and move that subtree and every subtree
to its left to be a child of this new node. (For the partition, treat this new node
as a singleton.) Then the rightmost path of the subtree of this new edge will be
of even length. The rest of the features of (e) will be maintained. If there is no
such subtree, insert the new edge as the leftmost subtree of the root. This process
is reversible.
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5. Lattice Sequences

In standard terminology, a lattice path is a path traced out on a grid of integer
coordinates and each step is of unit length. For example, one definition of the Dyck
paths is that they are lattice paths traced out by steps (0, 1) and (1, 0) from (0, 0)
to (n, n) and never fall below the diagonal x = y. In this section, we use the term
sequence, as opposed to path, to indicate that we want to distinguish the orderings
of the sizes of the steps, and not just the paths they trace out. In other words,
we treat the sequence (0, 2), (0, 1) as distinct from (0, 1), (0, 2), even though they
trace out the same path. When drawing these sequences, it is helpful to think of
each step as an edge, and having nodes at the end points of each step. Thus the
steps given would result in two graphs of a line segment from (0, 0) to (0, 3), but
the former would have a node at (0, 2) and the latter at (0, 1), both marking the
end of the first step of their respective graphs.

(h): Lattice paths from (0, 0) to (n, n) with steps (0, 1) or (1, 0), never rising
above the line y = x. In the p-Catalan case, we instead take the steps to be (0, p−1)
or (1, 0).

Generalization (Figure 9): Lattice sequences from (0, 0) to (n, n) with steps (0, k)
or (1, 0), never rising above the line y = x, where the multiset of the values for k is
given by B.

Figure 9: Weighted Calatan examples for (h)

As in the Catalan case, we form a bijection with (r) by reading each horizontal
step of size k as the positive integer k, and each vertical step as −1. The restriction
on the diagonal corresponds to the non-negativity of the sequences for (r).

(i): Paths from (0, 0) to (2n, 0) with steps (1,−1) and (1, 1), never falling below
the x-axis.

Generalization (Figure 10): Sequences from (0, 0) to (2n, 0) with steps (1,−1)
and (k, k), never falling below the x-axis, where the multiset of the values for k is
given by B. As in the Catalan case, this is a rotation and rescaling of (h).

Figure 10: Weighted Calatan examples for (i)
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(j): Paths from (0, 0) to (2(n + 1), 0) with steps (1,−1) and (1, 1), never falling
below the x-axis, such that any maximal sequence of consecutive (1,−1) steps end-
ing on the x-axis has odd length.

Generalization (Figure 11): Paths from (0, 0) to (2(n+1), 0) with steps (1,−1) and
(k, k), never falling below the x-axis, such that any maximal sequence of consecutive
(1,−1) steps ending on the x-axis has odd length, where the multiset of the values
for k is given by B with an additional element of size 1, which will always be the
first step.

Figure 11: Weighted Calatan examples for (j)

As in the Catalan case, take any sequence from (i) and locate the rightmost
descent of even length onto the x-axis. Insert a (1,−1) step into this descent and a
(1, 1) step at the beginning of the sequence. If there is no such descent, just insert a
(1, 1)(1,−1) sequence at the beginning. This will raise the rightmost even descent
to an odd one, and all previous descents (even or not) will no longer touch the
x-axis. The inverse bijection is to remove the first (1, 1) from a given sequence and
the final (1,−1) from the leftmost descent that touches the x-axis.

(k): Sequences from (0, 0) to (2(n + 1), 0) with steps (1,−1) and (1, 1), never
falling below the x-axis, with no peaks at height 2.

Generalization (Figure 12): The same sequences but with steps (1,−1) and (k, k)
where the multiset of the values for k are given by B plus an additional element of
size 1.

Figure 12: Weighted Calatan examples for (k)

The bijection for this follows that of the Catalan case [5]. Start with a sequence
from (i), and add a single up and down step to the front. For each maximal sub-
sequence of our sequence containing no peaks at height one, raise the subsequence
by one by adding an up step at the front and a down step at the back. Now, we
have added i pairs of steps, 1 for each such maximal subsequence. However, each
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such subsequence must be preceded by a peak of height one. Remove the peak of
height one immediately preceding each such subsequence to remove i pairs of steps,
leaving us with a sequence with n + 1 pairs of steps and no peaks at height 2.

(l): Noncrossing pairs of sequences of n + 1 steps (1, 0) and (0, 1), which only
intersect at start and end.

Generalization (Figure 13): Pairs of sequences of length n+1, such that the upper
sequence has steps of (0, k) and (1, 0), the lower sequence has steps (k, 0) and (0, 1)
and starts with an additional (1, 0) step. The sequences only join at beginning and
end, and the values of k (other than the initial step of the bottom sequence) are
given by B.

Figure 13: Weighted Calatan examples for (l)

This is in bijection to (r). Read each path, alternating from the upper to the
lower, and record (0, k) and (k, 0) steps as the value k, and (1,0) and (0,1) steps as
−1, ignoring the first (1, 0) of the lower path and the final step. A switch between
paths occurs whenever the total length of the path read so far (without the first step
on the lower path) exceeds the total length of the other path read so far. The partial
sums of the sequence in (r) plus one will correspond to the separation between the
paths in grid steps. Until the final element, the separation will always be at least
one, corresponding to a non-negative partial sum.

6. Partitions

Several of these representations distill down to pairs of partitions where the sec-
ond partition has block sizes given by B and the first partition is some less refined
partition. These are intervals on the poset of partitions of [n], and the set of such
intervals is the set of intervals on the partition poset of [n] whose lower bounds have
block sizes given by B. Stanley [9] proved that the labels of the maximal chains



INTEGERS: 10 (2010) 781

of non-crossing partitions with k blocks of size n + 1 are the parking functions of
length n, so each interval is actually a set of subsequences of parking functions
where the subsequences have the same starting and ending point in the poset, and
the lower point of the intervals is being determined by the block sizes in B.

(r*): We’ve already discussed (r) at length above, but we wish to note a slight
reinterpretation of it here. If we replace the +1 elements with left parentheses,
and the −1 elements with right parentheses, we get a set of valid parenthesiza-
tions, where each closing parenthesis matches to exactly one open parenthesis that
precedes it and visa versa.

The +1/−1 representation of (r) corresponds to a non-nesting partition of 2n
into blocks of size two, which can be seen by connecting the first +1 with the first
−1, the second pair, the third pair, etc., up to the nth pair. However, the paren-
thesis representation (referred to as (r*) henceforth) corresponds to non-crossing
partitions, since an open parenthesis matches to a close parenthesis such that the
two enclose all intermediate parentheses. This correspondence of non-crossing and
non-nesting is well known; these two representations are simply an easy way to
demonstrate their equivalence for the rest of the representations.

Generalization (Figure 14): Instead of only having open and close parentheses,
use weighted left parentheses that match up to multiple right parentheses. This
gives non-crossing partitions of [2n] such that B gives the block sizes. We represent
a weighted left parenthesis by the weight, such as 31)))) being an example of an
opening parenthesis set of weights 3 and 1.

221))))) 2)2))1)) 2))21))) 2))1)2)) 1)2)2)))

Figure 14: Weighted Calatan examples for (r*)

(o): In Stanley, this is described as non-intersecting arcs joining n pairs of points
in the plane. Our preferred version of this representation is to think of it as parti-
tions of 2n into blocks of size 2.

Generalization (Figure 15): Non-crossing partitions of n + m where the elements
of B correspond to one less than the sizes of the blocks in the partition. In terms of
the original representation, this would entail nonintersecting arcs joining 2n points
on a line where there are groups of arcs with the same left point (but no arcs with
the same right point) and the group sizes would be given by B.

This bijects with (r*) as noted above.
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{1, 7, 8}{2, 5, 6}{3, 4} {1, 2, 8}{3, 4, 5}{6, 7} {1, 2, 3}{4, 7, 8}{5, 6}
{1, 2, 3}{4, 5}{6, 7, 8} {1, 2}{3, 4, 8}{5, 6, 7}

Figure 15: Weighted Calatan examples for (o)

(n): n nonintersecting chords joining 2n points on a circle.

Generalization (Figure 16): Nonintersecting chord-groups, joining 2n points on
the circumference of a circle with the following resctrictions:

• The sizes of the chord groups are given by B

• “Opening” points are the first point of their group when moving clockwise
from angle 0, and the opening point is connected to all other points in its
group.

• Points other than opening points have only a single chord, which joins them
to the opening point of their chord group.

Figure 16 shows this version.

Figure 16: Weighted Calatan examples for (n)

An alternate version of this is to use non-intersecting “chord segments,” where
each segment is ai chords in a sequence, and the chords join points evenly spaced
around the circle. Here the positions of the matching opening and closing paren-
theses gives the points connected by the chords, and the weight of the open-
ing chord gives the number of chords connected. See K-Catalan Structures at
http://math.haifa.ac.il/toufik/enum2005.html (an extended version of [2])
for the p-Catalan case of this.

This has a trivial bijection to (r*), using our notion of opening and closing
parentheses. Each opening point is a left parenthesis of a given weight, and each
point it is connected to are its closing parentheses, read around the circle starting
from angle 0. The non-crossing of the chords corresponds to the proper matching
of the parentheses in nested fashion. A similarly trivial bijection can be seen by
ennumerating the 2n points, starting with 1 at angle 0, and then placing chords
according to the partitions in (o).
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(p): Ways of drawing n+1 points on a line with arcs connecting them such that
the arcs do not pass below the line, the arcs are noncrossing, all the arcs at a given
node exit in the same direction (left or right), and the graph thus formed is a tree.

Generalization (Figure 17): As above, except that we add groupings to the arcs,
such that the sizes of the groups are given by B, and the arcs of a group are not
separated by an arc from a different group.

Figure 17: Weighted Calatan examples for (p)

Bijection to (n)2: Cut the circle at angle 0 for (n) and lay it out as a line,
starting with the chord coming out of the point at angle 0.

(a): Partitions of an (n + 2)-gon into triangles.

Generalization (Figure 18): Partitions of an (n + 2)-gon into polygons whose
number of sides are given by ai + 2 where ai ∈ B.

Following the standard bijection for the Catalan numbers to (d), we fix an edge
as the base of the polygon, and fix a root of a tree on the midpoint of this edge.
(In Figure 18 we have fixed the top edge as the base.) For a given partition of
the (n + 2)-gon, we place a node on the midpoint of each side of the polygon,
then connect each node to the root with a tree edge. Recursively repeat for each
newly connected edge. This makes the root have degree equal to the number of
sides in the polygon containing the base in our partition minus one. The degree of
each node will correspond to an element of B plus one, since after taking the base
edge out of any polygon, it has that many remaining sides to form the children of
its subtree’s root node. Shapiro and Sulanke [7] showed this relationship over all
partitions; this is the case specific to a chosen partition. In Figure 18, the first row
shows the example polygon partitions from the set. The second row demonstrates
the bijection, by superimposing the corresponding tree over the polygon partition.

2This simple bijection, suggested by the referee, replaces a more complex one in the original
submission.
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Figure 18: Weighted Calatan examples for (a)

(pp): Noncrossing partitions of [n].

{1}{2, 3}{4, 5} ⊂ {1, 2, 3, 4, 5} {1, 5}{2, 3}{4} ⊂ {1, 5}{2, 3}{4}
{1, 2}{3}{4, 5} ⊂ {1, 2}{3, 4, 5} {1, 2}{3}{4, 5} ⊂ {1, 2}{3}{4, 5}
{1}{2, 5}{3, 4} ⊂ {1}{2, 5}{3, 4}

Figure 19: Weighted Calatan examples for (pp)

Generalization (Figure 19): A pair of partitions of [n], A and B, such that A is
non-crossing, the blocks of B are of sizes given by B, B is a subpartition of A, and
inside any block of A, the elements of any block of B are continuous, i.e., there do
not appear in any block of A subsequences abc where a and c are members of the
same block of B and b is not. In the Catalan case, our B is the trivial partition of
singletons.

Bijection to (r*): Let us take the example of 12459 − 3 − 678 for A with B
being 124 − 3 − 5 − 6 − 78 − 9. The blocks in A are groups of closing parenthe-
ses. Each partition is a group of such parentheses whose opening parentheses are
consecutive. Thus, our example A tells us that the closing parentheses 1, 2, 4, 5, 9
have their opening parentheses grouped together, the opening parenthesis for the
third closing parenthesis is isolated from other opening parentheses, and the open-
ing parentheses for the closing parentheses 6, 7, 8 are consecutive as well. This tells
us that we have ∗))∗)))∗)))) for our parenthesization. The B partitions are the
closing parentheses for a single weighted opening parenthesis. Therefore, we know
that closing parentheses 1, 2, 4 all share the same opening parenthesis. Thus, our
complete parenthesization is 311))1)))12)))).
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(qq): A partition A of [n] such that if the numbers are arranged in order around
a circle, then the convex hulls of the blocks of a given partition are pairwise disjoint.

Generalization : Pairs of partitions A and B of [n] such that, if the numbers are
arranged in order around a circle then the convex hulls of the blocks of a given
partition are pairwise disjoint, B is a subpartition of A, and within any block of A,
the subblocks of B consist of consecutive elements.

These are the same partitions as (pp). The circle arrangement is another way
to specify that the partitions are noncrossing.

(rr): Noncrossing Murasaki diagrams with n vertical bars.

Generalization (Figure 20): Noncrossing Murasaki diagrams with n vertical bars
such that an additional grouping of the bars is accomplished by noncrossing under-
lines which group the bars into discrete groups whose sizes are given by B and the
underlines are subsets of the overlines. In the Catalan case, each bar is just its own
underline group.

This is another way to represent (pp).

Figure 20: Weighted Calatan examples for (rr)

(uu): Nonnesting partitions of [n].

Generalization (Figure 21): As (pp), except that the partitions are nonnesting
instead of noncrossing.

{1, 4}{2, 5}{3} ⊂ {1, 4}{2, 5}{3} {1, 2}{3, 4}{5} ⊂ {1, 2}{3, 4}{5}
{1, 2}{3, 5}{4} ⊂ {1, 2, 3, 5}{4} {1, 2}{3}{4, 5} ⊂ {1, 2, 3, 4, 5}
{1}{2, 3}{4, 5} ⊂ {1, 2, 3}{4, 5}

Figure 21: Weighted Calatan examples for (uu)

7. Permutations

(cc): Permutations of the multiset {12, 22, . . . , n2} such that the first occurrences
of each number appear in increasing order, and there is no subsequence of the form
abab.
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Generalization (Figure 22): Permutations of the multisets {1b1+1, 2b2+1, . . . , kbk+1}
where the bi are any arrangement of the elements of B, the first occurrences of each
number appear in increasing order, and there is no subsquence of the form abab.

(1, 2, 3, 3, 2, 2, 1, 1) (1, 1, 2, 2, 2, 3, 3, 1) (1, 1, 1, 2, 3, 3, 2, 2)

(1, 1, 1, 2, 2, 3, 3, 3) (1, 1, 2, 2, 3, 3, 3, 2)

Figure 22: Weighted Calatan examples for (cc)

This representation is in bijection to (r*), with the first occurrence of each
number being an open parenthesis, and the later occurrences being the closing
parentheses. The weight of the open parenthesis is given by the bi in the multiset,
and the subsequence restriction corresponds to the noncrossing condition on the
parenthesis groups.

(dd): Permutations [2n] such that the odd numbers appear in increasing order,
the even numbers appear in increasing order, and odd a appear before a + 1.

Generalization (Figure 23): Permutations of the multisets {1, 2b1 , 3, 4b2 , . . . , (2m−
1), (2m)bm} where the bi are any arrangement of the elements of B, with the re-
strictions above.

(1, 3, 5, 2, 2, 4, 4, 6) (1, 2, 3, 2, 4, 5, 4, 6) (1, 2, 2, 3, 5, 4, 4, 6)

(1, 2, 2, 3, 4, 5, 6, 6) (1, 2, 3, 4, 5, 4, 6, 6)

Figure 23: Weighted Calatan examples for (dd)

We biject this to (r) by reading each odd number a as a positive integer (whose
size is the bi from the weight of a + 1 in the multiset), and each a + 1 as a −1.
The restrictions on order of appearance correspond to the partial sum restrictions
of (r).

(ee): 321-avoiding permutations of [n].

Generalization : 321 avoiding permutations of [n], such that the elements of the
permutation are partitioned into contiguous blocks whose sizes are given by B.

Bijection: These are the same permutations as (jj) (see Figure 26 after (jj)); the
restrictions on the blocks and the 321 avoidance matches the restrictions on them
in (jj) without referencing the queues.
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(gg): Permutations w of [2n] with n cycles of length two such that the product
(1, 2, . . . , 2n)w has n cycles.

Generalization (Figure 24): Permutations w of [m + n] with cycle lengths given
by B such that the product (1, 2, . . . , n + m)w has n + 1 cycles.

(1, 8, 7)(2, 6, 5)(3, 4) (1, 8, 2)(3, 5, 4)(6, 7) (1, 3, 2)(4, 8, 7)(5, 6)
(1, 3, 2)(4, 5)(6, 8, 7) (1, 2)(3, 8, 4)(5, 7, 6)

Figure 24: Weighted Calatan examples for (gg)

Bijection with (r*): Take a valid parentheses arrangement, e.g., 31)2)2)))))) and
label each parenthesis from 1 to m + n in order of appearance, such as

3112)324)526)7)8)9)10)11)12.

Then for each open parenthesis, write down the parentheses in that group in de-
creasing order of appearance as a cycle, such as

(12, 11, 10, 1)(9, 5, 4)(8, 7, 6)(3, 2).

This gives a permutation of cycles with appropriate sizes according to B (adding
one to each element of B). Now, our product is

(1, 2, . . . , n + m)(12, 11, 10, 1)(9, 5, 4)(8, 7, 6)(3, 2),

which is equivalent to (1, 3, 9)(2)(4)(5, 8)(6)(7)(10)(11)(12). (In Figure 24, I follow
the usual convention of rotating each cycle so the smallest element is in front, which
allows one to see the opening parenthesis first, followed by its closing parentheses
in reverse order.)

Now, if a parenthesis ck of one group precedes the first parenthesis of a different
group, d1, then the cycle in the product containing ck will have the sequence ck, dω

where dω is the final parenthesis of the group that d1 starts. In our example, )3
precedes 24, so we see that 3, 9 is in our product.

Furthermore, if we have the last parenthesis cω of a group followed by some
parenthesis di of a different group, then the cycle in the containing cω will have the
sequence cω, di−1, where di−1 will be dω if di is the first parenthesis of its group
(aka, d1). In our example, )8 is the last parenthesis of its group, and it is followed
by )9, from a different group, which means that our product will have 8, 5.

Finally, any parenthesis cj followed by cj+1 from its own group will form a
singleton in the product (as we will have cj , cj+1 in the first part of the product).
This happens seven times in our example.

Using these facts, we can label groups of parentheses by level, so that the groups
which are completely contiguous are on level 0, groups that only contain groups
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of level 0 are on level 1, groups that only contain groups of level less than i are
on level i. In our example, we have the groups (3, 2) and (8, 7, 6) on level 0, group
(9, 5, 4) on level 1, and group (12, 11, 10, 1) on level 2.

Then we see that a level 0 group with opening parenthesis of weight f will become
f singletons in the final product (every element but the last will become a singleton),
and the largest element of the level 0 group will be linked into the preceding and
following groups. In our example, we get 2, 6, 7 as singletons, and the elements
3, 8 get linked into the preceding and following groups. In the case of the 3, it is
preceded by the group containing 1 and followed by the group containing 9, whereas
the 8 is preceded and followed by the same group, the one containing the 5.

For a level 1 group of weight g, we see that the elements preceding the level 0
groups that it contains will be linked in a cycle with the final elements of those
level 0 groups, and the final element will be linked into the preceding and following
groups, and the other elements will become single cycles. If such a group contains
m level 0 groups of weights c1 . . . cm, then the entirety will contain

∑m
1 ci singletons

from the level 0 groups, g−m singletons from the level 1 group and m groups that
are either links into the level 0 groups or singletons (depending on how many of the
level 0 groups follow a different level 0 group instead of an element of our level 1
group). The final element of this group will link into the preceding and following
groups, but the rest of the elements give us a number of cycles in the final product
exactly equal to the weights of the opening parentheses contained within. In our
example, our level 1 group is (9, 5, 4) and it contains one level 0 group. Thus, the
element preceding that group, 5 gets linked into the final element of that group, 8.
The final element of our level one group, 9 gets linked into the preceding group,
with the 3, and the following group, with the 1.

We can continue by induction on groups of higher level, seeing that each time,
we will get a number of cycles in the final product equal to the sums of the weights
of the opening parentheses of the contained groups, with one element linking to
outside the group.

When we reach the highest level, that final link out completes a cycle, giving us
the required n + 1 cycles in the product.

Details of the inverse map are omitted other than to note that the requirement for
the number of cycles in the product enforces the non-crossing nature of the partition
and the ordering of the pre-product cycles, and the sizes of the pre-product cycles
gives us groups of the appropriate weight.

(ii): Permutations of [n] that can be stack sorted.

Generalization (Figure 25): Permutations of [n] with the elements of the permu-
tation partitioned into contiguous blocks whose sizes are given by B, such that the
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partition is stack sortable if the elements in a block must be moved onto the stack
together. (They can be removed individually.)

Bijection to (r) by recording the sizes of the blocks moved onto the stack as
positive numbers and removals from the stack as −1.

(5, 4, 3, 2, 1) (5, 1, 3, 2, 4) (2, 1, 5, 4, 3) (2, 1, 3, 5, 4) (1, 5, 2, 4, 3)

Figure 25: Weighted Calatan examples for (ii)

(jj): Permutations of [n] that can be sorted on two parallel queues. (See Stanley
[10].)

Generalization (Figure 26): Permutations of n such that elements of the permu-
tation are partitioned into blocks whose sizes are given by B, that can be sorted on
two parallel queues if the elements in a block must be moved onto a queue together
without any intervening removals from the queues being allowed.

Bijection to (r): Whenever a group of elements is moved onto the queues, record
a positive integer of the size of the group. Whenever an element is removed from a
queue, record a −1.

(2, 3, 4, 5, 1) (1, 5, 2, 3, 4) (1, 2, 4, 5, 3) (1, 2, 3, 4, 5) (1, 2, 5, 3, 4)

Figure 26: Weighted Calatan examples for (jj)

(kk): Permutations of [2n] consisting of cycles of length 2 such that the cycles
form a noncrossing partition.

Generalization : Permutations of [m + n] whose cycle lengths are given by B,
such that the cycles form a non-crossing partition of [m + n] and each cycle is in
decreasing order.

At the same time, these are both the cycles that will satisfy (gg) and the par-
titions that will satisfy (o) (with a specific ordering given for listing each block).
(See Figure 24.)

(aaa): Linear extensions of the poset [2]× [n].

Generalization (Figure 27): Create a poset by taking the elements of the multiset
{1, 2b1 , 3, 4b2 , . . . } = {1, 21, 22, . . . , 2b1 , 3, 41, 42, . . . , 4b2 , . . . } where the bi are any
arrangement of the elements of B (as in (dd)) with the partial ordering <! such
that if a and b are both odd or both even then a < b → a <! b. If a = ci and b = cj

then i < j → a <! b. And if a is odd and b = a + 1 then a <! b. The elements
counted by our formula are the linear extensions of these posets.

Bijection: The posets correspond to the multisets of (dd) and the linear exten-
sions of the posets are the restricted permutations of (dd).
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1, 3, 5, 21, 22, 41, 42, 6 1, 21, 3, 22, 41, 5, 42, 6 1, 21, 22, 3, 5, 41, 42, 6

1, 21, 22, 3, 4, 5, 61, 62 1, 2, 3, 41, 5, 42, 61, 62

Figure 27: Weighted Calatan examples for (aaa)

8. Other Equivalent Representations

(b): Binary parenthesizations of a string of n + 1 letters.

(((xx)xx)xx) (x(xx(xx))x) (xx((xx)xx)) (xx(x(xxx))) (x(x(xxx)x))

Figure 28: Weighted Calatan examples for (b)

Generalization (Figure 28): Parenthesizations of n+1 letters into blocks given by
B; i.e., each pair of parentheses encloses bi (where bi ∈ B) items where each item is
either a letter or another parenthesization.

Bijection to (d): Given such a parenthesization, we look at the outermost group
of items, and the size of this group gives us the degree of the root. Then we look
at the rightmost item in this grouping, and we look at each item as a group, with
a letter designating a leaf, and a sub-parenthesization representing a subtree. For
example, the parenthesization ((xx)xx) has an outermost group of size 3, giving a
root of degree three. Its first child is a subtree whose root is of degree two with
two leaves, and its second and third child are leaves. Contrast this with (x(xxx))
whose outermost group designates a root of degree two whose first child is a leaf
and whose second child is a node with three children, all leaves.

(s): Sequences 1 ≤ a1 ≤ · · · ≤ an with ai < i.

Generalization (Figure 29): Sequences 1 ≤ a1 ≤ · · · ≤ an, grouped into contigu-
ous groups of identical numbers of sizes given by B, with each ai ≤ i.

11 11 1 11 22 3 11 22 2 11 2 33 1 22 33

Figure 29: Weighted Calatan examples for (s)

Bijection with (h): ai gives the height of the sequence at x = i − 1, and the
groupings of the ai give the sizes of the horizontal steps that the ai is part of.

(ww): Standard Young Tableux of shape (n, n).

Generalization (Figure 30): The elements of n + m laid out in a diagram whose
first row is of width m, whose column heights are given by the weights in B plus
one, whose rows and columns are in increasing order, and elements not in the
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first row are ordered among columns such that each is greater than the elements
appearing in the columns to its left. Note that this differs from a Young Tableux in
that there may be gaps between elements in the later rows, and we have a stronger
restriction on ordering.

123 136 145 146 135
468 258 268 257 247
57 47 37 3 8 68

Figure 30: Weighted Calatan examples for (ww)

Bijection to (r): The first row gives the location of the positive numbers (of size
equal one less than the column’s height) and the other elements give the location
of the −1’s. The increasing column restriction is equivalent to the nonnegativity
restriction on (r) and the fill requirement for the lower rows ensures a unique
representation for each sequence.

9. Two-Sided Generalization

In the representations of our generalized Catalan numbers given above, we allowed
one side to vary the weights of its elements, while requiring the other side to re-
main fixed. However, one can consider a two-sided ballot problem, where both
positive and negative numbers can be of any weight, so long as the sum total is
equal to zero, and the valid arrangements of a weight set require nonnegative par-
tial sums. This generalization has been investigated by Curtis Coker [1], who shows
that the generating function

∑n
k=1

1
n

(n
k

)( n
k−1

)
x2k(1 + x)2n−2k gives us the num-

ber of structures with the coefficients for xi giving the total ballot arrangements
whose partitions have i blocks. Plugging in x = 1 in the above formula gives us∑n

k=1 4n−kN(n, n−k) where N(n, i) are the Narayana numbers. This is the number
of all two-sided structures whose total length is n (see Sloane’s A059231 [8]).
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