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Abstract
In this short paper we establish identities involving sums of products of binomial
coefficients and coefficients that satisfy the general second–order linear recurrence.
We obtain generalizations of identities of Carlitz, Prodinger and Haukkanen.

1. Introduction

There are many types of identities involving sums of products of binomial coefficients
and Fibonacci or Lucas numbers. For example, we recall that (see [1, 4, 12]):

n∑

k=0

(
n

k

)
Fk = F2n,

n∑

k=0

(
n

k

)
F4k = 3nF2n, (1)

n∑

k=0

(
n

k

)
2n−kF5k = 5nF2n,

n∑

k=0

(
n

k

)
3n−kF6k = 8nF2n. (2)

Furthermore, many additional sums were given in [2, 8].
As more generalizations of the identities given by (1)-(2), Carlitz [1] derived

the following nice result by ordinary generating functions. If s, t are fixed positive
integers such that s != t, then

λnGsn+r =
n∑

k=0

(
n

k

)
µkGtk+r (3)

if and only if

λ = (−1)s Ft

Ft−s
and µ = (−1)s Fs

Ft−s
, (4)

where Gn is either a Fibonacci or Lucas number.
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Clearly for positive integers s and t, s != t,

Fn
t Gsn+r =

n∑

k=0

(
n

k

)
(−1)s(n−k) F k

s Fn−k
t−s Gtk+r. (5)

By using the exponential generating functions (or egf’s, see [3, 5, 6, 11]), Prodinger
[11] and Haukkanen [7] obtained the same results as Carlitz [1]. Haukkanen obtained
similar results for the Pell and Pell-Lucas numbers.

The egf of a sequence {an} is defined by

â (x) =
∞∑

n=0

an
xn

n!
.

The product of the egf’s of {an} and {bn} generates the binomial convolution of
{an} and {bn} :

â (x) b̂ (x) =
∞∑

n=0

(
n∑

k=0

(
n

k

)
an−kbk

)
xn

n!
. (6)

A special case of (5) can be found in [12]. Here the author obtains this special
case by the binomial theorem.

The general recurrence {Wn (a, b; p, q)} is defined, for n ≥ 2, by

Wn = pWn−1 − qWn−2, (7)

where W0 = a,W1 = b.
We write Wn = Wn (a, b; p, q). Let α and β be the roots of λ2 − pλ + q = 0,

assumed distinct. The Binet form of {Wn} is as follows:

Wn = Aαn + Bβn (8)

where A = b−aβ
α−β and B = aα−b

α−β .
Define Un = Wn (0, 1; p, q) and Vn = Wn (2, p; p, q). The Binet forms of Un and

Vn are given by

Un =
αn − βn

α− β
and Vn = αn + βn

where {Un} and {Vn} are the generalized Fibonacci and Lucas-types sequences,
respectively.

For more details and properties related to the sequence {Wn}, we refer to [9, 10].
In this short paper, we derive generalizations of the results of [1, 11, 7] for the

sequence {Wn}. Further, some new applications are also given.
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2. The Results for the Sequence {Wn}

We recall the following results from [7]:

Lemma 1. Let λ1 and λ2 be distinct complex numbers, and let c1 and c2 be nonzero
distinct complex numbers. Then

c1e
λ1x + c2e

λ2x = c1e
µ1x + c2e

µ2x

if and only if
µ1 = λ1 and µ2 = λ2.

Lemma 2. Let λ1 and λ2 be distinct complex numbers, and let c be a nonzero
complex number. Then

ceλ1x + ceλ2x = ceµ1x + ceµ2x

if only if either

µ1 = λ1 and µ2 = λ2 or µ1 = λ2 and µ2 = λ1.

For the sequence {Wn}, we can deduce

Ŵ (x) = Aeαx + Beβx.

Thus we have the following two cases: r != 0 and r = 0.

Theorem 3. Let c and d be nonzero integers and, let r be a nonzero integer. Then
for n ≥ 0

Wcn+r =
n∑

k=0

(
n

k

)
tn−kskWdk+r (9)

if and only if

s =
Uc

Ud
and t = qc Ud−c

Ud
.

Proof. By the egf’s, (9) can be rewritten as

Aαreαcx + Bβreβcx = etx
(
Aαreαdsx + Bβreβdsx

)
(10)

where the right-hand side comes from (6). Since αr != βr for r != 0, by Lemma 1,
(10) holds if and only if

αc = αds + t and βc = βds + t, (11)
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and clearly,

s =
αc − βc

αd − βd
=

Uc

Ud
and t = αc − αd αc − βc

αd − βd
= qc Ud−c

Ud
.

Thus the proof is complete.

Theorem 4. Let c and d be nonzero integers and p = 2b/a. Then for n ≥ 0

Wcn =
n∑

k=0

(
n

k

)
tn−kskWdk (12)

if and only if either (11) holds or

s =
−Uc

Ud
and t =

Ud+c

Ud
.

Proof. In terms of the egf’s, (12) could be rewritten as

Aeαcx + Beβcx = etx
(
Aeαdsx + Beβdsx

)
(13)

where the right-hand side is seen from (6). Since p = 2b/a, A = B, and thus (13)
takes the form

eαcx + eβcx = etx
(
eαdsx + eβdsx

)
. (14)

By Lemma 2, (14) holds if and only if either (11) holds or

αc = βds + t and βc = αds + t,

so that, clearly,

s =
αc − βc

βd − αd
=
−Uc

Ud
and t = αc − βd αc − βc

βd − αd
=

Ud+c

Ud
.

Thus, the proof is complete.

From Theorems 3 and 4, we have the following consequence.

Corollary 5. If c and d are nonzero integers and r is an integer, then

Un
d Wcn+r =

n∑

k=0

(
n

k

)
qc(n−k)Un−k

d−c Uk
c Wdk+r.

If c and d are nonzero integers, then

Un
d Wcn =

n∑

k=0

(
n

k

)
(−1)k Un−k

d+c Uk
c Wdk.
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We note the following known special cases of {Wn} :

p q a b Wn

1 −1 0 1 Fn Fibonacci numbers
1 −1 2 1 Ln Lucas numbers
2 −1 0 1 Pn Pell numbers
2 −1 2 2 2 Pell-Lucas numbers
1 −2 0 1 Jn Jacobsthal numbers
1 −2 2 1 jn Jacobsthal-Lucas numbers

Thus we have the following examples:

Fn
d Fcn+r =

n∑

k=0

(
n

k

)
(−1)c(n−k) Fn−k

d−c F k
c Fdk+r

and

Fn
d Lcn =

n∑

k=0

(
n

k

)
(−1)k Fn−k

d+c F k
c Ldk,

which are also given in [1, 11, 7].
Similar to the Fibonacci and Lucas numbers, for the Jacobsthal and Jacobsthal-

Lucas sequences, we obtain

Jn
d Jcn+r =

n∑

k=0

(
n

k

)
(−2)c(n−k) Jn−k

d−c Jk
c Jdk+r,

Jn
d jcn =

n∑

k=0

(
n

k

)
(−1)k Jn−k

d+c Jk
c jdk.
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