ON BINOMIAL SUMS FOR THE GENERAL SECOND ORDER LINEAR RECURRENCE

Emrah Kiliç
Mathematics Dept., TOBB Economics and Technology University, Ankara, Turkey ekilic@etu.edu.tr

Elif Tan

Mathematics Department, Ankara University, Ankara Turkey
etan@ankara.edu.tr

Received: 5/30/10, Accepted: 8/24/10, Published: 12/6/10

Abstract

In this short paper we establish identities involving sums of products of binomial coefficients and coefficients that satisfy the general second-order linear recurrence. We obtain generalizations of identities of Carlitz, Prodinger and Haukkanen.

1. Introduction

There are many types of identities involving sums of products of binomial coefficients and Fibonacci or Lucas numbers. For example, we recall that (see [1, 4, 12]):

$$
\begin{align*}
\sum_{k=0}^{n}\binom{n}{k} F_{k} & =F_{2 n}, \sum_{k=0}^{n}\binom{n}{k} F_{4 k}=3^{n} F_{2 n} \tag{1}\\
\sum_{k=0}^{n}\binom{n}{k} 2^{n-k} F_{5 k} & =5^{n} F_{2 n}, \sum_{k=0}^{n}\binom{n}{k} 3^{n-k} F_{6 k}=8^{n} F_{2 n} \tag{2}
\end{align*}
$$

Furthermore, many additional sums were given in $[2,8]$.
As more generalizations of the identities given by (1)-(2), Carlitz [1] derived the following nice result by ordinary generating functions. If s, t are fixed positive integers such that $s \neq t$, then

$$
\begin{equation*}
\lambda^{n} G_{s n+r}=\sum_{k=0}^{n}\binom{n}{k} \mu^{k} G_{t k+r} \tag{3}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lambda=(-1)^{s} \frac{F_{t}}{F_{t-s}} \text { and } \mu=(-1)^{s} \frac{F_{s}}{F_{t-s}} \tag{4}
\end{equation*}
$$

where G_{n} is either a Fibonacci or Lucas number.

Clearly for positive integers s and $t, s \neq t$,

$$
\begin{equation*}
F_{t}^{n} G_{s n+r}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{s(n-k)} F_{s}^{k} F_{t-s}^{n-k} G_{t k+r} \tag{5}
\end{equation*}
$$

By using the exponential generating functions (or egf's, see [3, 5, 6, 11]), Prodinger [11] and Haukkanen [7] obtained the same results as Carlitz [1]. Haukkanen obtained similar results for the Pell and Pell-Lucas numbers.

The egf of a sequence $\left\{a_{n}\right\}$ is defined by

$$
\hat{a}(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!} .
$$

The product of the egf's of $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ generates the binomial convolution of $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$:

$$
\begin{equation*}
\hat{a}(x) \hat{b}(x)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} a_{n-k} b_{k}\right) \frac{x^{n}}{n!} . \tag{6}
\end{equation*}
$$

A special case of (5) can be found in [12]. Here the author obtains this special case by the binomial theorem.

The general recurrence $\left\{W_{n}(a, b ; p, q)\right\}$ is defined, for $n \geq 2$, by

$$
\begin{equation*}
W_{n}=p W_{n-1}-q W_{n-2} \tag{7}
\end{equation*}
$$

where $W_{0}=a, W_{1}=b$.
We write $W_{n}=W_{n}(a, b ; p, q)$. Let α and β be the roots of $\lambda^{2}-p \lambda+q=0$, assumed distinct. The Binet form of $\left\{W_{n}\right\}$ is as follows:

$$
\begin{equation*}
W_{n}=A \alpha^{n}+B \beta^{n} \tag{8}
\end{equation*}
$$

where $A=\frac{b-a \beta}{\alpha-\beta}$ and $B=\frac{a \alpha-b}{\alpha-\beta}$.
Define $U_{n}=W_{n}(0,1 ; p, q)$ and $V_{n}=W_{n}(2, p ; p, q)$. The Binet forms of U_{n} and V_{n} are given by

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } V_{n}=\alpha^{n}+\beta^{n}
$$

where $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are the generalized Fibonacci and Lucas-types sequences, respectively.

For more details and properties related to the sequence $\left\{W_{n}\right\}$, we refer to $[9,10]$.
In this short paper, we derive generalizations of the results of $[1,11,7]$ for the sequence $\left\{W_{n}\right\}$. Further, some new applications are also given.

2. The Results for the Sequence $\left\{W_{n}\right\}$

We recall the following results from [7]:
Lemma 1. Let λ_{1} and λ_{2} be distinct complex numbers, and let c_{1} and c_{2} be nonzero distinct complex numbers. Then

$$
c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}=c_{1} e^{\mu_{1} x}+c_{2} e^{\mu_{2} x}
$$

if and only if

$$
\mu_{1}=\lambda_{1} \text { and } \mu_{2}=\lambda_{2}
$$

Lemma 2. Let λ_{1} and λ_{2} be distinct complex numbers, and let c be a nonzero complex number. Then

$$
c e^{\lambda_{1} x}+c e^{\lambda_{2} x}=c e^{\mu_{1} x}+c e^{\mu_{2} x}
$$

if only if either

$$
\mu_{1}=\lambda_{1} \text { and } \mu_{2}=\lambda_{2} \text { or } \mu_{1}=\lambda_{2} \text { and } \mu_{2}=\lambda_{1}
$$

For the sequence $\left\{W_{n}\right\}$, we can deduce

$$
\hat{W}(x)=A e^{\alpha x}+B e^{\beta x}
$$

Thus we have the following two cases: $r \neq 0$ and $r=0$.

Theorem 3. Let c and d be nonzero integers and, let r be a nonzero integer. Then for $n \geq 0$

$$
\begin{equation*}
W_{c n+r}=\sum_{k=0}^{n}\binom{n}{k} t^{n-k} s^{k} W_{d k+r} \tag{9}
\end{equation*}
$$

if and only if

$$
s=\frac{U_{c}}{U_{d}} \text { and } t=q^{c} \frac{U_{d-c}}{U_{d}}
$$

Proof. By the egf's, (9) can be rewritten as

$$
\begin{equation*}
A \alpha^{r} e^{\alpha^{c} x}+B \beta^{r} e^{\beta^{c} x}=e^{t x}\left(A \alpha^{r} e^{\alpha^{d} s x}+B \beta^{r} e^{\beta^{d} s x}\right) \tag{10}
\end{equation*}
$$

where the right-hand side comes from (6). Since $\alpha^{r} \neq \beta^{r}$ for $r \neq 0$, by Lemma 1 , (10) holds if and only if

$$
\begin{equation*}
\alpha^{c}=\alpha^{d} s+t \text { and } \beta^{c}=\beta^{d} s+t \tag{11}
\end{equation*}
$$

and clearly,

$$
s=\frac{\alpha^{c}-\beta^{c}}{\alpha^{d}-\beta^{d}}=\frac{U_{c}}{U_{d}} \text { and } t=\alpha^{c}-\alpha^{d} \frac{\alpha^{c}-\beta^{c}}{\alpha^{d}-\beta^{d}}=q^{c} \frac{U_{d-c}}{U_{d}} .
$$

Thus the proof is complete.
Theorem 4. Let c and d be nonzero integers and $p=2 b / a$. Then for $n \geq 0$

$$
\begin{equation*}
W_{c n}=\sum_{k=0}^{n}\binom{n}{k} t^{n-k} s^{k} W_{d k} \tag{12}
\end{equation*}
$$

if and only if either (11) holds or

$$
s=\frac{-U_{c}}{U_{d}} \text { and } t=\frac{U_{d+c}}{U_{d}}
$$

Proof. In terms of the egf's, (12) could be rewritten as

$$
\begin{equation*}
A e^{\alpha^{c} x}+B e^{\beta^{c} x}=e^{t x}\left(A e^{\alpha^{d} s x}+B e^{\beta^{d} s x}\right) \tag{13}
\end{equation*}
$$

where the right-hand side is seen from (6). Since $p=2 b / a, A=B$, and thus (13) takes the form

$$
\begin{equation*}
e^{\alpha^{c} x}+e^{\beta^{c} x}=e^{t x}\left(e^{\alpha^{d} s x}+e^{\beta^{d} s x}\right) \tag{14}
\end{equation*}
$$

By Lemma 2, (14) holds if and only if either (11) holds or

$$
\alpha^{c}=\beta^{d} s+t \text { and } \beta^{c}=\alpha^{d} s+t
$$

so that, clearly,

$$
s=\frac{\alpha^{c}-\beta^{c}}{\beta^{d}-\alpha^{d}}=\frac{-U_{c}}{U_{d}} \text { and } t=\alpha^{c}-\beta^{d} \frac{\alpha^{c}-\beta^{c}}{\beta^{d}-\alpha^{d}}=\frac{U_{d+c}}{U_{d}} .
$$

Thus, the proof is complete.
From Theorems 3 and 4, we have the following consequence.
Corollary 5. If c and d are nonzero integers and r is an integer, then

$$
U_{d}^{n} W_{c n+r}=\sum_{k=0}^{n}\binom{n}{k} q^{c(n-k)} U_{d-c}^{n-k} U_{c}^{k} W_{d k+r}
$$

If c and d are nonzero integers, then

$$
U_{d}^{n} W_{c n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} U_{d+c}^{n-k} U_{c}^{k} W_{d k}
$$

We note the following known special cases of $\left\{W_{n}\right\}$:

p		q	a	b	W_{n}
1	-1	0	1	F_{n}	Fibonacci numbers
1	-1	2	1	L_{n}	Lucas numbers
2	-1	0	1	P_{n}	Pell numbers
2	-1	2	2	2	Pell-Lucas numbers
1	-2	0	1	J_{n}	Jacobsthal numbers
1	-2	2	1	j_{n}	Jacobsthal-Lucas numbers

Thus we have the following examples:

$$
F_{d}^{n} F_{c n+r}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{c(n-k)} F_{d-c}^{n-k} F_{c}^{k} F_{d k+r}
$$

and

$$
F_{d}^{n} L_{c n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} F_{d+c}^{n-k} F_{c}^{k} L_{d k}
$$

which are also given in $[1,11,7]$.
Similar to the Fibonacci and Lucas numbers, for the Jacobsthal and JacobsthalLucas sequences, we obtain

$$
\begin{aligned}
J_{d}^{n} J_{c n+r} & =\sum_{k=0}^{n}\binom{n}{k}(-2)^{c(n-k)} J_{d-c}^{n-k} J_{c}^{k} J_{d k+r} \\
J_{d}^{n} j_{c n} & =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} J_{d+c}^{n-k} J_{c}^{k} j_{d k}
\end{aligned}
$$

References

[1] L. Carlitz, Some classes of Fibonacci sums, Fibonacci Quart. 16 (1978), 411-426.
[2] L. Carlitz and H. H. Ferns, Some Fibonacci and Lucas identities, Fibonacci Quart. 8 (1970), 61-73.
[3] C. A. Church and M. Bicknell, Exponential generating functions for Fibonacci identities, Fibonacci Quart. 11 (1973), 275-281.
[4] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing Co. River Edge, NJ, 1997.
[5] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Reading Mass: Addision-Wesley, 1989.
[6] R. T. Hansen, General identities for linear Fibonacci and Lucas summations, Fibonacci Quart. 16 (1978), 121-128.
[7] P. Haukkanen, On a binomial sum for the Fibonacci and related numbers, Fibonacci Quart. 34 (1996), 326-331.
[8] P. Haukkanen, Formal power series for binomial sums of sequences of numbers, Fibonacci Quart. 31 (1993), 28-31.
[9] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (1965), 161-176.
[10] E. Kilic and P. Stanica, Factorizations of binary polynomial recurrences by matrix methods, Rocky Mount. J. Math, to appear.
[11] H. Prodinger, Some information about the Binomial transform, Fibonacci Quart. 32 (1994), 412-415.
[12] S Vajda, Fibonacci and Lucas numbers, and the Golden Section: Theory and Applications, John Wiley \& Sons, Inc, New York, 1989.

