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Abstract
A staircase in this paper is the set of points in Z2 below a given rational line in the plane

that have Manhattan Distance less than 1 to the line. Staircases are closely related to

Beatty and Sturmian sequences of rational numbers. Connecting the geometry and the

number theoretic concepts, we obtain three equivalent characterizations of Sturmian se-

quences of rational numbers, as well as a new proof of Barvinok’s Theorem in dimension

two, a recursion formula for Dedekind-Carlitz polynomials and a partially new proof of

White’s characterization of empty lattice tetrahedra. Our main tool is a recursive descrip-

tion of staircases in the spirit of the Euclidean Algorithm.

1. Introduction

Motivated by the study of lattice points inside polytopes, in this paper we seek to
understand the set of lattice points “close” to a rational line in the plane. To this
end we define a staircase in the plane to be the set of lattice points in the half-plane
below a rational line that have Manhattan Distance less than 1 to the line. We
prove several properties of these point sets, most importantly we show that they
have a recursive structure that is reminiscent of the Euclidean Algorithm.

Not surprisingly, staircases are closely related to the Beatty and Sturmian se-
quences defined in number theory (see [9, 15, 16, 20]), i.e., to sequences of the form(⌊

b
an

⌋
−

⌊
b
a (n− 1)

⌋)
n∈N for a, b ∈ N with gcd(a, b) = 1. We show several elemen-

tary properties of these sequences from a geometric point of view. To our knowledge
such a geometric approach to these sequences is not available in the prior literature.
Our observations lead to three characterizations of these sequences (Theorem 18).
One of these is known (see [12, 10]) while the other two seem to be new.

1This research was supported by the Deutsche Forschungsgemeinschaft within the research
training group ’Methods for Discrete Structures’ (GRK 1408).

2This research was supported by the DFG Emmy Noether program (HA 4383/1) and the Freie
Universität Berlin.
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We conclude the paper by giving several applications of our findings. Firstly, we
give a new proof of a theorem by Barvinok in dimension 2. Barvinok’s Theorem
states that the generating function of the lattice points inside a rational simplicial
cone can be written as a short rational function. While Barvinok uses a signed
decomposition of the cone into unimodular cones to achieve this result, we partition
the cone into sets that have a short representation.

Secondly, these ideas can also be used to give a recursion formula for Dedekind-
Carlitz polynomials. These are polynomials of the form

∑a−1
k=1 xk−1y#

b
a k$ or, equiv-

alently, generating functions of the lattice points inside the open fundamental par-
allelepipeds of cones of the form cone

((
0
−1

)
, ( a

b )
)
. Our recursion formula answers

a question from [4].
Finally, we simplify ideas from [19] and [18] to give a partially new proof of

White’s Theorem, which characterizes three-dimensional lattice simplices that con-
tain no lattice points except their vertices.

This paper is organized as follows. In Section 2 we give definitions of and present
elementary facts about the objects we study. While Section 2 is rather concise,
we elaborate more in Section 3, where staircases are examined from a geometric
point of view. Most importantly we explain the recursive structure of staircases
in Lemmas 14, 16 and 17. In Section 4 we motivate the three characterizations of
Sturmian sequences before summarizing them in Theorem 18. Section 5 is devoted
to the proof of this theorem. In Section 6 we apply Lemma 17 to give a new proof
of Barvinok’s Theorem in dimension 2 and in Section 7 we use Lemma 16 to give a
recursion formula for Dedekind-Carlitz sums. We conclude the paper in Section 8
by giving a partially new proof of White’s Theorem.

2. Staircases and Related Sequences

In this section we give the basic definitions we are going to work with. In particular
we introduce staircases, which are the main geometric objects we will analyze. Then
we will define some related sequences of integers and state basic facts about them
and their connection to staircases. We elaborate on the geometric point of view and
give additional examples in Section 3.

Before we introduce staircases, here are some preliminaries: For any real number
r ∈ R we define the integral part #r$ := max {z ∈ Z : z ≤ r} of r. The fractional
part {r} of r is then defined by r = #r$+{r}. Given 0 < a, b ∈ N there exist unique
integers (b div a) and (b mod a) such that b = (b div a) · a + (b mod a) and
0 ≤ b mod a < a. Using these two functions we can write

⌊
b
a

⌋
= b div a and

{ b
a} = b mod a

a . We are going to use these two notations interchangeably.
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(0, 0)

(3, 8)

(0, 0)

(5, 2)

Figure 1: A part of the staircases S5,2 and S3,8. Corners are shown as boxes.

Given A,B ⊂ R2 and v ∈ R2, we define

A + B := {a + b : a ∈ A, b ∈ B} and −A := {−a : a ∈ A}

and we use the abbreviations A−B := A+(−B) and A + v = A + {v}. We will refer
to A + B as the Minkowski sum of A and B. The difference of sets is denoted with
A \ B := {a ∈ A : a '∈ B}. A lattice point is an element of Z2. An affine (linear)
lattice transformation of the plane is an affine (linear) automorphism of the plane
that maps Z2 bijectively onto Z2. A vector v ∈ Zd is primitive if gcd(v1, . . . , vd) = 1
or, equivalently, if Zd \ conv(0, v) = {0, v}.

Now, what is a staircase? Let L be an oriented rational line in the plane. Then L
defines a positive half-space H. The task is to describe the lattice points in H that
are close to L in the sense that they have distance < 1 to the line in the Manhattan
metric. Equivalently we consider those points x ∈ Z2 \ H from which we can reach
a point in the other half-space by a single horizontal or vertical step of unit length.
Such a set of points we call a staircase. See Figure 1 for two examples. Note that
it is sufficient to depict the staircase only under a primitive vector generating the
line (in the first example the vector (3, 8)), as after that (and before that) the same
pattern of points is repeated.

We do not require L to pass through the origin (or any other element of Z2),
contrary to what Figure 1 might suggest. But we will see later that we can get all the
information we want by looking only at lines through the origin. Also, without loss
of generality we will restrict our attention to lines with positive slope, as negative
slopes will give us, up to mirror symmetry, the same sets.

Let 0 < a, b ∈ N with gcd(a, b) = 1 and let r ∈ R. These parameters define
the line La,b,r =

{
x ∈ R2 : x2 = b

a x1 + r
}
. We denote the closed half-spaces
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below and above that line by H+
a,b,r and H−

a,b,r, respectively. Formally we define for
any σ ∈ {+1,−1} the half-space Hσ

a,b,r as

Hσ
a,b,r =

{
x ∈ R2 : 0 ≤ σ(

b

a
x1 − x2 + r)

}
.

Most of the time we will use + to represent +1 and − to represent −1 and write
σ ∈ {+,−} for short. Also if σ = + and/or r = 0 we will omit these parameters
and write Ha,b for H+1

a,b,0, and similarly for the symbols introduced below. The case
σ = + and r = 0 is of the largest interest to us, as all other cases can be reduced
to this one.

We will give a precise formulation and proof of this in Lemma 6. Although
the proof does not require additional tools and could already be given here, we
will pursue the connection between certain sequences and our point sets first, and
postpone all observations that are purely concerned with the point sets to Section 3.
So let’s start defining these sets properly, to make it clearer what we are talking
about.

The following definitions are illustrated in Figure 2. The lattice points in Hσ
a,b,r

that are at distance less than 1 from the line in vertical and horizontal direction,
respectively, are

Vσ
a,b,r = Z2 \ Hσ

a,b,r \ (Hσ
a,b,r − σe2)

=
{

z ∈ Z2 : 0 ≤ σ(
b

a
z1 − z2 + r) < 1

}

Hσ
a,b,r = Z2 \ Hσ

a,b,r \ (Hσ
a,b,r + σe1)

=
{

z ∈ Z2 : 0 ≤ σ(
b

a
z1 − z2 + r) <

b

a

}
.

Using this notation we now define the staircase Sσ
a,b,r to be the set of points that

are at distance less than 1 from the line in horizontal or vertical direction, and we
define the corners Cσ

a,b,r to be the lattice points that are at distance less than 1 in
horizontal and vertical direction:

Sσ
a,b,r = Vσ

a,b,r ∪Hσ
a,b,r,

Cσ
a,b,r = Vσ

a,b,r \ Hσ
a,b,r.

In other words

Sσ
a,b =

{
z ∈ Z2 : z ∈ Hσ

a,b but z − σe1 '∈ Hσ
a,b or z + σe2 '∈ Hσ

a,b

}

Cσ
a,b =

{
z ∈ Z2 : z ∈ Hσ

a,b but z − σe1 '∈ Hσ
a,b and z + σe2 '∈ Hσ

a,b

}
.



INTEGERS: 10 (2010) 811

(0, 0)

(a, b)

(a, b)

(0, 0)

Figure 2: This figure shows the flat staircase S5,2 and the steep staircase S3,8 from
Figure 1 together with parts of the corresponding sets Ha,b and Va,b. This illustrates
Fact 1.

See Figure 1 and also Figure 2. Clearly Ca,b ⊂ Sa,b. For any set A ⊂ Z2 and any
x ∈ Z we call the set colx(A) = {(x, y) ∈ A} a column of A and for y ∈ Z we call
the set rowy(A) = {(x, y) ∈ A} a row of A. For any 0 < a, b ∈ N, every row and
every column of Sa,b contains at least one point and every row and every column
of Ca,b contains at most one point.

The sequence (|colx(Sa,b)|)x∈Z is called the column sequence of Sa,b, while the
sequence (|rowy(Ca,b)|)y∈Z is called the row sequence of Ca,b and so on.

In the following we summarize some basic facts about staircases. We omit the
proofs as they are easy enough to do and would slow the pace of this section without
giving the reader further insights. The reader may find it instructive, however, to
check the validity of these facts by looking at examples such as those given in the
figures of this section.

Fact 1. For all 0 < a, b ∈ N and σ ∈ {+,−}

a ≥ b ⇔ Hσ
a,b ⊂ Vσ

a,b ⇔ ∀x : |colx(Sσ
a,b)| = 1 ⇔ ∀y : |rowy(Cσ

a,b)| = 1,

a ≤ b ⇔ Hσ
a,b ⊃ Vσ

a,b ⇔ ∀y : |rowy(Sσ
a,b)| = 1 ⇔ ∀x : |colx(Cσ

a,b)| = 1.

In the former case we call Sσ
a,b flat and in the latter case we call Sσ

a,b steep; see
Figure 2. Note that this implies Sσ

a,b = Vσ
a,b for flat and Sσ

a,b = Hσ
a,b for steep

staircases.

Fact 2. For all n ∈ Z the topmost point of coln(Sa,b) is (n,
⌊

b
an

⌋
).
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If Sa,b is flat, we have seen in Fact 1 that for every n ∈ Z the set coln(Sa,b)
contains exactly one element, so all elements of Sa,b have the form (n,

⌊
b
an

⌋
). If

Sa,b is steep, this is only true for the corners.
This description allows us to compute the difference in height between the top-

most points in consecutive columns of Sa,b. For all 0 < a, b ∈ N we define the
sequence Ba,b = (Ba,b(n))n∈Z by

Ba,b(n) :=
⌊

b

a
n

⌋
−

⌊
b

a
(n− 1)

⌋

=
b

a
+

{
b

a
(n− 1)

}
−

{
b

a
n

}
. (1)

Fact 3. If a ≤ b (i.e., Sa,b is steep) then

|coln(Sa,b)| = Ba,b(n)

and if b ≤ a (i.e., Sa,b is flat) then

|coln(Ca,b)| = Ba,b(n);

in particular, Ba,b is a 0, 1-sequence in this case.

The sequence Ba,b is the key to connect the geometric description of “points close
to a line” with notions from number-theory.

The sequences (
⌊

b
an

⌋
)n∈N, (Ba,b(n))n∈N and (Ba,b(n))n∈N (see below) are known

as the characteristic sequence, the Beatty sequence and the Sturmian sequence of b
a ,

respectively.
These sequences are well-studied in number theory; see [20, 9, 16, 15] for surveys,

[6] for historical remarks and [10] for a discussion about the names of the sequences.
However, only the characteristic sequences of irrational numbers are non-trivial from
the point of view of number theory. They also appear in geometry; see Section 8.

For the rest of the section we will establish some definitions connected with the
above sequences, and some basic properties of Ba,b, relating them to the staircases.

In this spirit, instead of working with (
⌊

b
an

⌋
)n∈N, (Ba,b(n))n∈N and (Ba,b(n))n∈N,

we will deal with (
⌊

b
an

⌋
)n∈Z, (Ba,b(n))n∈Z and (Ba,b(n))n∈Z, respectively. This is

due to the fact that we look at staircases of lines, not of rays.
Now let’s define what a Sturmian sequence is. A sequence s = (sn)n∈Z of

integers sn ∈ Z is called balanced (at k) if sn ∈ {k, k + 1} for all n ∈ Z. If s



INTEGERS: 10 (2010) 813

is balanced at k, we can define a 0, 1-sequence s = (sn)n∈Z, which we call the reduced
sequence, by

sn = sn − k.

Note that if s = (c)n∈Z is constant, s is balanced at both c and c− 1. In this case
s is defined with respect to c, i.e., s is constant 0.

Lemma 4 Ba,b is balanced at
⌊

b
a

⌋
. If b

a ∈ Z, then Ba,b(n) = b
a for all n ∈ Z.

Proof. By (1) we know that |Ba,b(n)− b
a | < 1 and by definition Ba,b ∈ Z. If b

a ∈ Z,
then the fractional parts in (1) are both 0, and thus the second statement is also
true. !

So Sturmian sequences (Ba,b(n))n∈N are well-defined. Furthermore, we now know
that only two different integers appear in Ba,b, and that Ba,b tells us in which
positions the larger integer of the two appears.

Given our geometric interpretation of Ba,b from Fact 3, this means that a steep
staircase has columns of only two different lengths and the reduced sequence
(Ba,b(n))n∈N encodes which columns are long and which columns are short. We
will return to the concept of reduction in Section 3.

To make the connection between the sequence Ba,b and the point set Sa,b more
transparent, we introduce some more notation.

We will transfer the idea that all we want to know about the staircase can be
found under a primitive integer vector in the line La,b into the language of sequences.

For any sequence s = (sn)n∈Z we say that s is periodic with period a ∈ N if
(sn+a)n∈Z = (sn)n∈Z. We say that a is the minimal period of s if there is no period
a′ ∈ N of s with a′ < a and write P(s) for the minimal period of s. By (1), if
gcd(a, b) = 1, then Ba,b is periodic with minimal period a.

For a periodic sequence s we define period(s) = (sn)0≤n<P(s). If s is a periodic
0, 1-sequence, we write 11(s) for the number of ones in period(s). We will frequently
represent s by the P(s)-tuple period(s).

As Ba,b describes the differences of the maximal heights in adjacent columns of
Sa,b, these differences, accumulated between 0 and a− 1, must sum up to b.

We summarize the above observations into

Fact 5. If 0 < a, b ∈ N and gcd(a, b) = 1, then

P(Ba,b) = a and
∑

0≤n<a

Ba,b(n) = b.

In particular if a > b (and thus Sa,b is flat), then 11(Ba,b) = b.
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To be more flexible when talking about parts of staircases, respectively Beatty-
sequences, we define the following. Given a sequence s = (sn)n∈Z, a finite subse-
quence of the form

s|[x0,x1] := (sn)x0≤n≤x1 for some x0 ≤ x1 ∈ Z

will be called an interval. The number of elements x1 − x0 + 1 of s|[x0,x1] we
will call the length of the interval and we will denote it by length(s|[x0,x1]). If s
is a 0, 1-sequence, we will denote the number of ones in an interval s|[x0,x1] by
ones(s|[x0,x1]).

In Fact 5 we summed over the interval Ba,b|[0,a−1]. But because of the periodicity
of Sa,b and Ba,b we see that we could have used any interval of length a− 1. So for
any fixed i ∈ Z the sequence Ba,b(n + i))n∈Z also describes Sa,b. This gives rise to
the following definition:

We say that sequences s = (sn)n∈Z and s′ = (s′n)n∈Z are identical up to shift if
there exists an i ∈ Z with (sn+i)n∈Z = (s′n)n∈Z, which we denote by s ≡ s′. Our
goal in Section 4 will be to characterize Sturmian sequences up to shift.

3. Geometric Observations

In this section we develop some properties of staircases and their related sequences
from a geometric point of view. The most important operation on staircases is, for
us, the reduction, which we turn to in the latter half of this section. We start with
some more elementary operations.

Throughout this section let 0 < a, b ∈ N such that gcd(a, b) = 1 and let σ ∈
{+,−}.

Elementary Properties of Staircases. As we have already mentioned (and
used), all staircases with a given slope, regardless of whether it is the one above or
below the line, are translates of each other. Hence they yield the same step sequence
up to shift.

Lemma 6 For every 0 < a, b ∈ N and r ∈ R

(i) Sa,b,r = Sa,b + v and Ca,b,r = Ca,b + v for some v ∈ Z2 and

(ii) S−a,b = Sa,b + v and C−
a,b = Ca,b + v for some v ∈ Z2.

In the proof we will use the following well-known fact.

Fact 7. Let r ∈ R. The line La,b,r contains a lattice point if and only if r = k
a for

some k ∈ Z.
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Proof of Lemma 6. Part 1. By Fact 7, if k
a ≤ r < k+1

a then Sa,b,r = Sa,b, k
a

and
Ca,b,r = Ca,b, k

a
. Hence we can assume, without loss of generality, that r = k

a , so
the line La,b,r contains a lattice point v = (v1, v2) with v2 = b

av1 + r. Then

z ∈ Ha,b,r − v if and only if z2 + v2 ≤
b

a
(z1 + v1) + r

if and only if z2 ≤
b

a
z1

if and only if z ∈ Ha,b.

This implies the first claim.

Part 2. By Fact 7 there is no lattice point v′ with a−1
a < b

av′1 − v′2 < 1, so

V−a,b =
{

z ∈ Z2 : 0 ≤ −(
b

a
z1 − z2) ≤

a− 1
a

}
.

Also by Fact 7, there exists a lattice point v with b
av1 − v2 = −a−1

a and for this
point v

V−a,b − v =
{

z ∈ Z2 : 0 ≤ −(
b

a
(z1 + v1)− (z2 + v2)) ≤

a− 1
a

}

=
{

z ∈ Z2 : 0 ≤ −(
b

a
z1 − z2 −

a− 1
a

) ≤ a− 1
a

}

=
{

z ∈ Z2 :
a− 1

a
≥ b

a
z1 − z2 ≥ 0

}
.

Applying the first observation again, we obtain

V−a,b − v = V+
a,b.

A similar argument shows H−
a,b− v = H+

a,b for a suitable v. Now, because of Fact 1,
Sσ

a,b = Vσ
a,b and Cσ

a,b = Hσ
a,b or Sσ

a,b = Hσ
a,b and Cσ

a,b = Vσ
a,b, depending on whether

a > b or a < b, where σ ∈ {+,−}. Therefore the above calculations imply 6. !

The previous operations translated the staircases by an integral vector. Now we
will introduce some other useful operations. We denote the reflection at the main
diagonal by ↖↘ and the reflection at the origin by ↗↙↖↘, i.e., we define ↖↘ (x, y) =
(y, x) and ↗↙↖↘ (x, y) = (−x,−y). Note that both induce involutions, i.e., self-
inverse bijective maps, on sets of lattice points; so we understand a set of lattice
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Figure 3: The reflection at the main diagonal swaps numerator and denominator
of a staircase and places the points on the opposite side of the line. Here we see
↖↘S3,8 = S−8,3.

Figure 4: The reflection at the origin transforms a staircase below the line into a
staircase above the line and vice versa. Here we see ↗↙↖↘S3,8 = S−3,8. Notice how the
column sequence is reversed!

points if and only if we understand its reflection. The effect of these two reflections
on staircases is illustrated with an example in Figures 3 and 4 and formalized in
Lemmas 8 and 9.

Lemma 8 ↖↘Sσ
a,b = S−σ

b,a and ↖↘Cσ
a,b = C−σ

b,a .

In other words, reflection at the main diagonal swaps numerator and denominator
of the slope and places the points on the opposite side of the line. See Figure 3.

Proof. This follows from the equivalence (x, y) ∈ Hσ
a,b ⇔↖↘(x, y) ∈ H−σ

b,a . !

Lemma 9 ↗↙↖↘Sσ
a,b = S−σ

a,b and ↗↙↖↘Cσ
a,b = C−σ

a,b . Thus,

(|coln(Sσ
a,b)|)n = (|col−n(S−σ

a,b )|)n and (|coln(Cσ
a,b)|)n = (|col−n(C−σ

a,b )|)n.
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This means that reflection at the origin maps a staircase below the line to the
staircase above the line and vice versa. This operation reverses the Beatty sequence
of the staircase. See Figure 4.

Proof. This follows from the equivalence (x, y) ∈ Hσ
a,b ⇔↗↙↖↘(x, y) ∈ H−σ

a,b . !

Putting Lemmas 6 and 9 together, we immediately obtain the non-obvious state-
ment that reversing a Beatty sequence yields the same sequence up to shift.

Corollary 10 (|coln(Sσ
a,b)|)n ≡ (|col−n(Sσ

a,b)|)n.

Proof. (|coln(Sσ
a,b)|)n ≡ (|coln(S−σ

a,b ) + v|)n ≡ (|coln(S−σ
a,b )|)n = (|col−n(Sσ

a,b)|)n !

Similarly, Lemma 6 implies that Ca,b and Ca,b,r have the same column sequence
for any r.

Recursive Description of Staircases. We now return to the operation called
reduction, which we defined for balanced sequences in Section 2. First, let us observe
the relation between Beatty and Sturmian sequences more closely. The following
fundamental lemma tells us that, not surprisingly, Sturmian sequences are Beatty
sequences with a > b and vice versa.

Lemma 11 Ba,b = Ba,b mod a. Conversely if s is a sequence balanced at k ∈ N and
s = Ba,b, then s = Ba,ak+b.

Proof. By (1) we observe that for any k ∈ Z such that both b and b+ka are positive

Ba,b(n) + k = Ba,b+ka(n).

Ba,b is balanced at
⌊

b
a

⌋
= b div a by Lemma 4. Note that by definition b mod a =

b− (b div a) a. So

Ba,b(n) = Ba,b(n)− b div a = Ba,b mod a(n).

Conversely if s(n) = Ba,b(n) and s is balanced at k, then

s(n) = s(n) + k = Ba,b(n) + k = Ba,b+ka(n). !

How can this relation be phrased in terms of the staircases Sa,b and Sa,b mod a?
The following lemmas give an answer to this question. See S5,13 and S5,3 in Figure 5.
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5430 1 2

5430 1 2

30 1 2

30 1 2

0 1 2

0 1 2

S5,3S5,13 S3,5 =↗↙↖↘↖↘S5,3 S3,2 S2,1S2,3 =↗↙↖↘↖↘S3,2

Figure 5: This figure show the recursive process of expressing S5,13 in terms of
smaller staircases, described in the text. In this figure, empty squares indicate the
corners of long columns, filled squares corners of short columns. Note that the
empty squares occur in Sa,b precisely in the columns, in which there is an element
of Ca,b mod a.

Lemma 12 Let 0 < a < b. The lattice transformation

A =
(

1 0
b div a 1

)

gives a bijection between Ca,b and Sa,b mod a.

The corners Ca,b of the staircase Sa,b are just the points of the smaller staircase
Sa,b mod a up to a lattice transform. Here “smaller” refers to both the number of
lattice points in a given interval and the encoding length of the two parameters a
and b. Note that the inverse of A is A−1 =

(
1 0

−b div a 1

)
.

Proof. As Sa,b is steep, we see that

coln(Ca,b) = {(n,

⌊
b

a
n

⌋
)} and coln(Sa,b mod a) = {(n,

⌊
b mod a

a
n

⌋
)}

by Facts 1 and 2. But
(

n⌊
b
an

⌋
)

=
(

n
(b div a)n +

⌊
b mod a

a n
⌋
)

= A

(
n⌊

b mod a
a n

⌋
)

.

!
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However, to obtain all points in Sa,b from the corners Ca,b we need to know
which columns of Sa,b are long and which are short (in the case b > a). It turns out
that the corners in long columns are precisely the corners Ca,b mod a of the smaller
staircase, again up to the lattice transformation A.

Lemma 13 Let 0 < a < b. Then coln(Ca,b mod a) contains a point if and only if
coln(Sa,b) is long.

Proof. Since Sa,b mod a is flat, we know by Fact 3 that (n,
⌊

b mod a
a n

⌋
) ∈ Ca,b mod a

if and only if 1 = Ba,b mod a(n) = Ba,b(n). But this just means that coln(Sa,b) is
long. !

Taking the two lemmas together, we can describe every staircase Sa,b in terms
of the smaller corners and points in the smaller staircase Sa,b mod a. This result,
together with our ability to swap the parameters a and b (by means of Lemmas 8
and 9) and the fact that the staircases Sa,1 are easy to describe, we obtain a recursive
characterization of all staircases.

Let us look at an example, which is shown in Figure 5, before we formulate the
recursion formally in Lemma 14. We want to express S5,13 in terms of smaller
staircases.

We know that the topmost points in each column are the points in C5,13 and
C5,13 is just the image of S5,3 under the lattice transformation A = ( 1 0

2 1 ). Note
that A keeps columns invariant.

We also know that S5,13 has columns of lengths 2 and 3 and that the long columns
are precisely those in which C5,3 contains a point. So if we have an expression for
S5,3 and C5,3, we can give an expression for S5,13 and C5,13.

To continue this argument inductively, we need to swap the parameters a and b,
but this we can achieve by reflecting the staircases at the origin and at the main
diagonal. So we reduce the problem of describing S5,3 to the problem of describing
S3,5. We can now continue in this fashion, expressing S3,5 in terms of S3,2, in terms
of S2,3, in terms of S2,1.

At this point we have finally reached a staircase with integral slope. These
staircases have the nice property that all columns and all rows are identical and
hence they can be described by a simple expression: the Minkowski sum of the
lattice points on a line with those in an interval. This entire process is illustrated
in Figure 5.
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Lemma 14 Let 0 < a, b ∈ N and A =
(

1 0
b div a 1

)
.

(i) If a < b and gcd(a, b) = 1, then

Ca,b = ASa,b mod a

Sa,b = ASa,b mod a + {( 0
0 ) , . . . ,

( 0
−(b div a)+1

)
}

∪ ACa,b mod a + {
( 0
−(b div a)

)
}.

(ii) Ca,b = ↗↙↖↘↖↘Cb,a and Sa,b = ↗↙↖↘↖↘Sb,a.

(iii) If b = 1, then

Ca,b = {
(

ka
k

)
: k ∈ Z}

Sa,b = {
(

ka
k

)
: k ∈ Z} + {( 0

0 ) , . . . ,
(

a−1
0

)
}.

In Section 4 we use this recursive structure to develop a characterization of
Sturmian sequences. In Section 6 we employ the recursion to obtain short rational
functions that enumerate the lattice points inside lattice polytopes in the plane, and
in Section 7 for a representation of Dedekind-Carlitz polynomials that is computable
in polynomial time.

Proof. (i) By Lemma 12 the first equation holds. Every column of Sa,b contains
a corner and every column contains at least (b div a) points. So ASa,b mod a +
{( 0

0 ) , . . . ,
( 0
−(b div a)+1

)
} contains all points in Sa,b except the bottom-most points

of the long columns. By Lemma 13 the long columns are precisely those in which
Sa,b mod a has a corner. So ACa,b mod a +{

(
0

−b div a

)
} is precisely the set of bottom-

most points of the long columns of Sa,b.

(ii) Sa,b = ↗↙↖↘S−a,b = ↗↙↖↘↖↘Sb,a by Lemmas 8 and 9 and similarly for Ca,b.

(iii) If b = 1, then for all k, n ∈ Z we have
⌊

b
an

⌋
= k if and only if ka ≤ n ≤

(k + 1)a− 1. Hence, we have rowk(Sa,b) = {
(

ka
k

)
, . . . ,

(
ka+a−1

k

)
} and rowk(Ca,b) =

{
(

ka
k

)
}. !

Relation to the Euclidean Algorithm. This recursion is closely related to the
Euclidean Algorithm, which takes as input two natural numbers c1, c2 ∈ N. In each
step ci+1 = ci−1 mod ci is computed. This continues until we reach a j such that
cj+1 = 0 and cj '= 0. Then cj = gcd(c1, c2).

Now suppose we want to determine Sb,a and Cb,a for some b > a. We flip
the two parameters and then reduce the staircase, i.e., we apply 14.2 and 14.1.
This reduces the problem to computing Sa,b mod a and Ca,b mod a. Again we flip
and reduce, which reduces the problem to computing Sb mod a,a mod (b mod a) and
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Cb mod a,a mod (b mod a) and we continue in this fashion. In other words, we put
c1 = b, c2 = a and ci+1 = ci−1 mod ci and compute the staircases Sci,ci+1 and
Cci,ci+1 recursively, until we arrive at the case Scj−1,1 and Ccj−1,1 which we can solve
directly by 14.3. That we arrive in this case eventually follows by the correctness
of the Euclidean Algorithm and the assumption that gcd(a, b) = 1! Note also that
this recursion terminates after few iterations. This is made precise in the following
lemma.

Lemma 15 Let a, b ∈ N and let (cn)n∈N denote the sequence defined by c1 = b,
c2 = a and ci+2 = ci mod ci+1. Then min {j ∈ N : cj+1 = 0} ∈ O(log a).

Proof. (ci)i≥2 is monotonously decreasing for all a, b ∈ N, as by definition ci+2 =
ci mod ci+1 < ci+1. Thus ci div ci+1 ≥ 1 for i ≥ 2 and so

ci = (ci div ci+1︸ ︷︷ ︸
≥1

)ci+1 + (ci mod ci+1︸ ︷︷ ︸
=ci+2

) ≥ ci+1︸︷︷︸
≥ci+2

+ci+2 ≥ 2ci+2

for i ≥ 2. Hence ci+2k ≤ 2−kci, and so if k ≥ log2 ci, then ci+2k ≤ 1. In particular
the minimal j such that cj+1 = 0 satisfies j ≤ 2 log2 c2 + 2 ∈ O(log a). !

Recursive Description of Parallelepipeds. Instead of describing the infinite
set of lattice points in an entire staircase, one might want to describe finite subsets
thereof, for example the set of lattice points in only “one period” of the staircase. We
now give a recursion for the set of lattice points in the fundamental parallelepipeds
of the cones cone (( a

b ) , ( 1
0 )) and cone

(
( a

b ) ,
(

0
−1

))
.

The cone generated by v1, . . . , vn ∈ Rd is the set

cone(v1, . . . , vn) =

{
n∑

i=1

αivi : 0 ≤ αi ∈ R for all 1 ≤ i ≤ n

}
.

A cone is rational if all the vi are rational and it is simplicial if the vi are lin-
early independent. The fundamental parallelepiped Πcone(v1,...,vn) of a simplicial
cone cone(v1, . . . , vn) is defined as

Πcone(v1,...,vn) :=

{
n∑

i=1

αivi : 0 ≤ αi < 1 for all 1 ≤ i ≤ n

}
.

Note that any rational cone cone(v1, . . . , vn) ⊆ Rm can be transformed unimod-
ularly to a rational cone cone(σej , v′1, . . . , v

′
n) with σ ∈ {+,−} and 1 ≤ j ≤ m.
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(a, b)

(0, 0)

(0,−1)

(0, 0)

(a, b)

(0,−1)

Figure 6: If we intersect Va,b with [0, a)×R we obtain the fundamental parallelepiped
of the cone generated by

(
0
−1

)
and ( a

b ).

So we don’t restrict ourselves by only looking at cones containing e1 or −e2 in the
generators.

With the above notation

Va,b \ [0, a)× R = Π
cone

((
0
−1

)
,( a

b )
) \ Z2

Ha,b \ R× [0, b) = Πcone(( 1
0 ),( a

b )) \ Z2;

see Figure 6. This means that if a < b (and hence Sa,b = Ha,b), the points z in
the staircase Sa,b with 0 ≤ z2 < b are just the lattice points in the fundamental
parallelepiped Πcone(( 1

0 ),( a
b )). The corners z ∈ Ca,b with 0 ≤ z1 < a are just the

lattice points in the fundamental parallelepiped Π
cone

((
0
−1

)
,( a

b )
) .

To give an interpretation of our recursion in terms of fundamental parallelepipeds
it is convenient to define the set Π◦cone(v1,...,vn) of lattice points in the open funda-
mental parallelepiped of cone(v1, . . . , vn) as

Π◦cone(v1,...,vn) := Z2 \
{

n∑

i=1

αivi : 0 < αi < 1

}
.

Note that if n = 2 and both v1 and v2 are primitive, then Π◦cone(v1,v2)
∪ {( 0

0 )} =
Z2 \ Πcone(v1,v2). So it suffices to give a recursion for the sets of lattice points in
open fundamental parallelepipeds.
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0
1
2
3
4
5
6
7
8
9
10
11
12
13

0 1 2 3 4 5 6

0
1
2
3

0 1 2 3 4 5

-1
Π◦→,5,13 Π◦↓,5,3

Legend:
∈ AΠ◦↓,5,3 + {( 0

0 ) ,
(

0
−1

)
}

∈ AΠ◦→,5,3 +
(

0
−2

)

∈ ( 5
13 ) + {

(
0
−1

)
,
(

0
−2

)
}

Figure 7: This figure illustrates the formula given in 16.1. Π◦→,5,13 is expressed in
terms on Π◦↓,5,3 (shown) and Π◦→,5,3 (the corners of Π◦↓,5,3). The idea is the same
as in Figure 5 and Lemma 14. However there is one important difference: both
col5(Π◦↓,5,3) and col5(Π◦→,5,3) are empty. These have to be added using the third
term ( 5

13 ) + {
(

0
−1

)
,
(

0
−2

)
}.

We are going to use the following abbreviations:

Π↓,a,b := Π
cone(

(
0
−1

)
,( a

b )) Π◦↓,a,b := Π◦
cone(

(
0
−1

)
,( a

b ))

Π→,a,b := Πcone(( 1
0 ),( a

b )) Π◦→,a,b := Π◦
cone(( 1

0 ),( a
b ))

In terms of open parallelepipeds, Lemma 14 can now be phrased as follows. An
example illustrating the somewhat involved expression in 16.1 is given in Figure 7.

Lemma 16 Let a, b ∈ N and A =
(

1 0
b div a 1

)
.

(i) If 0 < a < b and gcd(a, b) = 1, then

Π◦↓,a,b = AΠ◦↓,a,b mod a

Π◦→,a,b = AΠ◦↓,a,b mod a + {( 0
0 ) , . . . ,

( 0
−(b div a)+1

)
}

∪ AΠ◦→,a,b mod a +
(

0
−b div a

)

∪ ( a
b ) + {

(
0
−1

)
, . . . ,

(
0

−b div a

)
}.
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∆1,2∆2,1∆2,3∆3,2∆3,5∆5,3∆5,13

Figure 8: Similarly to our recursive description of S5,13 (see Figure 5), we can
apply Lemma 17 recursively to partition ∆5,13 into triangles with integral slope.
The different shadings indicate to which triangle the different regions correspond.

(ii) Π◦→,a,b =↗↙↖↘↖↘Π◦↓,b,a + ( a
b ) and Π◦↓,a,b =↗↙↖↘↖↘Π◦→,b,a + ( a

b ).

(iii) Π◦→,a,1 = ∅ and Π◦↓,a,1 = {( 1
0 ) , . . . ,

(
a−1
0

)
}.

This allows us describe Π◦↓,a,b in terms of Π◦↓,a,b mod a and Π◦→,a,b mod a. The proof
is similar to the one of Lemma 14 and we omit it for brevity.

Recursive Description of Triangles. We conclude this section by giving a
similar recursion for triangles; see Figure 8. We write

∆a,b := conv {( 0
0 ) , ( a

0 ) , ( a
b )}

and

∆′
a,b := ∆a,b \ conv {( 0

0 ) , ( a
b )}

to denote closed and half-open triangles, respectively. The corresponding lattice
point sets are denoted by Ta,b := ∆a,b \ Z2 and T ′a,b := ∆′

a,b \ Z2.
The idea is now that for 0 < a < b the triangle ∆a,b can be decomposed into two

parts ∆′
a,(b div a)a and A∆a,b mod a. The former is defined by a line with integral

slope and hence the set of lattice points T ′a,(b div a)a is easy to describe. The latter
can be transformed into ∆b mod a,a and we can obtain a description of the lattice
point set Tb mod a,a recursively. See Figure 8. The resulting recursion is given in
Lemma 17 without proof.
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Lemma 17 Let a, b ∈ N and A =
(

1 0
b div a 1

)
.

(i) Ta,b = ATa,b mod a ∪ T ′a,(b div a)a.

(ii) Ta,b =↗↙↖↘↖↘Tb,a + ( a
b ).

(iii) Ta,1 = {( k
0 ) : 0 ≤ k ≤ a} ∪ {( a

1 )}.

(iv) If k ∈ N, then

T ′a,ka =
⋃

0<l≤a

{
( l

0 ) , . . . ,
(

l
lk−1

)}

= {( 0
m ) : m ∈ N} + {( 0

0 ) , ( 1
0 ) , . . . , ( a

0 )}
\ ({( 0

m ) : m ∈ N} + {( 0
0 ) , ( 1

k ) , . . . , ( a
ak )}) .

The advantage of using the second expression for T ′a,ka in 17.4 will become clear
in Section 6 where we use it to obtain a short rational function representing the
generating function of the set of lattice points inside T ′a,ka. Note that we obtain a
recursion formula for T ′ by replacing every occurrence of T in 17.1 and 17.2 with
T ′ and replacing 17.3 with T ′a,1 = {( k

0 ) : 1 ≤ k ≤ a}.
In [13] Kanamaru et al. use a recursive procedure as in Lemma 17 to give an

algorithm to enumerate the set of lattice points on a line segment. They go on to
give an algorithm that enumerates lattice points inside triangles using the transfor-
mation A, however in this case they do not apply recursion and do not mention the
partition given in Lemma 17.1. This partition however is observed by Balza-Gomez
et al. in [3]. But as they are interested in giving an algorithm for computing the
convex hull of lattice points strictly below a line segment, they do not work with
the full set of lattice points Ta,b. In both cases no explicit recursion formula such
as Lemma 17 is given.

4. Characterizations of Sturmian Sequences

In this section we state several characterizations of Sturmian sequences of rational
numbers, i.e., sequences of the form Ba,b (or equivalently Ba,b with 0 < b ≤ a). We
will first motivate each characterization in a separate paragraph without proofs and
then summarize them in Theorem 18. The proof of the theorem occupies Section 5.

Recursive Structure. The most important characterization of Sturmian se-
quences for our purposes is a recursive one. It is based on the concept of reduction
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presented in Section 3 that relates Ba,b to Ba,b mod a in a way reminiscent of the
Euclidean Algorithm.

We first present the idea informally. Let 0 < a < b and consider the sequence
Bb,a and the related staircase Sb,a. An interval of Bb,a of the form 10 . . . 0 of length k
corresponds to a corner c ∈ Sb,a and k−1 points in Sb,a at the same height as c. We
call a maximal interval of the form 10 . . . 0 a block. A block of Bb,a corresponds to a
row of Sb,a. If the block has length k, the row contains k points. The block sequence
m(Bb,a) of Bb,a is the sequence of block lengths of Bb,a. By the above observation
the block sequence of Bb,a is the row sequence of Sb,a and by Lemma 14.2 and
Corollary 10 the column sequence of ↗↙↖↘↖↘Sb,a = Sa,b up to shift. This means that
m(Bb,a) ≡ Ba,b is Beatty and hence m(Bb,a) ≡ Ba,b mod a is Sturmian. See Figure 9
for an example. It turns out that this gives a recursive characterization of Sturmian
sequences: a sequence s is Sturmian iff m(s) is balanced and m(s) is Sturmian.

To make this precise we give the following definitions. Suppose s = (sn)n∈Z
is a periodic 0,1-sequence with P(s) = a and 11(s) = b, and assume s0 = 1. Let
i1, . . . , ib ∈ {0, . . . , a − 1} be the indices of the 1s, i.e., let i1 < i2 < . . . < ib with
sij = 1 for all 1 ≤ j ≤ b. Put ib+1 := a. Then the j-th block in (s0, . . . , sa−1) is
s|[ij ,ij+1−1] and the length of the j-th block is mj := ij+1 − ij . The block sequence
m(s) is the infinite periodic sequence generated by (m1, . . . ,mb). Note that this
definition determines m(s) only up to shift, which suffices for our purposes. On
equivalence classes of sequences up to shift, m is an injective function, i.e., s1 ≡
s2 ⇔ m(s1) ≡ m(s2). We call a sequence block balanced if it is balanced and its
block sequence is balanced. In this case we can consider the reduced block sequence
m(s) which is again a 0,1-sequence. A sequence s is recursively balanced

• if 11(s) = 1, or

• if s is block balanced and m(s) is recursively balanced.

The characterization now is this:

A periodic 0,1-sequence is Sturmian if and only if it is recursively balanced.

Even Distribution of 0s and 1s. Common sense suggests that, as the staircase
approximates a line, the number of 1s in every interval should be as close as possible
to the expected number of 1s. This can be made precise in the following way. We
say that the 1s in a periodic 0,1-sequence s are evenly distributed if for every interval
s|[x0,x1]

ones(s|[x0,x1]) ∈
{⌊

11(s)
P(s)

length(s|[x0,x1])
⌋

,

⌈
11(s)
P(s)

length(s|[x0,x1])
⌉}

. (2)
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3 2 3 2 2 3 2 3 2 2 1 0 1 0 00 0 1 0 1 0 0 1 0 1 01

Figure 9: Recursive structure of Sturmian sequences. This figure shows several
staircases Sa,b and the corresponding parts of the associated Beatty sequence Ba,b.
In each picture the first and last column correspond to the same element of Ba,b

modulo the minimal period. The first picture shows S12,5 and B12,5. B12,5 records
which columns contain corners, so the block sequence m(B12,5) is just the row
sequence of S12,5. Reflecting at the main diagonal turns rows into columns, so
m(B12,5) is the column sequence of ↖↘S12,5 = S−5,12, which is shown in the second
picture. Note that in the first picture the part of the staircase that we show was
chosen such that points from the first and the last column lie on the defining line
- and this property is preserved under reflection at the main diagonal. Applying
the reflection at the origin gets us to ↗↙↖↘↖↘S12,5 = S5,12, which is shown in the third
picture along with its column sequence B5,12. The reflection at the origin, however,
reverses the column sequence. Fortunately, Corollary 10 tells us that Sturmian
sequences are invariant under reversals - up to a shift. This shift in the column
sequence can be seen from the fact that in the third picture, the defining line does
not pass through points of the first or last column anymore. From the first three
pictures, we see that the column sequence of S5,12 is just the row sequence of S12,5

up to shift, i.e., m(B12,5) ≡ B5,12. Now we can apply reduction. We pass from
S5,12 to S5,2, as shown in the last picture, which gives us m(B12,5) ≡ B5,2. This is
a geometric illustration of the combinatorial fact that if s is Sturmian, so is m(s).

Note that if z ∈ Z and r ∈ R, then z ∈ {#r$ , 5r6} if and only if z − 1 < r < z + 1,
so the condition

ones(s|[x0,x1])− 1 < 11(s)
P(s) length(s|[x0,x1]) < ones(s|[x0,x1]) + 1 (3)

is equivalent to (2). If an interval s|[x0,x1] violates the left-hand inequality, then
we say it contains too many 1s and if it violates the right-hand inequality, we say
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1,0,1,1,0,1, 1, 0, 1, 1, 0, 1,1, 0, 1,0, 1, 0, 1, 0,

(0,0) (0,0)

Figure 10: Swap symmetry of Sturmian sequences. Consider the staircase S5,3 and
the corresponding Sturmian sequence B5,3, which records the columns of S5,3 that
contain a corner. If we move the line defining S5,3 downwards by a small amount,
then only those columns change in which there was a point on the line L5,3. These
columns do not contain corners any more - the corners move one column to the
right. So in the sequence B5,3 this corresponds to replacing an interval 1 0 with
0 1, i.e., by swapping a 1 and a 0. The digits that are swapped are highlighted in
the figure. Now, by Lemma 6 translating the defining line only shifts the column
sequence of C5,3. So the sequence obtained from B5,3 by swapping is again B5,3

up to shift. This is shown by the braces, which indicate minimal periods of both
sequences.

it contains too few 1s. The characterization, then, is this:

A periodic 0,1-sequence s is Sturmian if and only if
the 1s in s are evenly distributed.

This characterization appears in [12] and was later improved in [10].

Symmetry. A different way to phrase that the 0s and 1s are distributed evenly
would be to state that Sturmian sequences are symmetric. If symmetric is taken to
mean invariant under reversals (up to shift), then this is a true statement (Corol-
lary 10) - but insufficient to characterize Sturmian sequences.

However, Lemma 6 suggests a different notion of symmetry, which is motivated
by the example in Figure 10. A periodic 0,1-sequence s is swap symmetric if there
is a pair (si, si+1) = (1, 0) such that if we replace this pair and all periodic copies
of it by (0, 1), we obtain a sequence s′ that is identical to s up to a shift.
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Formally, given a periodic sequence s and i ∈ Z, we define the sequence
swap(s, i) := (swap(s, i)n)n by

swap(s, i)n =






sn − 1 if n ≡ i mod P(s)
sn + 1 if n ≡ i + 1 mod P(s)
sn otherwise

.

We call a periodic sequence s swap symmetric if there exists an i ∈ Z such that
s ≡ swap(s, i). Note that if s ≡ swap(s, i) then

si = swap(s, i)i+1 = si+1 + 1
si+1 = swap(s, i)i = si − 1

as the number of entries 0 ≤ k < P(s) such that sk = c cannot change under a swap
for any constant c ∈ N, for swap symmetric s.

This property characterizes Sturmian sequences:

A periodic 0,1-sequence is Sturmian if and only if it is swap-symmetric.

Having motivated the three characterizations, we can now state the theorem.

Theorem 18 Let s = (sn)n∈Z be a periodic 0,1-sequence with P(s) = a and 11(s) =
b ≥ 1. Then the following are equivalent:

(i) s ≡ Ba,b.

(ii) s is recursively balanced.

(iii) The 1s in s are evenly distributed.

(iv) s is swap symmetric.

(i) ⇒ (iii) is easy to prove (see next section) and (iii) ⇒ (i) appears in [12],
although the concept of “nearly linear” sequences used in [12] differs slightly from
18iii. The connection between these definitions3 is made in [10], where the result
from [12] is extended. In both cases the focus lies on the more general case of lines
with irrational slope. The proofs given in these two sources differ from the proofs
we present in Section 5.

As far as we know the concepts of recursively balanced and swap symmetric
sequences do not appear in the prior literature.

3In [10] sequences with an even distribution of 1s are called “balanced”.
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5. Proof of the Characterizations

We first show the recursive characterization, i.e., that a periodic 0,1-sequence is
Sturmian if and only if it is recursively balanced. To that end we first prove two
lemmas.

Lemma 19 If 0 < a < b, then m(Bb,a) ≡ Ba,b.

Proof. Let 0 < a < b. A maximal interval of Bb,a of the form 1, 0, . . . , 0 corresponds
to a row of Sb,a, so

m(Bb,a) ≡ (|rown(Sb,a)|)n = (|coln(S−a,b)|)n ≡ (|coln(Sa,b)|)n = Ba,b

where we use Lemma 8 in the second and Lemma 6 in the third step. !

From this we also get that for a > b (i.e., flat staircases) the sequence m(Ba,b) is
balanced, and thus Sturmian sequences are block balanced.

Lemma 20 If s is a block balanced 0, 1-sequence, then s is Sturmian if and only if
m(s) is Sturmian.

Proof. As s is a block balanced 0,1-sequence

s ≡ Bb,a for some 0 < a < b

if and only if m(s) ≡ Ba,b for some 0 < a < b

if and only if m(s) ≡ Ba,b for some 0 < a < b

where the first equivalence holds by Lemma 19 and the fact that m is injective and
the second equivalence holds by Lemma 11. !

Proof of Theorem 18: (i) ⇔ (ii). The proof is by induction on 11(s). If 11(s) = 1,
the statement holds. For the induction step, we have the following equivalences:

s is recursively balanced
if and only if s is block balanced and

m(s) is recursively balanced
if and only if s is block balanced and

m(s) is Sturmian
if and only if s is block balanced and

s is Sturmian
if and only if s is Sturmian.
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Here we use Lemma 20 in the third step. Note that the induction terminates in
the case 11(s) = 1 since if 11(s) > 1, then s has blocks of different sizes and so
11(s) > 11(m(s)) ≥ 1. !

Now we turn to the proof of the characterization that a periodic 0,1-sequence s
is Sturmian if and only if the 1s in s are evenly distributed. One direction is easy
to show.
Proof of Theorem 18: (i) ⇒ (iii). Let Ba,b be a Sturmian sequence (i.e., a > b) and
let Ba,b|[x0,x1] be any interval of Ba,b. Using (1) and the fact that

b

a
(x1 − x0 + 1) =

11(Ba,b)
P(Ba,b)

length(Ba,b|[x0,x1])

we obtain

ones(Ba,b|[x0,x1]) =
11(Ba,b)
P(Ba,b)

length(Ba,b|[x0,x1]) +
{

b

a
(x0 − 1)

}
−

{
b

a
x1

}
. (4)

So, since 0 ≤
{

b
a (x0 − 1)

}
< 1 and 0 ≤

{
b
ax1

}
< 1 and both terms appear in (4)

with opposite signs,

ones(Ba,b|[x0,x1])− 1 < 11(Ba,b)
P(Ba,b)

length(Ba,b|[x0,x1]) < ones(Ba,b|[x0,x1]) + 1. !

To show the other direction, we make use of the first characterization. We show
that if the 1s in s are evenly distributed, then s is recursively balanced.

Proof of Theorem 18: (iii) ⇒ (ii). Let s be a periodic 0,1-sequence in which the 1s
are evenly distributed. We use induction on 11(s). If 11(s) = 1, then by definition s
is recursively balanced. For the induction step, we assume 11(s) > 1 and show that s
is block balanced and the 1s in m(s) are evenly distributed. Then we can apply the
induction hypothesis to obtain that m(s) and hence s is recursively balanced.

Step 1: s is block balanced. If there were blocks of 0s in s that differed in
length by at least two, then we could find intervals u and v of the same length l, such
that u contains two 1s and v contains none. But then {0, 2} ⊆ {

⌊
11(s)
P(s) l

⌋
,
⌈
11(s)
P(s) l

⌉
},

which is impossible. So s is block balanced at some k ∈ N, m(s) is well-defined and
the following identities hold:

P(m(s)) = 11(s)

11(m(s)) = P(s)− k11(s).
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Step 2: The 1s in m(s) are evenly distributed. Briefly, the idea is this: if
m′ is an interval of m(s) =: m that has too many 1s, looking at the corresponding
interval in s we will find many large blocks (i.e., many 0s) and so we can construct
an interval s′′ of s that has too few 1s. This gives a contradiction to the assumption
that the 1s in s are evenly distributed.

Let m′ = m(s)|[x0,x1] be an interval of m(s). We have to show that

ones(m′)− 1 <
11(m)
P(m)

length(m′) < ones(m′) + 1. (5)

Assume to the contrary that m′ violates (5).
We first argue that without loss of generality

ones(m′)− 1 ≥ 11(m)
P(m)

length(m′), (6)

i.e., that m′ contains too many 1s. Suppose m′ contains too few 1s, i.e., ones(m′)+
1 ≤ 11(m)

P(m) length(m′). Then choose x2 > x1 such that the length of the interval
m|[x0,x2] is a multiple αP(m), α ∈ N, of the period length. Then ones(m|[x0,x2]) =
α11(m) as m is periodic. Now the interval m|[x1+1,x2] has too many 1s, i.e.,
ones(m|[x1+1,x2])− 1 ≥ 11(m)

P(m) length(m|[x1+1,x2]), as witnessed by the following com-
putation:

ones(m|[x1+1,x2]) = ones(m|[x0,x2])− ones(m′) = α11(m)− ones(m′)

≥ α11(m)− 11(m)
P(m)

length(m′) + 1

=
11(m)
P(m)

(αP(m)− length(m′)) + 1

=
11(m)
P(m)

length(m|[x1+1,x2]) + 1.

Each element of m′ corresponds to a block of 0s in s, where we take the block
to include the preceding 1 but not the succeeding 1. Taking all the blocks in s
together that correspond to elements of m′ we obtain an interval s′ = s|[y0,y1] of s.
Let s′′ = s|[y0+1,y1] denote the interval obtained from s′ by removing the first 1.
Then the following identities hold.

length(m′) = ones(s′) = ones(s′′) + 1

ones(m′) = length(s′)− k ones(s′) = length(s′′) + 1− k(ones(s′′) + 1)



INTEGERS: 10 (2010) 833

By substituting these and the identities obtained in Step 1 into (6) we obtain

length(s′′) + 1− k(ones(s′′) + 1) ≥ P(s)− k11(s)
11(s)

(ones(s′′) + 1) + 1

which by canceling terms implies length(s′′) ≥ P(s)
11(s) (ones(s′′) + 1) and therefore

ones(s′′) + 1 ≤ 11(s)
P(s) length(s′′). This means that s′′ is an interval in s with too

few 1s, contradicting the assumption that the 1s in s are evenly distributed. !

Finally, we turn to the characterization that a periodic 0,1-sequence is Sturmian
if and only if it is swap symmetric. In Section 4 we have already tried to motivate
that Sturmian sequences are swap symmetric, and the proof indeed proceeds as
suggested by Figure 10.

Proof of Theorem 18: (i) ⇒ (iv). Let 0 < b < a and let s = Ba,b = (|coln(Ca,b)|)n.
We claim that

swap(s, 0) = (|coln(Ca,b,− 1
a
)|)n ≡ (|coln(Ca,b)|)n = s

which completes the proof. The equivalence in the second step holds by Fact 7. All
that is left to show is why the first equality holds.

To this end we argue as follows (see Figure 10): First we observe that shifting
the line down by − 1

a only changes those columns colx(Sa,b) with x mod a = 0.
More precisely colx(Sa,b,− 1

a
) = colx(Sa,b)−( 0

1 ) if 0 = x mod a and colx(Sa,b,− 1
a
) =

colx(Sa,b) otherwise. Now we observe that a point v in a flat staircase is a corner
if and only if v − e1 is not in the staircase. As we know which columns changed,
and that a ≥ 2, this allows us to determine where the corners are after the shift. If
x mod a = 0, then |colx(Ca,b,− 1

a
)| = 0. If x mod a = 1, then |colx(Ca,b,− 1

a
)| = 1.

Otherwise colx(Ca,b,− 1
a
) = colx(Ca,b). !

To show that swap symmetric sequences are Sturmian, we first prove two lemmas.
Note that in Lemma 21 we do not claim that if s is swap symmetric, then m(s) is
balanced. However we can show that m(s) is swap symmetric.4 We then observe in
Lemma 22 that swap symmetric sequences are necessarily balanced and hence m(s)
is balanced.

Lemma 21 Let s be a periodic 0, 1-sequence. If s is swap-symmetric and 11(s) > 1,
then m(s) is swap-symmetric.

4Our definition of swap symmetry was phrased such that it can be applied to arbitrary periodic
sequences.
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Proof. We know that P(m(s)) = 11(s) > 1. Let 0 ≤ i < P(s) be such that
swap(s, i) ≡ s. Then si = 1. Say the block preceding si is the j-th block of s. Swap-
ping at i makes all the k-th blocks of s with k ≡ j mod 11(s) larger by one and all
the k-th blocks of s with k ≡ j +1 mod 11(s) smaller by one while leaving all other
blocks unmodified. As P(m(s)) > 1, this means that swap(m(swap(s, i)), j) ≡ m(s)
but by assumption swap(s, i) ≡ s, so there exists an l ∈ Z such that

swap(m(s), l) ≡ swap(m(swap(s, i)), j) ≡ m(s)

which means that m(s) is swap symmetric. !

Lemma 22 If s is a periodic swap-symmetric sequence, then s is balanced.

Proof. Assume to the contrary that s contains at least three different entries. Let
0 ≤ i < P(s) be such that swap(s, i) ≡ s. Then si '= si+1. Let a = si and b = si+1.
Let c ∈ Z be such that there exists a j ∈ Z with sj = c but a '= c '= b. We now
define the parameter d(s), which is the sum of the distances of any occurrence of a
in period(s) to the closest preceding occurrence of c in s, i.e.,

d(s) :=
∑

0≤k<P(s),sk=a

k −max {l < k : sl = c} .

Note that if s ≡ s′, then d(s) = d(s′) as shifting a sequence to the left or right
does not affect the distances between occurrences of values. Now the swap at i
interchanges the a at position i and the b at position i + 1, which increases the
distance of this occurrence of a to the previous c by 1 and leaves all other distances
of an occurrence of a to a previous c unaffected. Hence d(swap(s, i)) = d(s)+1 and
so swap(s, i) '≡ s, which is a contradiction. !

After these two lemmas, the proof that swap symmetric sequences are Sturmian is
easy. Again we proceed by showing that swap symmetric sequences are recursively
balanced.

Proof of Theorem 18: (iv) ⇒ (ii). Let s be a periodic 0,1-sequence that is swap
symmetric. There is an index i at which we can swap, so 11(s) > 0. If 11(s) = 1, s
is recursively balanced by definition. So we can assume 11(s) > 1. By Lemma 21
it follows that m(s) is swap symmetric. By Lemma 22 it follows that m(s) is
balanced. Taking both together we conclude that s is block balanced and that m(s)
is well-defined and swap symmetric. By induction we infer that m(s) is recursively
balanced. But if s is block balanced and m(s) is recursively balanced, then s is
recursively balanced. !
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6. Application: Short Representations

It is a celebrated result of Barvinok [1] that there is a polynomial time algorithm
for counting the number of lattice points inside a given rational polytope when the
dimension of the polytope is fixed. Note that if the dimension is an input variable,
the problem gets NP -hard [11]. For more about the algorithm see [7], [8] and the
textbook [2].

The crucial ingredient of Barvinok’s proof was his result that the set of lattice
points in a simplicial cone of any fixed dimension can be expressed using a short
generating function. In this section we give a new proof of this result for the special
case of 2-dimensional cones (Theorem 23). A generalization of our proof to higher
dimensions is not immediate, we hope, however, that such a generalization can be
found in the future.

We consider the Laurent polynomial ring K[x±1 , . . . , x±d ]. For a vector m =
(m1, . . . ,md) ∈ Zd we write xm := xm1

1 . . . xmd
d . This gives a bijection between

Zd and the set of monomials in K[x±1 , . . . , x±d ]. We can thus represent the set
of lattice points in a polyhedron P by the generating function fP (x) =

∑
m∈Zd\P xm.

If P \ Zd is large, this representation of fP contains many terms. Using ratio-
nal functions it is possible to find shorter representations of fP . For example the
generating function of all non-negative integral multiples of a vector m can be
written as 1

1−xm , which allows us to express point sets like {0,m, 2m, . . . , km} as
1−x(k+1)m

1−xm .

Developing these notions in detail is beyond the scope of this article. As ref-
erences we recommend [5] and [2]. However, we would like to point out, infor-
mally, how the algebraic operations on generating functions correspond to geometric
operations: The sum of generating functions corresponds to the union of the re-
spective sets. The product of generating functions corresponds to the Minkowski
sum of the respective sets. Taking the product of a generating function and a mono-
mial xm thus corresponds to translation by m. Evaluating the generating function
fP (x) at the values xm1 , . . . , xmd for m1, . . . ,md ∈ Zd corresponds to applying the
linear map given by the matrix A = (m1 . . .md) that has the mi as columns to the
set P .

As we already mentioned, for every 2-dimensional rational cone K in R2 there
exists a lattice transform A such that AK = cone (( 1

0 ) , ( a
b )) for a, b ∈ N with

gcd(a, b) = 1. Barvinok showed a general version of the following theorem for cones
of any dimension. We are going to give a new proof of this version for 2-dimensional
cones (recall the definitions from the end of Section 3).

Theorem 23 Let a, b ∈ N with gcd(a, b) = 1. Let K = cone (( 1
0 ) , ( a

b )). Then
fK admits a representation as a rational function with O(log a) terms and this
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Figure 11: Expressing the lattice points in a cone in terms of triangles. The right
picture shows the occurring shapes (dashed lines indicate open faces).

representation can be computed in time polynomial in log a + log b.

Proof. Step 1. We express fK in terms of f∆′
a,b

. To this end we first note that

cone(( 1
0 ) , ( a

b )) =
⋃

k≥0

k ( a
b ) + (cone(( 1

0 ) , ( a
b )) \ R× [0, b))

and

Z2 \ cone(( 1
0 ) , ( a

b )) \ R× [0, b) = {( 0
0 )} ∪ T ′a,b

∪
(
{( i

0 ) : i ≥ a + 1} +
{(

0
j

)
: 0 ≤ j ≤ b− 1

})
.

See Figure 11. In terms of generating functions this translates into

fK(x) =
1

1− xa
1x

b
2

(
1 + f∆′

a,b
(x) +

xa+1
1

1− x1

1− xb
2

1− x2

)
.

Here we express fK using f∆′
a,b

and a constant number of other terms. So it suffices
to give a short expression of f∆′

a,b
.

Step 2. We use the recursion from Lemma 17 to give a short expression
for f∆′

a,b
. Let (cn)n be the sequence defined by c1 = b, c2 = a and ci+2 =

ci mod ci+1 and let j be the index such that cj+1 = 1 and cj+2 = 0. We
express fT ′

ci+1,ci
in terms of fT ′

ci+2,ci+1
, by applying first Lemma 17(i) and then
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Lemma 17(ii) and Lemma 17(iv).

fT ′
ci+1,ci

(x1, x2) = fT ′
ci+1,ci+2

(x1x
ci div ci+1
2 , x2) + fT ′

ci+1,(ci div ci+1)ci+1
(x1, x2)

= xci+1
1 xci+2

2 · fT ′
ci+2,ci+1

(x−1
2 , x−1

1 x−(ci div ci+1)
2 )

+
1

1− x2
·
(

1− xci+1+1
1

1− x1
− 1− xci+1+1

1 x(ci div ci+1)(ci+1+1)
2

1− x1x
ci div ci+1
2

)
.

We have thus expressed fT ′
ci+1,ci

using a constant number of other terms. We
proceed in this fashion until we reach the case fT ′

cj+1,cj
= fT ′

1,cj
which we can solve

directly using Lemma17(iii):

fT ′
1,cj

= x1
1− x

cj

2

1− x2
.

Step 3. The expression is short and can be computed in polynomial time as
the Euclidean Algorithm is fast. By Lemma 15 the number of iterations required in
step 2 is O(log a). In each step we pick up a constant number of terms. So the total
number of terms in the final expression is O(log a). The algorithm runs in time
polynomial in log a+log b as the numbers ci+2 = ci mod ci+1 and ci div ci+1 can
be computed in time polynomial in log ci + log ci+1. !

This proof of Theorem 23 differs from Barvinok’s. Barvinok gives a signed de-
composition of a cone into unimodular cones. We give a positive decomposition of
the triangle T ′a,b into triangles T ′ci+1,(ci div ci+1)ci+1

that are not unimodular but easy
to describe, i.e., using a constant number of terms.

In this context “positive” means that the 2-dimensional triangle T ′a,b is written
as a disjoint union of half-open 2-dimensional triangles T ′a,b. This does not mean
that the numerator of the rational function has only positive coefficients. Negative
coefficients appear in the “easy” description of the triangles T ′ci+1,(ci div ci+1)ci+1

.
Lemma 16 can be used to obtain a short representation of the generating func-

tion of the lattice points in the fundamental parallelepiped of any rational cone
in the plane. We implement this idea in the proof of Theorem 24 in Section 7.
This representation can also be used to give an alternative proof of Theorem 23.
Again the representation is positive in the sense that the set of lattice points in
the fundamental parallelepiped is expressed as a disjoint union of Minkowski sums
of intervals. But of course still negative coefficients appear as they appear in the
representation of intervals. As opposed to the representation based on triangles, the



INTEGERS: 10 (2010) 838

representation based on fundamental parallelepipeds relies on taking products; so
with this approach expanding the products in the numerators leads to an expression
that is not short any more.

It is also possible to give a recursion similar to Lemmas 14, 16 and 17 directly
for cones. However, in this case the recursion does require us to take differences of
sets and we do not obtain a “positive” decomposition. Nonetheless the recursion
differs from the one based on the continued fraction expansion of b

a given in [2,
Chapter 15].

7. Application: Dedekind-Carlitz Polynomials

Given 0 < a, b ∈ N with gcd(a, b) = 1, Carlitz introduced the following polynomial
generalization of Dedekind sums, which Beck, Haase and Matthews in [4] call the
Dedekind-Carlitz polynomial:

ca,b(x, y) :=
a−1∑

k=1

xk−1y#
b
a k$.

For a brief overview of the history of and literature about Dedekind sums and the
Dedekind-Carlitz polynomial, we refer to [4]. There also the relationship between
Dedekind-Carlitz polynomials and the fundamental parallelepipeds of cones (see be-
low) is established. Appealing to Barvinok’s Theorem, Beck, Haase and Matthews
conclude that the Dedekind-Carlitz polynomial can be computed in polynomial time
and must have a short representation,5 however they do not give such a short rep-
resentation explicitly. Also they remark that Dedekind sums can be computed effi-
ciently in the style of the Euclidean Algorithm and ask if such a recursive procedure
also exists for Dedekind-Carlitz polynomials. In this section we use the recursion
for the lattice points inside a fundamental parallelepiped developed in Section 3 to
give an explicit recursion formula that allows one to compute short representations
of Dedekind-Carlitz polynomials in the style of the Euclidean Algorithm.

We first observe that ca,b is the generating function of the set

{
z ∈ Z2 : z1 =

⌊
b

a
z2

⌋
, 1 ≤ z1 ≤ a− 1

}
−

(
1
0

)
= Π◦↓,a,b −

(
1
0

)
.

which is just a translate of the set of lattice points in the open fundamental pa-
rallelepiped Π◦↓,a,b. Hence the recursion given in Lemma 16 can be used to give

5In [4] this is argued even for higher-dimensional Dedekind-Carlitz polynomials.
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a recursion formula for Dedekind-Carlitz sums in the spirit of the Euclidean Al-
gorithm. To this end, we use d↓a,b(x, y) and d→a,b(x, y) to denote the generating
functions of the sets Π◦↓,a,b and Π◦→,a,b, respectively. So

d↓a,b(x, y) =
a−1∑

k=1

xky#
b
a k$,

d→a,b(x, y) =
b−1∑

k=1

x5
a
b k6yk.

Now, by simply translating the geometric operations into the language of generat-
ing functions, we obtain the following theorem. In [4] this result is derived from
Barvinok’s Theorem. We give an explicit recursion formula in the proof.

Theorem 24 Let 0 < a, b ∈ N with gcd(a, b) = 1. Then ca,b admits a represen-
tation as a rational function with O(log a) terms and this representation can be
computed in time polynomial in log a + log b.

As was said before, the representation we obtain is “positive” in the sense that we
build a partition of the set Π◦↓,a,b using Minkowski sums and disjoint unions of inter-
vals. It is not positive in the sense that all coefficients appearing the representation
are positive, as the representations of intervals that we use contain coefficients with
opposite signs.

It is important to stress that the representation we obtain makes heavy use of
Minkowski sums of intervals. In the language of generating functions, this corre-
sponds to taking products of expressions of the form 1−xku

1−xu for k ∈ N and u ∈ Z2.
Expanding the numerators of these products by applying the distributive law may
lead to a numerator with a number of summands exponential in the number of
factors of the product. So the expression we obtain is only short if products are not
expanded. We note that this problem does not occur with the representation we
used in the proof of Theorem 23.

Proof. First we note that ca,b(x, y) = x−1d↓a,b(x, y). Now we construct a short
representation of d↓a,b(x, y) by applying Lemma 16 inductively. To that end let
(cn)n be the sequence defined by c1 = b, c2 = a and ci+2 = ci mod ci+1 and
let j be the index such that cj+1 = 1 and cj+2 = 0. Such a j exists because
gcd(a, b) = 1.
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By Lemma 16(ii) we can assume without loss of generality c1 > c2. Then for all
i ≥ 1

d↓ci+1,ci
(x, y) = d↓ci+1,ci+2

(xyci div ci+1 , y)

d→ci+1,ci
(x, y) =

1− y−(ci div ci+1)

1− y−1
d↓ci+1,ci+2,(xyci div ci+1 , y)

+y−(ci div ci+1)d→ci+1,ci+2,(xyci div ci+1 , y)

+xayb y−1 − y−(ci div ci+1)

1− y−1

and

d→ci,ci+1
(x, y) = xaybd↓ci+1,ci

(−y,−x) and d↓ci,ci+1
(x, y) = xaybd→ci+1,ci

(−y,−x).

Together with

d→cj ,cj+1
(x, y) = 0 and d↓cj ,cj+1

(x, y) =
x− xa

1− x

this gives us a recursion formula for d↓a,b(x, y). In each step of the recursion we pick
up only a constant number of terms and by Lemma 15 we need only O(log a) steps,
so the resulting representation has only O(log a) terms. As standard arithmetic
operations can be computed in time polynomial in the input length, the algorithm
runs in time polynomial in log a + log b. !

Note that by using products, one can give a representation of the lattice points
in an interval of length n with O(log n) many terms and without using rational
functions. Using such a representation, the above proof gives a representation with
O(log2 a) terms in time polynomial in log a + log b. Moreover this representation
then is positive in that every coefficient appearing in this expression has a positive
sign.

8. Application: Theorem of White

To conclude this paper, we give a partly new proof for a theorem of White [21,
pp.390-394], characterizing lattice tetrahedra containing no lattice points but the
vertices. Several proofs appeared over the years, e.g. by Noordzij [14], Scarf [19]
(based partly on work by R. Howe) and recently Reznick [18], who also gives an
overview of the history of this theorem. Furthermore his proof has the advantage
that it keeps track of the vertices, at the cost of geometric transparency. We con-
struct our proof based on ideas in [19] and mainly [18].
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For (a, b, n) ∈ Z3 we define the tetrahedron Ta,b,n as

conv









0
0
0



 ,




1
0
0



 ,




0
1
0



 ,




a
b
n








 .

This should not be confused with the point set Ta,b defined in Section 3. As we
will not use the latter any more, no ambiguities should arise.

A “hidden” parameter, as Reznick writes, is c = n − a − b + 1 (although he
considers a slightly different c). We will see that c plays a role equal to the ones of
a and b in Ta,b,n. Also note that a + b + c = n + 1.

We call two tetrahedra T and T ′ equivalent (T ≈ T ′), if there is an affine lattice
transformation that takes the vertices of T to the vertices of T ′.

A lattice simplex T is clean if there are no non-vertex lattice points on the
boundary. If there are also no lattice points in the interior of T (i.e., the vertices
are the only lattice points), then we call T empty.

Theorem 25 (White)A lattice tetrahedron T is empty if and only if it is equivalent
to T0,0,1 or to some T1,d,n, where gcd(d, n) = 1 and 1 ≤ d ≤ n− 1.

Proof of Theorem 25 (Necessity). As we easily see, T0,0,1 is empty. So we consider
T1,d,n, where gcd(d, n) = 1 and 1 ≤ d ≤ n − 1. Let w ∈ Z3 \ T1,d,n. As the first
coordinate of all vertices of T1,d,n is either 0 or 1, we know w1 ∈ {0, 1}.

If w1 = 0, then w ∈ conv
{(

0
0
0

)
,
(

0
1
0

)}
and w is a vertex.

If w1 = 1, then w ∈ conv
{(

1
0
0

)
,
(

1
d
n

)}
. As gcd(d, n) = 1 the vector

(
0
d
n

)
is

primitive and so w is again a vertex.
Therefore T1,d,n and any equivalent tetrahedron is empty. This proves that lattice

tetrahedra of the form T0,0,1 or T1,d,n with gcd(d, n) = 1 and 1 ≤ d ≤ n − 1 are
necessarily empty. !

To show the sufficiency, we use the following theorem by Reeve. A nice proof
can be found in [18, pp.5-6].

Theorem 26 ([17])The lattice tetrahedron T is clean if and only if T ≈ T0,0,1 or
T ≈ Ta,b,n, where

n ≥ 2, 0 ≤ a, b ≤ n− 1 and gcd(a, n) = gcd(b, n) = gcd(1− a− b, n) = 1.

We will now prove the sufficiency to motivate the rest of the section, where we
anticipate the results that are stated and proved only afterwards.
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Proof of Theorem 25 (Sufficiency). If T is an empty lattice tetrahedron, then in
particular it is clean and thus by Theorem 26 equivalent to T0,0,1 or some Ta,b,n. If
T ≈ T0,0,1, we are done. Otherwise Ta,b,n ≈ T is of course also empty and therefore
fulfills the conditions for Lemma 28.

This in turn enables us to use Lemma 29 which tells us that one of a, b, c equals
1. Finally, we can see by Lemma 27 that we can choose the order of the coordinates
freely, so we get T ≈ T1,d,n, where gcd(d, n) = 1 and 1 ≤ d ≤ n − 1, again by
Theorem 26. !

It turns out to be useful to describe a clean tetrahedron Ta,b,n in a slightly
different way:

Lemma 27 Let Ta,b,n be empty and 0 ≤ a, b ≤ n− 1. Then

Ta,b,n ≈ conv









1
0
0



 ,




0
1
0



 ,




0
0
1



 ,




a
b
c








 , and c ≥ 1.

In the next two proofs we follow mostly [19, pp.411f].

Proof. If n < a + b, then



1
1
1



 = α1




0
0
0



 + α2




1
0
0



 + α3




0
1
0



 + α4




a
b
n



 , where

α4 = 1
n , α3 = 1 − b

n , α2 = 1 − a
n , and α1 = 1 − α2 − α3 − α4 = a+b−n−1

n .
But this means that 0 ≤ α1 < 1 and 0 < α2,α3,α4 < 1, and thus

(
1
1
1

)
∈ Ta,b,n,

contradicting the assumption that Ta,b,n is empty.
So we know that n ≥ a+ b, which proves c ≥ 1. The affine lattice transformation

x 9→




1 0 0
0 1 0
−1 −1 1



x +




0
0
1





gives us the desired form for Ta,b,n. !

The key ingredient for the rest of the proof of Theorem 25 is to look at the
Beatty sequences for a

n , b
n and c

n simultaneously. For this purpose let us define the



INTEGERS: 10 (2010) 843

sum of the sequences, i.e.,

f(k) := Bn,a(k) + Bn,b(k) + Bn,c(k)

=
⌊a

n
k
⌋

+
⌊

b

n
k

⌋
+

⌊ c

n
k
⌋
−

⌊a

n
(k − 1)

⌋
−

⌊
b

n
(k − 1)

⌋
−

⌊ c

n
(k − 1)

⌋
.

This function has a strong connection to Theorem 25 as we see next.

Lemma 28 If Ta,b,n is empty, then f(k) = 1 for k = 2, . . . , n− 1.

Proof. Let us first define the function g(k) :=
⌈

a
nk

⌉
+

⌈
b
nk

⌉
+

⌈
c
nk

⌉
. An easy

computation verifies that for a, b, c relatively prime to n and 2 ≤ k ≤ n−1, we have

f(k) = g(k)− 3− (g(k − 1)− 3) = g(k)− g(k − 1).

We will now show that g(k) = k + 2 for k = 1, . . . , n− 1 and also that a, b, c are
relatively prime to n.

Suppose that g(k) ≤ k + 1 for some k. Then we can define a lattice point
(

p
q
r

)

with
p ≥

⌈a

n
k
⌉

, q ≥
⌈

b

n
k

⌉
, r ≥

⌈ c

n
k
⌉

,

and p + q + r = k + 1. But then we find α1, . . . ,α4 with




p
q
r



 =




1 0 0 a
0 1 0 b
0 0 1 c








α1
...

α4



 , where

α1 = p− a
nk, α2 = q − b

nk, α3 = r − c
nk, α4 = 1

nk and

4∑

i=1

αi = p + q + r − a

n
k − b

n
k − c

n
k +

k

n

= k + 1− (a + b + c− 1)k
n

= k + 1− k

= 1.

As this means that
(

p
q
r

)
is in conv

{(
1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)
,
(

a
b
c

)}
≈ Ta,b,n, we have a

contradiction.
So we know that g(k) ≥ k + 2.
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If one of a, b, c is not relatively prime to n, say it is c, then c
nk ∈ Z for some

k ∈ {1, . . . , n− 1}. So we get

g(k) + g(n− k) =
⌈a

n
k
⌉

+
⌈

b

n
k

⌉
+

⌈ c

n
k
⌉

+
⌈
a− a

n
k
⌉

+
⌈
b− b

n
k

⌉
+

⌈
c− c

n
k
⌉

=
⌈a

n
k
⌉

+
⌈

b

n
k

⌉
+

⌈ c

n
k
⌉

+ a−
⌊a

n
k
⌋

+ b−
⌊

b

n
k

⌋
+ c−

⌊ c

n
k
⌋

,

and by the assumption on c this is at most a + b + c + 2 = n + 3. But then either
g(k) ≤ k + 1 or g(n− k) ≤ n− k + 1, which cannot be true for an empty Ta,b,n.

If a, b, c are all relatively prime to n, then g(k)+ g(n−k) = a+ b+ c+3 = n+4.
Together with g(k) ≥ k + 2 and g(n− k) ≥ n− k + 2 we get the desired equality.

We have now seen that g(k) = k + 2 for k = 1, . . . , n − 1. Together with
f(k) = g(k)− g(k − 1) this implies f(k) = 1 for k = 2, . . . , n− 1. !

This is all we need to finish the proof:

Lemma 29 If f(k) = 1 for k = 2, 3, . . . , n − 1, then at least one of a, b, or c
equals 1.

This is the new part of the proof. It builds on the observations about Sturmian
sequences developed in the first half of this article. In particular we make use of
the fact that Sturmian sequences are block balanced, and, more generally, that the
1s in a Sturmian sequence are evenly distributed. See Theorem 18iii.

Proof. Suppose not. Without loss of generality c < a, b. We consider the intervals
Bn,a|[1,n], Bn,b|[1,n], and Bn,c|[1,n]. As c ≥ 2, there is another 1 in Bn,c|[1,n] apart
from Bn,c(n) = 1. Let m be the position of the 1 preceding Bn,c(n) = 1, i.e.,
1 < m < n such that Bn,c(m) = 1 and Bn,c(k) = 0 for m < k < n. Because
f(k) = 1 for all 2 ≤ k ≤ n− 1, we know that Bn,a(m) = Bn,b(m) = 0.

At this point we make a table listing the values of the three intervals at the
positions 1, . . . , n, filling in the values that we know and marking the values that
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we have not yet determined with ∗.

1 2 . . . m− 1 m m + 1 . . . n− 1 n

Bn,a|[1,n] = 0 ∗ . . . ∗ 0 ∗ . . . ∗ 1
Bn,b|[1,n] = 0 ∗ . . . ∗ 0 ∗ . . . ∗ 1
Bn,c|[1,n] = 0 ∗ . . . ∗ 1 0 . . . 0 1

Because f(n − 1) = 1 we know that either Bn,a(n − 1) = 1 or Bn,b(n − 1) =
1 and we may assume it is Bn,a(n − 1) = 1. We are now going to apply the
following argument over and over again. By Theorem 18iii we know that if we find
an interval of length l in a Sturmian sequence that contains t 1s, then any other
interval of length l in the same sequence has to contain at least t− 1 and at most
t + 1 1s. In this case ones(Bn,a|[n−1,n]) = 2 and so both ones(Bn,a|[m−1,m]) ≥ 1
and ones(Bn,a|[m,m+1]) ≥ 1, which means Bn,a(m − 1) = Bn,a(m + 1) = 1 and
consequently Bn,b(m− 1) = Bn,b(m + 1) = 0. Now our table looks as follows.

1 2 . . . m− 1 m m + 1 . . . n− 1 n

Bn,a|[1,n] = 0 ∗ . . . ∗ 1 0 1 ∗ . . . ∗ 1 1
Bn,b|[1,n] = 0 ∗ . . . ∗ 0 0 0 ∗ . . . ∗ 0 1
Bn,c|[1,n] = 0 ∗ . . . ∗ 0 1 0 . . . 0 1

But now ones(Bn,b|[m−1,m+1]) = 0 and so Bn,b(n− 2) = 0 and Bn,a(n− 2) = 1.
This gives ones(Bn,a|[n−2,n]) = 3 which allows us to deduce Bn,a(m + 2) = 1 and
Bn,b(m + 2) = 0. Then we have ones(Bn,b|[m−1,m+2]) = 0 and so Bn,b(n − 3) = 0
and Bn,a(n − 3) = 1, which gives ones(Bn,a|[n−3,n]) = 4 and so Bn,a(m + 3) = 1
and Bn,b(m + 3) = 0. We continue this argument inductively until we have shown
that Bn,b(k) = 0 for m + 1 ≤ k ≤ n− 1.

At this point both Bn,b|[m−1,n−1] and Bn,c|[m+1,n−1] are intervals of consecutive
0s, of length n −m + 1 and n −m − 1, respectively, where the latter is maximal.
So the blocks of Bn,b are strictly larger than the blocks of Bn,c. As the 1s in
Sturmian sequences are evenly distributed, this implies c = 11(Bn,c) > 11(Bn,b) = b,
in contradiction to our assumption. !
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[7] Jesús A. De Loera, The many aspects of counting lattice points in polytopes, Mathematische
Semesterberichte 52 (2005), no. 2, 175–195.
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