VOLUME AS A MEASURE OF APPROXIMATION FOR THE JACOBI-PERRON ALGORITHM

Fritz Schweiger
Department of Mathematics, University of Salzburg, Salzburg, Austria
fritz.schweiger@sbg.ac.at

Received: 11/7/08, Accepted: 11/24/09, Published: 3/5/10

Abstract

We consider the values of the consecutive minima of the quantities $F_{j}(x ; g)=$ $\left(A_{0}^{(g+d+1)}+\sum_{j=1}^{d} A_{0}^{(g+j)} y_{j}\right)\left(A_{0}^{(g+j)}\right)^{-1}, 1 \leq j \leq d$. W. Schmidt, in 1958, calculated the first and second minimum for $j=1$ and $d=2$. Schweiger, in 1975, considered the case $j=1$ for any $d \geq 2$. This note is a continuation of these investigations.

1. Introduction

W. Schmidt opened a new route on Diophantine approximation by the JacobiPerron algorithm when he introduced volume as a measure of approximation. For $g \geq d+1$, let $p^{(g)}=\left(\frac{A_{1}^{(g)}}{A_{0}^{(g)}}, \ldots, \frac{A_{d}^{(g)}}{A_{0}^{(g)}}\right)$ be the rational approximation to the point $x=\left(x_{1}, \ldots, x_{d}\right)$ provided by the Jacobi-Perron algorithm. Then d consecutive points $p^{(g+1)}, \ldots, p^{(g+d)}$, and x form a simplex with volume $\left(y=T^{g} x\right)$

$$
V(x ; g)=\frac{1}{d!A_{0}^{(g+1)} \ldots A_{0}^{(g+d)}\left(A_{0}^{(g+d+1)}+\sum_{j=1}^{d} A_{0}^{(g+j)} y_{j}\right)}
$$

The Jacobi-Perron algorithm can be described by iteration of the map T on the d-dimensional unit cube as follows (see [4]):

$$
\begin{aligned}
T\left(x_{1}, \ldots, x_{d}\right) & =\left(\frac{x_{2}}{x_{1}}-k_{1}(x), \ldots, \frac{1}{x_{1}}-k_{d}(x)\right) \\
k_{j}(x) & =\left[\frac{x_{j+1}}{x_{1}}\right], 1 \leq j \leq d-1, k_{d}(x)=\left[\frac{1}{x_{1}}\right], \\
k(x) & =\left(k_{1}(x), \ldots, k_{d}(x)\right)
\end{aligned}
$$

The points x and z are called equivalent if there are $n \geq 0, m \geq 0$ such that $T^{n} x=T^{m} z$.

We further introduce the sequence $k^{(g)}(x)=k\left(T^{g-1} x\right)$ and the matrices

$$
\begin{gathered}
\\
\beta^{(g)}(x)=\left(\begin{array}{ccccc}
k_{d}^{(g)} & 0 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 0 & 0 \\
k_{1}^{(g)} & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
k_{d-1}^{(g)} & 0 & \ldots & 1 & 0
\end{array}\right) \\
\left(\begin{array}{cccc}
A_{0}^{(g+d+1)} & A_{0}^{(g+1)} & \ldots & A_{0}^{(g+d)} \\
A_{1}^{(g+d+1)} & A_{1}^{(g+1)} & \ldots & A_{1}^{(g+d)} \\
\vdots & \vdots & \ddots & \vdots \\
A_{d}^{(g+d+1)} & A_{d}^{(g+1)} & \ldots & A_{d}^{(g+d)}
\end{array}\right)=\beta^{(1)}(x) \circ \ldots \circ \beta^{(g)}(x) .
\end{gathered}
$$

In this note we consider the quantities

$$
F_{j}(x ; g)=\frac{A_{0}^{(g+d+1)}+\sum_{k=1}^{d} A_{0}^{(g+k)} y_{k}}{A_{0}^{(g+j)}}, 1 \leq j \leq d
$$

Let $\xi>1$ be the largest root of $X^{d+1}-X^{d}-1=0$. In [2] the following conjecture was stated. For all x with non-terminating expansion there are infinitely many values of g such that the inequality

$$
F_{j}(x, g)>\xi^{d+1-j}+d \xi^{-j}
$$

is satisfied.
Since for $x^{*}=\left(\frac{1}{\xi}, \frac{1}{\xi^{2}}, \ldots, \frac{1}{\xi^{d}}\right)$ it is easy to see that $\lim _{g \rightarrow \infty} F_{j}\left(x^{*}, g\right)=\xi^{d+1-j}+d \xi^{-j}$. This result was thought to be best possible.

For $d=1$ this conjecture is true by Hurwitz' famous result on continued fraction. (Note that for $d=1$ we have $\xi+\xi^{-1}=\sqrt{5}$.)
W. Schmidt [1] proved the conjecture for $d=2$ and $j=1$. For infinitely many $g \geq 1$, the inequality

$$
F_{2}\left(x^{*}, g\right)>3 \xi-2=\lim _{s \rightarrow \infty} F_{2}\left(\left(\frac{1}{\xi}, \frac{1}{\xi^{2}}\right), s\right) \sim 2,39671 \ldots
$$

is true. Moreover, he showed that if x is not equivalent to $x^{*}=\left(\frac{1}{\xi}, \frac{1}{\xi^{2}}\right)$, then the constant $\xi^{2}+2 \xi^{-1}$ could be replaced by the greater value $\gamma \sim 4.26459 \ldots$ which
is related to $z^{*}=\left(\frac{1}{\eta}+\frac{1}{\eta^{2}}, \frac{1}{\eta}\right)$ where $\eta^{3}-2 \eta^{2}-3 \eta=1, \eta>3$. Again, this result is best possible in an obvious sense. If x is not equivalent to x^{*} or z^{*} then we obtain

$$
F_{1}(x, g)>\frac{13}{3}
$$

for infinitely many values of g.
Schweiger [3]proved that the conjecture is true for any $d \geq 1$ and $j=1$. Schweiger [2] additionally proved that the conjecture is true for $d=2$ and $j=2$. In this paper this matter is further explored. For $d=2$ and $j=2$ the second minimum is calculated. Surprisingly the second minimum of $F_{2}(x, g)$ is given by $y^{*}=\left(\frac{1}{\lambda}, \frac{1}{\lambda}+\frac{1}{\lambda^{2}}\right)$, $\lambda^{3}=2 \lambda^{2}+1$, and not by $z^{*}=\left(\frac{1}{\eta}+\frac{1}{\eta^{2}}, \frac{1}{\eta}\right)$ as for $j=1$. Furthermore, it is shown that the conjecture is not true for $d=3$ and $j=3$.

2. The Second Minimum

Theorem. Let $\lambda>1$ be the greatest root of $\lambda^{3}-2 \lambda^{2}-1=0$. Then for all x which are not equivalent to $\left(\frac{1}{\xi}, \frac{1}{\xi^{2}}\right)$ for infinitely many $g \geq 1$ we have

$$
F_{2}(x, g)>3 \lambda-4=\lim _{s \rightarrow \infty} F_{2}\left(\left(\frac{1}{\lambda}, \frac{1}{\lambda}+\frac{1}{\lambda^{2}}\right), s\right) \sim 2.61671 \ldots
$$

Proof. Here and in the sequel, overlines refer to a periodic expansion. We first consider two special cases:

Case 1. $\left(\frac{1}{\alpha}, \frac{1}{\alpha}+\frac{1}{\alpha^{2}}\right)=\binom{\overline{1}}{1}, \alpha^{3}-\alpha^{2}-\alpha-1=0$. Then

$$
\lim _{s \rightarrow \infty} F_{2}\left(\left(\frac{1}{\alpha}, \frac{1}{\alpha}+\frac{1}{\alpha^{2}}\right), s\right)=-\alpha^{2}+4 \alpha-1 \sim 2.97417 \ldots
$$

Case 2. $\left(\frac{1}{\beta}, \frac{1}{\beta}+\frac{1}{\beta^{2}}\right)=\binom{\overline{1}}{2}, \beta^{3}-2 \beta^{2}-\beta-1=0$. Then

$$
\lim _{s \rightarrow \infty} F_{2}\left(\left(\frac{1}{\beta}, \frac{1}{\beta}+\frac{1}{\beta^{2}}\right), s\right)=-\beta^{2}+5 \beta-3 \sim 3.24781 \ldots
$$

Now consider $F_{2}(x, g+2)=k_{2}^{(g+2)}+x_{2}^{(g+2)}+\frac{A_{0}^{(g+3)}}{A_{0}^{(g+4)}}\left(k_{1}^{(g+2)}+x_{1}^{(g+2)}\right)+\frac{A_{0}^{(g+2)}}{A_{0}^{(g+4)}}$. If $F_{2}(x, g)<2.62$ for all $g \geq g_{0}$, then clearly $k_{2}^{(t)} \leq 2$. Clearly, we may assume that $g_{0}=1$, so that we have $x_{2}^{(g+2)}=\frac{k_{1}^{(g+3)}+x_{1}^{(g+3)}}{k_{2}^{(g+3)}+x_{2}^{(g+3)}} \geq \frac{1}{9}$ and $x_{1}^{(g+2)}=\frac{1}{k_{2}^{(g+3)}+x_{2}^{(g+3)}} \geq$ $\frac{1}{3}$.

Now let $k_{2}^{(t)}=2$ infinitely often. Assume that $k_{2}^{(g+2)}=2$.
If

$$
\begin{equation*}
k_{1}^{(g+2)}=2, \tag{1}
\end{equation*}
$$

then clearly $A_{0}^{(g+4)} \leq 2 A_{0}^{(g+3)}+3 A_{0}^{(g+2)}$. Hence,

$$
\begin{aligned}
F_{2}(x, g+2) & \geq 2+\frac{1}{9}+\frac{A_{0}^{(g+3)}}{A_{0}^{(g+4)}}\left(2+\frac{1}{3}\right)+\frac{A_{0}^{(g+2)}}{A_{0}^{(g+4)}} \\
& =\frac{19}{9}+\frac{7 A_{0}^{(g+3)}+3 A_{0}^{(g+2)}}{3 A_{0}^{(g+4)}} \\
& \geq \frac{19}{9}+\frac{7 A_{0}^{(g+3)}+3 A_{0}^{(g+2)}}{6 A_{0}^{(g+3)}+9 A_{0}^{(g+2)}} \\
& \geq \frac{19}{9}+\frac{2}{3}=\frac{25}{9}>\frac{26}{10}
\end{aligned}
$$

Next, assume that $k_{1}^{(g+2)}=1$. Looking at Case 2 and Equation 1 we may assume

$$
k_{2}^{(g+1)}=2, k_{1}^{(g+1)}=0, k_{2}^{(g+1)}=k_{1}^{(g+1)}=1
$$

or $k_{2}^{(g+1)}=1, k_{1}^{(g+1)}=0$. In any case we obtain

$$
A_{0}^{(g+4)} \leq 2 A_{0}^{(g+3)}+A_{0}^{(g+1)}
$$

Then again

$$
\begin{aligned}
F_{2}(x, g+2) & \geq \frac{19}{9}+\frac{A_{0}^{(g+3)}}{A_{0}^{(g+4)}}\left(1+\frac{1}{3}\right)+\frac{A_{0}^{(g+2)}}{A_{0}^{(g+4)}} \\
& =\frac{19}{9}+\frac{4 A_{0}^{(g+3)}+3 A_{0}^{(g+2)}}{3 A_{0}^{(g+4)}} \\
& \geq \frac{19}{9}+\frac{4 A_{0}^{(g+3)}+3 A_{0}^{(g+2)}}{6 A_{0}^{(g+4)}+3 A_{0}^{(g+1)}} \geq \frac{25}{9}
\end{aligned}
$$

Now assume that $k_{1}^{(g+2)}=0$ and note that only the digits $\binom{0}{2},\binom{1}{1},\binom{0}{1}$ must be considered. Hence, the remaining case is

$$
k_{2}^{(g+1)}=1, k_{1}^{(g+1)}=0
$$

(the case $k_{1}^{(g+1)}=1$ is not allowed by Perron's condition for the digits).
We have $A_{0}^{(g+4)}=A_{0}^{(g+3)}+A_{0}^{(g+1)}$, and we estimate

$$
F_{2}(x, g+2) \geq \frac{19}{9}+\frac{A_{0}^{(g+3)}}{A_{0}^{(g+4)}} \frac{1}{3}+\frac{A_{0}^{(g+2)}}{A_{0}^{(g+4)}}=\frac{19}{9}+\frac{A_{0}^{(g+3)}+3 A_{0}^{(g+2)}}{3 A_{0}^{(g+3)}+3 A_{0}^{(g+1)}}
$$

Since $k_{2}^{(g)}=k_{1}^{(g)}$ is not allowed, the cases $k_{2}^{(g)}=1, k_{1}^{(g)}=0$ and $k_{2}^{(g)}=2, k_{1}^{(g)}=0$ remain.

If $k_{2}^{(g)}=1, k_{1}^{(g)}=0$, then $A_{0}^{(g+3)}=A_{0}^{(g+2)}+A_{0}^{(g)}$, so that

$$
\frac{A_{0}^{(g+3)}+3 A_{0}^{(g+2)}}{3 A_{0}^{(g+3)}+3 A_{0}^{(g+1)}}=\frac{4 A_{0}^{(g+2)}+A_{0}^{(g)}}{3 A_{0}^{(g+2)}+3 A_{0}^{(g+1)}+3 A_{0}^{(g)}} \geq \frac{5}{9}
$$

If $k_{2}^{(g)}=2, k_{1}^{(g)}=0$, then we may assume that $k_{2}^{(g-1)}=2, k_{1}^{(g-1)}=0$. Calculation gives $A_{0}^{(g+2)}=2 A_{0}^{(g+1)}+A_{0}^{(g-1)}$ and $A_{0}^{(g+3)}=4 A_{0}^{(g+1)}+A_{0}^{(g)}+2 A_{0}^{(g-1)}$, so that

$$
\frac{A_{0}^{(g+3)}+3 A_{0}^{(g+2)}}{3 A_{0}^{(g+3)}+3 A_{0}^{(g+1)}}=\frac{10 A_{0}^{(g+1)}+A_{0}^{(g)}+5 A_{0}^{(g-1)}}{15 A_{0}^{(g+1)}+3 A_{0}^{(g)}+6 A_{0}^{(g-1)}} \geq \frac{5}{9}
$$

However $\frac{19}{9}+\frac{5}{9}=\frac{24}{9}=\frac{8}{3}>2.61671 \ldots$.
Finally, the case $k_{2}^{(t)}=1$ for all $t \geq t_{0}$ leads to the periodic cases $\binom{\overline{1}}{1}$ and $\binom{\overline{0}}{1}$.

Remark. The point

$$
x=\left(\lambda, \frac{1}{\lambda}\right)=\lim _{g \rightarrow \infty}\left(\frac{A_{0}^{(g+3)}}{A_{0}^{(g+2)}}, \frac{A_{0}^{(g+1)}}{A_{0}^{(g+2)}}\right)
$$

lies in every triangle spanned by three successive points $\left(\frac{A_{0}^{(j+2)}}{A_{0}^{(j+1)}}, \frac{A_{0}^{(j)}}{A_{0}^{(j+1)}}\right), j=$ $g+1, g+2, g+3$. Furthermore, this point lies on the straight line with the equation

$$
x_{1}+x_{2} \frac{1}{\lambda}+\frac{1}{\lambda^{2}}=3 \lambda-4
$$

Therefore there are infinitely many values g such that

$$
\frac{A_{0}^{(g+3)}}{A_{0}^{(g+2)}}+\frac{A_{0}^{(g+1)}}{A_{0}^{(g+2)}} \frac{1}{\lambda}+\frac{1}{\lambda^{2}}>3 \lambda-4
$$

Remark. For $F_{1}(x, g)$ the second minimum is given by the point

$$
\left(\frac{1}{\eta}+\frac{1}{\eta^{2}}, \frac{1}{\eta}\right)=\left(\begin{array}{ll}
\overline{0} & 0 \\
2 & 1
\end{array}\right)
$$

where $\eta^{3}-2 \eta^{2}-3 \eta=1, \eta>3$.
For $F_{2}(x, g)$ this expansion gives two points of accumulation:

$$
\lim _{s \rightarrow \infty} F_{2}\left(\left(\frac{1}{\eta}+\frac{1}{\eta^{2}}, \frac{1}{\eta}\right), 2 s+1\right)=\frac{\eta+1}{\eta^{2}}\left(-3 \eta^{2}+9 \eta+5\right) \sim 1.83445 \ldots
$$

and

$$
\lim _{s \rightarrow \infty} F_{2}\left(\left(\frac{1}{\eta}+\frac{1}{\eta^{2}}, \frac{1}{\eta}\right), 2 s\right)=\frac{2 \eta+1}{\eta^{2}}\left(-3 \eta^{2}+9 \eta+5\right) \sim 3.21924 \ldots
$$

Therefore this expansion is not related to the second minimum.

3. A Counterexample

The general conjecture about the first minimum of the quantities $F_{j}(x, g)[2,4]$ is not true.

Letting $j=d=3$, we have

$$
F_{3}(x, g)=\frac{A_{0}^{(g+4)}+x_{1}^{(g)} A_{0}^{(g+1)}+x_{2}^{(g)} A_{0}^{(g+2)}+x_{3}^{(g)} A_{0}^{(g+3)}}{A_{0}^{(g+3)}}
$$

Let $\xi^{4}=\xi^{3}+1$ and consider again

$$
z=\left(\frac{1}{\xi}, \frac{1}{\xi^{2}}, \frac{1}{\xi^{3}}\right)=\left(\begin{array}{l}
\overline{0} \\
0 \\
1
\end{array}\right)
$$

Then

$$
\lim _{s \rightarrow \infty} F_{3}(z, s)=\xi+\frac{3}{\xi^{3}}=4 \xi-3 \sim 2.52112 \ldots
$$

But if we consider $\lambda>1$, the greatest root of $\lambda^{4}=2 \lambda^{3}+1$, then the expansion of

$$
w=\left(\frac{1}{\lambda}, \frac{1}{\lambda^{2}}, \frac{1}{\lambda^{3}}\right)=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)
$$

gives the smaller value

$$
\lim _{s \rightarrow \infty} F_{3}(w, s)=\lambda+\frac{3}{\lambda^{3}}=4 \lambda-6 \sim 2.42768 \ldots
$$

Acknowledgment The author wants to express his thanks to Karl Fuchs who did the numerical calculations with help of Mathematica ${ }^{\circledR}$.

References

[1] Schmidt, W., Flächenapproximation beim Jacobialgorithmus. Math. Ann. bf 136 (1958), 365374.
[2] Schweiger, F., The Metrical Theory of Jacobi-Perron Algorithm. LNM 334, Berlin/Heidelberg/New York: Springer Verlag, 1973.
[3] Schweiger, F., Der Satz von Hurwitz beim Jacobialgorithmus. Monatsh. Math. 81 (1975), 215-218.
[4] Schweiger, F., Multidimensional Continued Fractions. Oxford: Oxford University Press, 2000.

