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Abstract
The partitions of a positive integer n in which the parts are in arithmetic progres-

sion possess interesting combinatorial properties that distinguish them from other
classes of partitions. We exhibit the properties by analyzing partitions with respect
to a fixed length of the arithmetic progressions. We also address an open question
concerning the number of integers k for which there is a k-partition of n with parts
in arithmetic progression.

1. Introduction

The partitions of an integer n > 0 in which the parts are in arithmetic progression
possess a simple but interesting structure. In addition, the system of sets of all such
partitions, with a fixed length, is endowed with a consecutive enumeration pattern.

Let λ = (n1, n2, . . . , nk) denote a nondecreasing partition of n; that is, λ sat-
isfies n1 + · · · + nk = n, 1 ≤ n1 ≤ · · · ≤ nk ≤ n. Let AP (n, k) denote the set of
k-partitions of n with the parts in arithmetic progression (AP), and let AP (n) =⋃

k AP (n, k).
A few authors have considered the problem of enumerating the set AP (n) with

respect to a fixed common difference (see [4, 5]). Their results are generally compli-
cated. A simpler exposition is given in [6] whereby the enumeration was executed
according to a fixed length of the AP’s. However, all of the above references failed
to bring out the intrinsic structure of these partitions.

This paper fills the gap. It turns out that the combinatorial properties of the
partitions are most readily exhibited by analyzing the set AP (n, k) for a given k > 0.
Our starting point is the main result of [6] on the number ap(n, k) = |AP (n, k)|,
stated below.
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Theorem 1. (Munagi-Shonhiwa) (i) Let n be a positive integer and k > 0 an even
number such that ap(n, k) > 0. Then

ap(n, k) =
⌊

n + k(k − 2)
k(k − 1)

⌋
, if k|n (1)

ap(n, k) =
⌊

2n + k(k − 3)
2k(k − 1)

⌋
, if k ! n. (2)

(ii) Let n be a positve integer and k an odd number such that ap(n, k) > 0, k > 1.
Then

ap(n, k) =
⌊

2n + k(k − 3)
k(k − 1)

⌋
. (3)

Theorem 1 is established in [6] by solving a linear Diophantine equation.
The purpose of this paper is twofold. Firstly, we give three new derivations of

Theorem 1. The first two proofs are constructive, while the third proof is both con-
structive and bijective. The combinatorial structures of the partitions are revealed
in the course of the proofs (Sections 2 and 3). Secondly (Section 4), we consider an
open question posed in [6], namely to specify the number of AP divisors.

An integer k > 0 is called an AP divisor of n if AP (n, k) #= ∅. A divisor of n is an
AP divisor since (n

k , . . . , n
k ) ∈ AP (n, k), but not conversely in general. For example,

(9, 16, 23, 30) ∈ AP (78, 4) but 4 ! 78. Let Div(n) and APDiv(n), respectively,
denote the set of divisors and AP divisors of n. Then Div(n) ⊆ APDiv(n). We
give a generating function for the cardinality of APDiv(n).

We will need the following summation formula for (a, a + d, . . . , a + (k − 1)d) ∈
AP (n, k):

a + (a + d) + · · · + (a + (k − 1)d) = ka +
(

k

2

)
d = n, d ≥ 0, 1 ≤ k ≤ n. (4)

2. Two Proofs of Theorem 1

The following lemma is fundamental to the proofs.

Lemma 2. Let AP (n, k) #= ∅ and let d be the common difference of a fixed element.

(i) If k is an odd integer, then n ≡ 0 (mod k).

(ii) If k is an even integer, then n ≡ 0 (mod k
2 ).
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Furthermore, we have,

(iii) If k is even and k|n, then d is even.

(iv) If k ! n, then d is odd.

(v) If k ! n, then n ≡
(k
2

)
(mod k).

Proof. The assertions are easy consequences of Equation (4). We comment only on
(iv) and (v). If k ! n, then by (i) and (ii), k is even and k

2 |n. Thus if n is odd,
both k/2 and 2a + (k − 1)d, that is, k/2 and d, must be odd. If n is even, then
k/2 is even and d is odd. In fact (iii) forbids d from being even. So k|(n− k

2 ) since
n − k

2 = ka +
(k
2

)
d − k

2 = ka + k (k−1)d−1
2 . Lastly, (v) follows from the relation

n− k
2 − k k

2 = n−
(k
2

)
. !

Let λ,λ′ ∈ AP (n, k) have common differences d, d′, respectively, where λ =
(a1, . . . , ak),λ′ = (a′1, . . . , a′k). Assume λ #= λ′. If a1 = a′1, then d = d′, which
implies λ = λ′, a contradiction (since the fixed numbers a1, d, k determine a unique
AP). This implies a sorting property.

There is a natural total order, ≺, in the set AP (n, k), defined as follows:

(a1, . . . , ak) ≺ (b1, . . . , bk) ⇐⇒ a1 < b1. (5)

With this ordering, AP (n, k) can be analyzed according to the sequence of com-
mon differences. In particular Lemma 2 gives:

Lemma 3. Let AP (n, k) #= ∅ and let the first member of AP (n, k), under ≺, have
common difference d.

If k is odd, the sequence of common differences of members of AP (n, k) is

d, d− 1, . . . , 1, 0.

If k is even, the sequence of common differences of members of AP (n, k) is

d, d− 2, d− 4, . . . , z,

where z = 0 or z = 1 according to whether d is even or odd.

Lemma 3 motivates the next definitions, where k is odd and even respectively.

fO(k) def= (
k + 1

2
− 1,

k + 1
2

− 2, . . . , 2, 1, 0,−1,−2, . . . ,−k − 1
2

+ 1,−k − 1
2

).

fE(k) def= (k − 1, k − 3, . . . , 3, 1,−1,−3, . . . ,−(k − 1)).
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Note that both fO(k) and fE(k) are decreasing AP’s with the terms summing to 0.
The next result follows from the fact that the term-wise sum of two AP’s of

the same length is again an AP. If π ∈ AP (n, k) has common difference d, then
π + fO(k) has a common difference with opposite parity to d, but the addition of
fE(k) to π preserves the parity of d. The following result is now evident.

Lemma 4. Let λ ∈ AP (n, k). Then every k-partition of n with parts in arithmetic
progression, has the form





λ + vfO(k), if k is odd

λ + vfE(k), if k is even.

where v is an integer, and v(a1, . . . , ak) = (va1, . . . , vak).

We are ready to give two essentially different proofs of Theorem 1

2.1. First Proof

This is a direct application of Lemma 4.
(i) Let k be an even integer > 0 and denote the last partition of AP (n, k), under

≺, by λ = (a, a + d, . . . , a + (k− 1)d). Then from Lemma 4 ap(n, k) is given by the
number of different values of v such that λ− vfE(k) ∈ AP (n, k). But

λ− vfE(k) ∈ AP (n, k) ⇐⇒ a− v(k − 1) ≥ 1, v ≥ 0 ⇐⇒ 0 ≤ v ≤
⌊

a− 1
k − 1

⌋
.

Hence,

ap(n, k) =
⌊

a− 1
k − 1

⌋
+ 1. (6)

By Lemma 3 and Equation 4, we have, k|n =⇒ a = n
k , and k ! n =⇒ a =(

n−
(k
2

))
/k. Substituting the two values of a into (6), and simplifying, give (1)

and (2), respectively.
(ii) Similarly, to obtain (3), we find the number of values of v such that λ −

vfO(k) ∈ AP (n, k). Thus,

ap(n, k) =
⌊

2(a− 1)
k − 1

⌋
+ 1.

There is one possibility for a, namely a = n
k . Hence the result.
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Example 5. We illustrate the first proof with AP (78, k). If k = 4, then 4 ! 78; so
the last partition is (a, . . . , a + 3d), where a = (78− 6)/4 = 18, d = 1. Hence,

AP (78, 4) = {(a1, . . . , a4) = (18, 19, 20, 21)− v(3, 1,−1,−3) : v ≥ 0, ai > 0}

= {(18, 19, 20, 21), (15, 18, 21, 24), (12, 17, 22, 27),

(9, 16, 23, 30), (6, 15, 24, 33), (13, 14, 25, 36)}.

On the other hand, since 6 | 78 we obtain

AP (78, 6) = {(a1, . . . , a6) = (13, 13, 13, 13, 13, 13)− v(5, 3, 1,−1,−3,−5) :
v ≥ 0, ai > 0}

= {(13, 13, 13, 13, 13, 13), (8, 10, 12, 14, 16, 18), (3, 7, 11, 15, 19, 23)}.

2.2. Second Proof

Every set AP (n, k) belongs to an ordered ”vertical” system of sets of AP partitions
of N, N ≤ n, in the sense that ap(n, k) = ap(N, k), where the first partition (under
≺) in the first set has first term 1. For example, ap(22, 4) = ap(26, 4) = ap(30, 4) =
2, and the class {AP (22, 4), AP (26, 4), AP (30, 4)} is obtained from AP (22, 4) by
successive additions of (1, 1, 1, 1) (see Table 1).

(i) Let an even integer k > 0 be given. If the first partition of AP (n, k) is
(1, a2, a3, . . . , ak), then there is a list of first partitions

(1 + h, a2 + h, . . . , ak + h) ∈ AP (n + kh, k), 1 ≤ h ≤ k − 2. (7)

N elements of AP (N, 4) N elements of AP (N, 4)
4 (1, 1, 1, 1) 10 (1, 2, 3, 4)
8 (2, 2, 2, 2) 14 (2, 3, 4, 5)
12 (3, 3, 3, 3) 18 (3, 4, 5, 6)
16 (1, 3, 5, 7), (4, 4, 4, 4) 22 (1, 4, 7, 10), (4, 5, 6, 7)
20 (2, 4, 6, 8), (5, 5, 5, 5) 26 (2, 5, 8, 11), (5, 6, 7, 8)
24 (3, 5, 7, 9), (6, 6, 6, 6) 30 (3, 6, 9, 12), (6, 7, 8, 9)
28 (1, 5, 9, 13), (4, 6, 8, 10), 34 (1, 6, 11, 16), (4, 7, 10, 13),

(7,7,7,7) (7,8,9,10)
... . . . ad infinitum

... . . . ad infinitum

Table 1: The second proof when k|N and when k ! N , k = 4.
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We cannot have λ = (1 + (k − 1), a2 + (k − 1), . . . , ak + (k − 1)) as a first partition
because λ− fE(k) = (1, a2 + 2, a3 + 4, . . . , ak + 2(k − 1)) is the first partition, and
λ is now the second partition, in AP (n + (k − 1)k, k).
By applying a similar argument, beginning with any jth member,

(1, a2, a3, . . . , ak) + (j − 1)fE(k) ∈ AP (n, k), j > 0,

we see that this gives the period k − 1 inside which ap(N, k) is a constant:

ap(n, k) = ap(N, k), N = n, n + k, . . . , n + (k − 2)k.

The sentence immediately following (7) implies that ap(n+k(k−1), k) = ap(N, k)+
1. By the division algorithm we have n = qk + r, 0 ≤ r < k, which gives the infinite
sequence

ap(c1k + r, k) = 1, ap(c2k + r, k) = 2, . . . ⇐⇒ cj ≡ c1 (mod k-1), j > 0. (8)

Thus c1 is the value of c such that ck + r is least and AP (ck + r, k) is a singleton
whose member has first term 1.

It suffices to consider the case r = 0, which implies c1 = 1 with common differ-
ence, d = 0.
The jth term cj of the AP c1, c2, . . . may satisfy cj = q, or generally, cj ≤ q < cj+1.
That is,

c1 + (j − 1)(k − 1) ≤ q < c1 + j(k − 1) =⇒ j =
⌊

q + k − 1− c1

k − 1

⌋
.

Let j = F (n, k):

F (n, k) =
⌊

n + k(k − 2)
k(k − 1)

⌋
.

This gives Equation (1) at once: k|n =⇒ ap(n, k) = F (n, k).
If k ! n, then by Lemma 2(v), ap(n, k) = ap(N, k), where N = n−

(k
2

)
and k|N

(for example, see Table 1). Hence we obtain Equation (2): k ! n =⇒ ap(n, k) =
F (n−

(k
2

)
, k).

(ii) The derivation of (3) is similar to the even case. The adjustment is to use
the period (k − 1)/2 as already indicated by the definition of fO(k). This gives (8)
with (k− 1)/2 replacing k− 1. By Lemma 3, we must use only c1 = 1, and deduce
the result from

ap(n, k) = j =
⌊

2q + k − 1− 2c1

k − 1

⌋
.
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3. Third Proof of Theorem 1

The third proof will rely on the following observation.

The sum of two terms of a finite AP in symmetrical positions about the
center is a constant.

If (a1, . . . , ak) ∈ AP (n, k) has common difference d, then

aj + ak−j+1 = 2a1 + (k − 1)d =
2n
k

, 1 ≤ j ≤ ,k + 1
2

-. (9)

So 2n
k is an integer whenever ap(n, k) > 0. The sequence (ak−j+1 − aj) of absolute

differences of the pairs of terms in (9) is

(k − 1)d, (k − 3)d, . . . , (k − (2v − 1))d, v =
⌊

k + 1
2

⌋
. (10)

Since a finite AP is completely determined by the first and last terms, Equation (9)
implies that (a1, a2, . . . , ak) ∈ AP (n, k) if and only if (a1, ak) ∈ AP (2n

k , 2) with the
successive implications:

(a1, ak) ∈ AP

(
2n
k

, 2
)

=⇒ (a2, ak−1) ∈ AP

(
2n
k

, 2
)

=⇒ (a3, ak−2) ∈ AP

(
2n
k

, 2
)

...

=⇒ (au, au) ∈ AP

(
2n
k

, 2
)

,

where u = ,k/2-.
Hence by (10), AP (n, k) may be identified with the set of 2-partitions of 2n

k in
which the differences between the pairs of parts are multiples of (k − 1). That is,
we have a bijection:

AP (n, k) −→ {(b, c) ∈ AP (
2n
k

, 2) : (k − 1)|(b− c)}, (11)

(a1, a2, . . . , ak) /−→ (a1, ak).

Thus we have established a constructive/bijective derivation of AP (n, k).
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Example 6. The proof is illustrated with AP (78, k). If k = 4, then 2n
k = 39, and

AP (39, 2) = {(1, 38), (2, 37), . . . , (19, 20)}. Thus

{(b, c) ∈ AP (39, 2) : 3|(b− c)} = {(3, 36), (6, 33), (9, 30), (12, 27), (15, 24), (18, 21)},

which gives ap(78, 4) = 6 (cf. Example 5). Similarly, k = 6 implies 2n
k = 26, and

{(b, c) ∈ AP (26, 2) : 5|(b− c)} = {(3, 23), (8, 18), (13, 13)}

implies ap(78, 6) = 3.

To complete the proof of Theorem 1 we obtain the enumeration formulas relative
to the proof of this section.

(i) Let k > 0 be an even integer and assume that AP (n, k) #= ∅. Then by (11),
ap(n, k) is given by the number of elements of AP (2n

k , 2) in which the differences
between the pairs of parts are multiples of (k − 1).

The set of differences of parts of members of AP (m, 2) is

{m− 2, m− 4, · · · , z + 2, z},

where z = 0 or 1, depending on whether m is even or odd. Assume that m is even,
which implies that k | n. Then ap(n, k) is the length of the AP

0, 2(k − 1), 4(k − 1), . . . ,X, X = 2(k − 1)
⌊

m− 2
2(k − 1)

⌋
,

where X is the largest multiple of k − 1 not exceeding m− 2. Therefore,

X = 0 + (ap(n, k)− 1) · 2(k − 1) implies ap(n, k) =
⌊

m + 2k − 4
2(k − 1)

⌋
,

which, on setting m = 2n
k , is identical with (1).

If m is odd, then ap(n, k) is the length of the AP

k − 1, 3(k − 1), 5(k − 1), . . . , 2
⌊

m− k − 1
2(k − 1)

⌋
(k − 1) + k − 1.

This leads to Equation (2), as one can easily verify.

(ii) For the second part, k − 1 is even. So m is even. In this case ap(n, k) is the
length of the AP

0, (k − 1), 2(k − 1), . . . ,
⌊

m− 2
k − 1

⌋
(k − 1).
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4. The Number of AP Divisors

The number of AP divisors is clearly equal to τ(n)+|APDiv(n)\Div(n)|, where τ(n)
is the number of positive integral divisors of n. Let Ek(n) = APDiv(n) \ Div(n),
the set of strict AP divisors.

|APDiv(n)| = τ(n) + |Ek(n)|. (12)

But we will prove

Theorem 7.
∞∑

n=0

|APDiv(n)|qn =
∞∑

k=1

qk(1 + qk + q2k2
)

1− q2k
.

If k ! n, then k is an even integer and the last member of AP (n, k) has common
difference d = 1 (see Lemmas 2 and 3). In other words, k ∈ Ek(n) ⇐⇒ AP (n, k) #=
∅ and the last member has d = 1. Hence |Ek(n)| is the number of partitions of n
into an even number of consecutive integers. Passing to the conjugate partition, we
find that |Ek(n)| also counts partitions of n of the type 1 + 2 + · · · + (2m − 1) +
2m + 2m + · · · + 2m, where 2m appears j > 0 times. That is, if λ is a partition of
n into an even number 2m of consecutive integers, the conjugate of λ is a partition
into the first 2m natural numbers such that only 2m may be repeated. The latter
class of partitions translate into the generating function:

q1+2(1 + q2 + q2.2 + q3.2 + · · · ) + q1+2+3+4(1 + q4 + q2.4 + q3.4 + · · · ) + · · · .

Thus,

∞∑

n=0

|Ek(n)|qn =
q(

3
2)

1− q2
+

q(
5
2)

1− q4
+ · · · =

∞∑

k=1

q(
2k+1

2 )

1− q2k
.

On the other hand, it is known (see, for example, [7]) that τ(n) has the Lambert

series generating function
∞∑

n=1

qk

1− qk
. Hence,

∞∑

n=0

|APDiv(n)|qn =
∞∑

k=1

qk

1− qk
+

∞∑

k=1

q(
2k+1

2 )

1− q2k
,

which gives the theorem.
The sequence of numbers of AP divisors of n, n = 1, 2, . . . , begins as follows:

1, 2, 3, 3, 3, 4, 3, 4, 4, 5, 3, 6, 3, 5, 5, 5, 3, 7, 3, 6, 6, 5, 3, 8, 4, 5, 6, 6, 3, 9, . . . .
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