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Abstract
Jacobi’s two-square theorem states that the number of representations of a positive
integer k as a sum of two squares, counting order and sign, is 4 times the surplus
of positive divisors of k congruent to 1 modulo 4 over those congruent to 3 modulo
4. In this paper we give numerous identities, each of which yields an analogue
of Jacobi’s result. Our identities are drawn from a much larger list, and involve
polygonal numbers. The formula for the nth k−gonal number is

Fk = Fk(n) = n ((k − 2)n− (k − 4)) /2.

1. Introduction

Let f and g be functions from the integers to the non-negative integers, and suppose
that

( ∞∑

n=−∞
qf(n)

)( ∞∑

n=−∞
qg(n)

)
=

∞∑

n=0

anqn. (1)

Then the number of solutions of the diophantine equation f(m) + g(n) = k, k ≥ 0,
is ak. Here, as is implied by the limits on the left of (1), m and n can be positive,
negative, or zero, and two solutions (m1, n1) and (m2, n2) are taken to be distinct
when m1 #= m2 and n1 #= n2. In this paper we take |q| < 1 and choose f and g so
that each sum on the left of (1) converges.

As an example let f = g = n2. Then
( ∞∑

n=−∞
qn2

)( ∞∑

n=−∞
qn2

)
= 1 + 4

∞∑

n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)

= 1 + 4
∞∑

n=0

∞∑

m=0

(
q(4n+1)(m+1) − q(4n+3)(m+1)

)
. (2)
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Now let di,j(k) denote the number of positive divisors of k that are congruent to i
mod j. Then (2) yields the following classical result of Jacobi [4, ch 9]:

The number of representations of a positive integer k as a sum of two
squares, counting order and sign, is 4 (d1,4(k)− d3,4(k)).

In [13] we give a large number of analogues of (2) that involve polygonal numbers.
The formula for the nth k−gonal number is

Fk = Fk(n) =
n ((k − 2)n− (k − 4))

2
. (3)

Thus, the nth triangular and square numbers are given by F3 = n(n + 1)/2, and
F4 = n2, respectively. For information on polygonal numbers see, for example, [12].
In [13] the scope is limited to the polygonal numbers Fk, 3 ≤ k ≤ 12. Furthermore,
although in (3) n is usually positive, except for F3, we maintain the analogy with
Jacobi’s result by allowing the domain of Fk to be the set of all integers.

Let Gk(q) denote the generating function of Fk. Thus,

G3(q) =
n=∞∑

n=0

qn(n+1)/2, G4(q) =
n=∞∑

n=−∞
qn2

denote the generating functions of the triangular numbers and the squares, re-
spectively. In present day usage, these generating functions are usually denoted by
ψ(q) =

∑n=∞
n=0 qn(n+1)/2 and φ(q) =

∑n=∞
n=−∞ qn2

, respectively, which is the notation
used by Ramanujan.

There have been many proofs of (2). Three relatively recent papers are worthy
of mention. In [2] and [3] the authors give a proof with the use of Ramanujan’s 1ψ1

formula, while Hirschhorn [9] uses Jacobi’s triple product identity.
For detailed information on the broader topic of sums of squares in relation to

the older literature, see [7, pp. 231-257], [8, ch. 2], and the forthcoming paper of
Cooper [5]. Dr. Cooper’s paper investigates the number of representations of a
positive integer by the quadratic form

λ1y
2
1 + λ2y

2
2 + λ3y

2
3 + λ4y

2
4 ,

where y1, y2, y3, and y4 are odd, positive integers, for the cases (λ1,λ2,λ3,λ4) =
(1, 1, 1, 3), (1, 3, 3, 3), (1, 2, 2, 3), (1, 3, 6, 6), (1, 3, 4, 4), (1, 1, 2, 6), and (1,
3, 12, 12). This paper also contains a comprehensive history of representations by
similar forms that dates back to Eisenstein and Liouville.
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Even without a formal proof, we can easily convince ourselves of the validity of
(2). With the aid of a computer algebra system we simply evaluate, say,

(
35∑

n=−35

qn2

)(
35∑

n=−35

qn2

)
− 1− 4

250∑

n=0

1000∑

m=0

(
q(4n+1)(m+1) − q(4n+3)(m+1)

)
.

This verifies that G4(q)2 and the right side of (2) agree up to q1000. We performed
similar checks on all the identities in this paper, as well as those in [13]. In fact, in
each case, we checked that both sides, as expansions in powers of q, matched up to
powers of q4m, where m is the modulus in question. This was an arbitrary choice
that seemed appropriate. For instance, in (9) we checked that both sides were equal
up to powers of q160, and in (13) we checked that both sides were equal up to powers
of q352. In addition, we checked for symmetry in each of our identities. We checked
our formulas meticulously and repeatedly over a period of months, taking this task
very seriously, since the presence of errors serves to erode credibility. The strongest
statement that we can reasonably make in this regard is that we are as sure as we
can be that the formulas are error free.

There are also well-known identities, analogous to (2), for G4(q)G4(q2),
G4(q)G4(q3), and G4(q)G4(q7), that are attributed to Dirichlet and Lorenz, Lorenz,
and Ramanujan, respectively. Here, and in [13], we list only identities that, to
the best of our knowledge, are new and are not consequences of the identities for
G4(q)G4(qk), k = 1, 2, 3, or, 7. Without this restriction our lists would have been
considerably longer. For instance, identities that we have discovered, but have not
stated, are identities for G5 (q)G5 (q), G5 (q)G5

(
q2

)
, G5 (q)G5

(
q7

)
, G7 (q)G7 (q),

G8 (q)G8 (q), and G12 (q)G12 (q), to indicate just a few. For further instances of
such identities (ie, those that are provable with the use of the four classical identi-
ties) see [10] and [11].

Our aim, in the present paper, is to give an abridged version of [13]. Specifically,
we present only those identities in [13] that we have called homogeneous, meaning
that in each such identity the generating functions involve polygonal numbers of
the same type. The only homogeneous identities that we have managed to discover
(apart from those mentioned in the paragraph above) involve triangular numbers,
pentagonal numbers, and heptagonal numbers.

Here, and in [13], our aim has been to put our identities on display in the hope
that interested readers may wish to supply proofs. We expect that to prove many
of the identities in our lists will call for genuine skill and innovation. To see this,
one need only examine the various proofs of (2).

At the time of writing, we see scope for further work, and so we expect to en-
large these lists. Indeed, on many occasions during the process of discovery we
felt that the work had reached a plateau. However, on each of these occasions we



INTEGERS: 10 (2010) 86

gained new insights that enabled us to continue. The process is, seemingly, never
ending.

Dr. Michael Hirschhorn has taken an interest in this work from the very begin-
ning. At the time of writing he has informed us that he has managed to prove (6)
and (7).

In Section 2 we give a worked example to demonstrate how the number-theoretic
consequence of one of our identities can be obtained. In Section 3 give some hints
relating to our methods of discovery. In Sections 4, 5, and 6 we present our ho-
mogeneous identities for the triangular numbers, the pentagonal numbers, and the
heptagonal numbers, respectively.

2. A Worked Example

In Sections 4-6 each of (6)-(26) yields a representation result that is analogous to
Jacobi’s classical result. As an example of the manipulations required in deriving
these representation results, we consider identity (6) and denote the right side by
H(q). Then

q3H(q4) =
∞∑

n=0

(
q3(4n+1) + q7(4n+1)

1− q20(4n+1)
− q13(4n+3) + q17(4n+3)

1− q20(4n+3)

)

=
∞∑

n=0

∞∑

m=0

(
q(4n+1)(20m+3) + q(4n+1)(20m+7)

− q(4n+3)(20m+13) − q(4n+3)(20m+17)
)

.

Each power of q in this double sum is congruent to 3 modulo 4. Denote the
coefficient of qk in H(q) by C

[
H(q), qk

]
. Then

C
[
H(q), qk

]
= C

[
q3H(q4), q4k+3

]

= d3,20(4k + 3) + d7,20(4k + 3)− d13,20(4k + 3)− d17,20(4k + 3).

Our conclusion can be stated thus:

The number of representations of a positive integer k as a triangular
number plus five times a triangular number (in this order) is

d3,20(4k + 3) + d7,20(4k + 3)− d13,20(4k + 3)− d17,20(4k + 3).

The interested reader can now supply the number-theoretic consequence of any
of the remaining identities.
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3. Hints Regarding the Methods of Discovery

In this section we give the reader some hints regarding our methods of discovery.
Our methods were developed and refined over the four years during which this
research took place. Starting very modestly, we developed computer programs to
execute the associated algebraic calculations.

To illustrate one of our methods of discovery, we outline how we discovered (6).
It is well known (for instance, see [10]) that

G3 (q)G3 (q) =
∑

n≥0

(d1,4(4n + 1)− d3,4(4n + 1)) qn. (4)

Here, the modulus in question is 4, and we require the positive divisors of 4n + 1.
If a similar result for G3 (q)G3

(
q5

)
exists, a reasonable guess for the modulus in

question is 20. Furthermore, we surmise that we require the positive divisors of
2rn+s, in which r could be 1, 2, 3, . . ., and s could be 1, 3, 5, . . .. Of course we settle
on upper limits for r and s before our search begins. Then we write

G3 (q)G3

(
q5

)
=

∑

n≥0

(
19∑

i=1

cidi,20(2rn + s)

)
qn. (5)

Next, beginning with (r, s) = (1, 1), we equate enough coefficients of powers of
q on both sides of (5) in order to find the ci. If the system of linear equations in
question is inconsistent, we try (r, s) = (1, 3) and proceed similarly. Eventually, for
(r, s) = (2, 3) we are able to find the required ci. Once the ci are known, it is not
difficult to construct (6) as we have presented it.

In fact, we discovered the majority of our results by using the method just de-
scribed. Furthermore, during the early days of the discovery process, after obtaining
only a modest number of new results, we profited much by studying the symmetry of
such results. This led to an alternative approach for relatively simple types. For in-
stance, the discovery of (7) led us to surmise that an expansion for G3

(
q2

)
G3

(
q3

)
,

if such an expansion exists, might look like

G3

(
q2

)
G3

(
q3

)
=

∞∑

n=0

(
qan+b

1− q24n+3
+

qcn+d

1− q24n+9
− qen+f

1− q24n+15
− qgn+h

1− q24n+21

)
,

in which e − a = g − c = 12, and d − b divides h − f . We then checked each
such possibility by expanding the right side in powers of q to see if this expansion
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matched the expansion of the left side. Relatively little trial is required here, but
we do require advance knowledge of the form of one identity in a natural pair of
identities. As another instance, in [13], this was essentially how we discovered the
expansion for G3

(
q2

)
G5 (q) after first finding the expansion for G3 (q)G5

(
q2

)
.

4. Triangular Numbers

G3 (q)G3

(
q5

)
=

∞∑

n=0

(
q3n + q7n+1

1− q20n+5
− q13n+9 + q17n+12

1− q20n+15

)
. (6)

G3 (q)G3

(
q6

)
=

∞∑

n=0

(
q7n

1− q24n+3
+

q5n+1

1− q24n+9

− q19n+11

1− q24n+15
− q17n+14

1− q24n+21

)
. (7)

G3

(
q2

)
G3

(
q3

)
=

∞∑

n=0

(
q5n

1− q24n+3
+

q7n+2

1− q24n+9

− q17n+10

1− q24n+15
− q19n+16

1− q24n+21

)
. (8)

G3 (q)G3

(
q10

)
=

∞∑

n=0

(
q11n + q19n+1

1− q40n+5
− q17n+5 + q33n+11

1− q40n+15

+
q7n+3 + q23n+13

1− q40n+25
− q21n+17 + q29n+24

1− q40n+35

)
. (9)

G3

(
q2

)
G3

(
q5

)
=

∞∑

n=0

(
q7n + q23n+2

1− q40n+5
− q21n+7 + q29n+10

1− q40n+15

+
q11n+6 + q19n+11

1− q40n+25
− q17n+14 + q33n+28

1− q40n+35

)
. (10)

Since our next formula is rather lengthy, it is convenient to define two numerators
Ni = Ni(q, n) as follows:

N1 = q7n + q11n+1 + q15n+2 + q19n+3 + q31n+6 + q47n+10;

N2 = q5n+2 + q21n+14 + q33n+23 + q37n+26 + q41n+29 + q45n+32.
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Then

G3 (q)G3

(
q13

)
=

∞∑

n=0

(
N1

1− q52n+13
− N2

1− q52n+39

)
. (11)

Once again it is convenient to define certain numerators. Since there is no danger
of confusion, here, and subsequently, we use the same notation used in (11).

Let

N1 = q15n−1 + q23n + q31n+1 + q47n+3 + q71n+6;

N2 = q5n−1 + q37n+11 + q45n+14 + q53n+17 + q69n+23;

N3 = q11n+4 + q19n+9 + q35n+19 + q43n+24 + q51n+29 + q83n+49;

N4 = q17n+12 + q33n+26 + q41n+33 + q57n+47 + q65n+54 + q73n+61.

Then

G3 (q)G3

(
q22

)
=

∞∑

n=0

(
N1

1− q88n+11
− N2

1− q88n+33

+
N3

1− q88n+55
− N4

1− q88n+77

)
. (12)

Let

N1 = q5n−1 + q37n+3 + q45n+4 + q53n+5 + q69n+7;

N2 = q15n+4 + q23n+7 + q31n+10 + q47n+16 + q71n+25;

N3 = qn−1 + q9n+4 + q25n+14 + q33n+19 + q49n+29 + q81n+49;

N4 = q3n+1 + q11n+8 + q27n+22 + q59n+50 + q67n+57 + q75n+64.

Then

G3

(
q2

)
G3

(
q11

)
=

∞∑

n=0

(
− N1

1− q88n+11
+

N2

1− q88n+33

+
N3

1− q88n+55
− N4

1− q88n+77

)
. (13)

Put

N1 = q15n−1 + q19n + q23n+1 + q31n+3 + q35n+4 + q39n+5

+ q43n+6 + q51n+8 + q55n+9 + q59n+10 + q79n+15 + q87n+17

+ q91n+18 + q103n+21 + q119n+25 + q131n+28 + q135n+29 + q143n+31;
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N2 = q5n−1 + q13n+5 + q17n+8 + q29n+17 + q45n+29 + q57n+38

+ q61n+41 + q69n+47 + q89n+62 + q93n+65 + q97n+68 + q105n+74

+ q109n+77 + q113n+80 + q117n+83 + q125n+89 + q129n+92 + q133n+95.

Then

G3 (q)G3

(
q37

)
=

∞∑

n=0

(
N1

1− q148n+37
− N2

1− q148n+111

)
. (14)

Set

N1 = q3n−7 + q11n−6 + q19n−5 + q27n−4 + q43n−2 + q75n+2

+ q99n+5 + q131n+9 + q147n+11 + q155n+12 + q163n+13 + q171n+14

+ q195n+17 + q211n+19;

N2 = qn−7 + q9n−4 + q25n+2 + q33n+5 + q49n+11 + q57n+14

+ q65n+17 + q81n+23 + q121n+38 + q129n+41 + q161n+53 + q169n+56

+ q209n+71 + q225n+77;

N3 = q15n+2 + q31n+12 + q39n+17 + q47n+22 + q55n+27 + q79n+42

+ q87n+47 + q95n+52 + q119n+67 + q127n+72 + q135n+77 + q143n+82

+ q159n+92 + q191n+112 + q215n+127;

N4 = q5n−3 + q13n+4 + q29n+18 + q45n+32 + q53n+39 + q93n+74

+ q109n+88 + q117n+95 + q125n+102 + q141n+116 + q149n+123 + q165n+137

+ q173n+144 + q181n+151 + q197n+165.

Then

G3 (q)G3

(
q58

)
=

∞∑

n=0

(
− N1

1− q232n+29
+

N2

1− q232n+87

+
N3

1− q232n+145
− N4

1− q232n+203

)
. (15)

Define

N1 = q15n−2 + q31n + q39n+1 + q47n+2 + q55n+3 + q79n+6

+ q95n+8 + q119n+11 + q127n+12 + q135n+13 + q143n+14 + q159n+16

+ q191n+20 + q215n+23;
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N2 = q5n−2 + q13n+1 + q45n+13 + q53n+16 + q93n+31 + q109n+37

+ q117n+40 + q125n+43 + q141n+49 + q149n+52 + q165n+58 + q173n+61

+ q181n+64 + q197n+70;

N3 = q35n+18 + q51n+28 + q59n+33 + q67n+38 + q83n+48 + q91n+53

+ q107n+63 + q115n+68 + q123n+73 + q139n+83 + q179n+108 + q187n+113

+ q219n+133 + q227n+138;

N4 = q17n+11 + q41n+32 + q73n+60 + q89n+74 + q97n+81 + q105n+88

+ q113n+95 + q137n+116 + q153n+130 + q177n+151 + q185n+158 + q193n+165

+ q201n+172 + q217n+186.

Then

G3

(
q2

)
G3

(
q29

)
=

∞∑

n=0

(
N1

1− q232n+29
− N2

1− q232n+87

+
N3

1− q232n+145
− N4

1− q232n+203

)
. (16)

5. Pentagonal Numbers

Interestingly, the identities we have discovered that involve only pentagonal numbers
parallel the cases above for triangular numbers, with two exceptions: we have not
been able to find identities for G5 (q)G5

(
q6

)
and G5

(
q2

)
G5

(
q3

)
.

Let

N1 = qn − q13n+3 − q17n+4 + q29n+7 − q37n+9 + q41n+10

+ q49n+12 − q53n+13;

N2 = q7n+5 − q11n+8 − q19n+14 + q23n+17 − q31n+23 + q43n+32

+ q47n+35 − q59n+44.

Then

G5 (q)G5

(
q5

)
=

∞∑

n=0

(
N1

1− q60n+15
+

N2

1− q60n+45

)
. (17)

Put

N1 = q11n + q59n+2;
N2 = q31n+6 + q79n+16;



INTEGERS: 10 (2010) 92

N3 = q5n+1 + q53n+15 + q77n+22;
N4 = q25n+11 + q73n+33 + q97n+44;
N5 = q23n+12 + q47n+25;
N6 = q19n+13 + q91n+64;
N7 = q17n+13 + q113n+89;
N8 = q61n+58 + q109n+104.

Then

G5 (q)G5

(
q10

)
=

∞∑

n=0

(
N1

1− q120n+5
− N2

1− q120n+25
+

N3

1− q120n+35

− N4

1− q120n+55
+

N5

1− q120n+65
+

N6

1− q120n+85

− N7

1− q120n+95
− N8

1− q120n+115

)
. (18)

Set

N1 = q31n+1 + q79n+3;

N2 = q11n+2 + q59n+12;

N3 = qn + q25n+7 + q49n+14;

N4 = q5n+2 + q29n+13 + q101n+46;

N5 = q19n+10 + q91n+49;

N6 = q23n+16 + q47n+33;

N7 = q61n+48 + q109n+86;

N8 = q17n+16 + q113n+108.

Then

G5

(
q2

)
G5

(
q5

)
=

∞∑

n=0

(
− N1

1− q120n+5
+

N2

1− q120n+25
+

N3

1− q120n+35

− N4

1− q120n+55
+

N5

1− q120n+65
+

N6

1− q120n+85

− N7

1− q120n+95
− N8

1− q120n+115

)
. (19)
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Next, define

N1 = q7n + q19n+1 + q31n+2 + q67n+5 + q115n+9 + q151n+12;

N2 = q11n+4 + q47n+19 + q59n+24 + q71n+29 + q83n+34 + q119n+49;

N3 = q37n+21 + q73n+42 + q85n+49 + q97n+56 + q109n+63 + q145n+84;

N4 = q5n+4 + q41n+37 + q89n+81 + q125n+114 + q137n+125 + q149n+136.

Then

G5 (q)G5

(
q13

)
=

∞∑

n=0

(
N1

1− q156n+13
+

N2

1− q156n+65

− N3

1− q156n+91
− N4

1− q156n+143

)
. (20)

Next, set

N1 = q95n+3 + q167n+6 + q215n+8 + q239n+9 + q263n+10;

N2 = q67n+13 + q91n+18 + q115n+23 + q163n+33 + q235n+48;

N3 = q17n+4 + q41n+11 + q65n+18 + q161n+46 + q233n+67;

N4 = q37n+16 + q133n+60 + q157n+71 + q181n+82 + q229n+104;

N5 = q35n+18 + q83n+44 + q107n+57 + q131n+70 + q227n+122;

N6 = q31n+21 + q103n+72 + q199n+140 + q223n+157 + q247n+174;

N7 = q29n+22 + q101n+79 + q149n+117 + q173n+136 + q197n+155;

N8 = qn + q25n+23 + q49n+46 + q97n+92 + q169n+161.

Then

G5 (q)G5

(
q22

)
=

∞∑

n=0

(
− N1

1− q264n+11
− N2

1− q264n+55
− N3

1− q264n+77

− N4

1− q264n+121
+

N5

1− q264n+143
+

N6

1− q264n+187

+
N7

1− q264n+209
+

N8

1− q264n+253

)
. (21)
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Next, let

N1 = q13n + q61n+2 + q85n+3 + q109n+4 + q205n+8;

N2 = q17n+3 + q41n+8 + q65n+13 + q161n+33 + q233n+48;

N3 = q67n+19 + q91n+26 + q115n+33 + q163n+47 + q235n+68;

N4 = q23n+10 + q47n+21 + q71n+32 + q119n+54 + q191n+87;

N5 = q73n+39 + q145n+78 + q193n+104 + q217n+117 + q241n+130;

N6 = q29n+20 + q101n+71 + q149n+105 + q173n+122 + q197n+139;

N7 = q31n+24 + q103n+81 + q199n+157 + q223n+176 + q247n+195;

N8 = q59n+56 + q155n+148 + q179n+171 + q203n+194 + q251n+240.

Then

G5

(
q2

)
G5

(
q11

)
=

∞∑

n=0

(
N1

1− q264n+11
− N2

1− q264n+55
− N3

1− q264n+77

+
N4

1− q264n+121
− N5

1− q264n+143
+

N6

1− q264n+187

+
N7

1− q264n+209
− N8

1− q264n+253

)
. (22)

Let

N1 = q7n−1 + q67n+4 + q115n+8 + q127n+9 + q139n+10 + q151n+11

+ q175n+13 + q211n+16 + q223n+17 + q247n+19 + q271n+21 + q295n+23

+ q307n+24 + q343n+27 + q367n+29 + q379n+30 + q391n+31 + q403n+32;

N2 = q23n+8 + q35n+13 + q59n+23 + q119n+48 + q131n+53 + q143n+58

+ q167n+68 + q179n+73 + q191n+78 + q203n+83 + q227n+93 + q239n+98

+ q251n+103 + q311n+128 + q335n+138 + q347n+143 + q383n+158

+ q431n+178;
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N3 = qn−1 + q25n+13 + q49n+27 + q73n+41 + q85n+48 + q121n+69

+ q145n+83 + q157n+90 + q169n+97 + q181n+104 + q229n+132 + q289n+167

+ q337n+195 + q349n+202 + q361n+209 + q373n+216 + q397n+230 + q433n+251;

N4 = q5n+3 + q17n+14 + q29n+25 + q89n+80 + q113n+102 + q125n+113

+ q161n+146 + q209n+190 + q245n+223 + q257n+234 + q281n+256 + q341n+311

+ q353n+322 + q365n+333 + q389n+355 + q401n+366 + q413n+377 + q425n+388.

Then

G5 (q)G5

(
q37

)
=

∞∑

n=0

(
− N1

1− q444n+37
+

N2

1− q444n+185

+
N3

1− q444n+259
− N4

1− q444n+407

)
. (23)

Put

N1 = q11n−2 + q131n+3 + q155n+4 + q251n+8 + q275n+9 + q395n+14

+ q443n+16 + q467n+17 + q491n+18 + q539n+20 + q563n+21 + q611n+23

+ q635n+24 + q659n+25;

N2 = q7n−1 + q103n+19 + q151n+29 + q175n+34 + q199n+39 + q223n+44

+ q295n+59 + q343n+69 + q415n+84 + q439n+89 + q463n+94 + q487n+99

+ q535n+109 + q631n+129;

N3 = q77n+20 + q101n+27 + q221n+62 + q269n+76 + q293n+83 + q317n+90

+ q365n+104 + q389n+111 + q437n+125 + q461n+132 + q485n+139

+ q533n+153 + q653n+188 + q677n+195;

N4 = qn−2 + q25n+9 + q49n+20 + q121n+53 + q169n+75 + q241n+108

+ q265n+119 + q289n+130 + q313n+141 + q361n+163 + q457n+207

+ q529n+240 + q625n+284 + q673n+306;
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N5 = q47n+23 + q95n+49 + q119n+62 + q143n+75 + q191n+101 + q215n+114

+ q263n+140 + q287n+153 + q311n+166 + q359n+192 + q479n+257

+ q503n+270 + q599n+322 + q623n+335;

N6 = q19n+11 + q43n+28 + q163n+113 + q211n+147 + q235n+164 + q259n+181

+ q307n+215 + q331n+232 + q379n+266 + q403n+283 + q427n+300

+ q475n+334 + q595n+419 + q619n+436;

N7 = q65n+49 + q161n+125 + q209n+163 + q233n+182 + q257n+201 + q281n+220

+ q353n+277 + q377n+296 + q401n+315 + q473n+372 + q497n+391

+ q521n+410 + q545n+429 + q593n+467 + q689n+543;

N8 = q13n+10 + q109n+102 + q181n+171 + q277n+263 + q325n+309 + q349n+332

+ q373n+355 + q397n+378 + q469n+447 + q493n+470 + q517n+493

+ q589n+562 + q613n+585 + q637n+608 + q661n+631.

Then

G5 (q)G5

(
q58

)
=

∞∑

n=0

(
− N1

1− q696n+29
− N2

1− q696n+145
+

N3

1− q696n+203

+
N4

1− q696n+319
+

N5

1− q696n+377
− N6

1− q696n+493

+
N7

1− q696n+551
− N8

1− q696n+667

)
. (24)

Set

N1 = q7n−1 + q103n+3 + q151n+5 + q175n+6 + q199n+7 + q223n+8

+ q295n+11 + q343n+13 + q415n+16 + q439n+17 + q463n+18 + q487n+19

+ q535n+21 + q631n+25;

N2 = q11n+1 + q131n+26 + q155n+31 + q251n+51 + q275n+56 + q395n+81

+ q443n+91 + q467n+96 + q491n+101 + q539n+111 + q563n+116

+ q611n+126 + q635n+131 + q659n+136;
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N3 = qn−1 + q25n+6 + q49n+13 + q121n+34 + q169n+48 + q241n+69

+ q265n+76 + q289n+83 + q313n+90 + q361n+104 + q457n+132 + q529n+153

+ q625n+181 + q673n+195;

N4 = q77n+34 + q101n+45 + q221n+100 + q269n+122 + q293n+133 + q317n+144

+ q365n+166 + q389n+177 + q437n+199 + q461n+210 + q485n+221

+ q533n+243 + q653n+298 + q677n+309;

N5 = q19n+9 + q43n+22 + q163n+87 + q211n+113 + q235n+126 + q259n+139

+ q307n+165 + q331n+178 + q379n+204 + q403n+217 + q427n+230

+ q475n+256 + q595n+321 + q619n+334;

N6 = q47n+32 + q95n+66 + q119n+83 + q143n+100 + q191n+134 + q215n+151

+ q263n+185 + q287n+202 + q311n+219 + q359n+253 + q479n+338

+ q503n+355 + q599n+423 + q623n+440;

N7 = q37n+28 + q61n+47 + q85n+66 + q133n+104 + q157n+123 + q205n+161

+ q229n+180 + q253n+199 + q301n+237 + q421n+332 + q445n+351

+ q493n+389 + q541n+427 + q565n+446 + q685n+541;

N8 = q17n+15 + q41n+38 + q89n+84 + q113n+107 + q137n+130 + q185n+176

+ q305n+291 + q329n+314 + q377n+360 + q425n+406 + q449n+429

+ q569n+544 + q617n+590 + q641n+613 + q665n+636.

Then

G5

(
q2

)
G5

(
q29

)
=

∞∑

n=0

(
− N1

1− q696n+29
− N2

1− q696n+145
+

N3

1− q696n+203

+
N4

1− q696n+319
− N5

1− q696n+377
+

N6

1− q696n+493

+
N7

1− q696n+551
− N8

1− q696n+667

)
. (25)
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6. Heptagonal Numbers

G7 (q)G7

(
q6

)
=

∞∑

n=0

(
− q23n−1

1− q120n+3
− q61n+3

1− q120n+9
+

q49n+7

1− q120n+21

− q47n+9

1− q120n+27
− q13n+2

1− q120n+33
+

q11n+2

1− q120n+39

+
q39n+15 + q79n+32

1− q120n+51
+

q77n+35

1− q120n+57
+

q83n+42

1− q120n+63

+
qn−1

1− q120n+69
+

q29n+18 + q69n+45

1− q120n+81

−q27n+18 + q67n+47

1− q120n+87
+

q73n+55

1− q120n+93
− q71n+57

1− q120n+99

−q19n+16 + q99n+90

1− q120n+111
− q17n+15

1− q120n+117

)
. (26)

We have not been able to find an identity for G7

(
q2

)
G7

(
q3

)
.

7. Final Comments

We would like to acknowledge our gratitude to Dr. Michael Hirschhorn, whose
encouraging and highly informed comments have served to significantly streamline
this work.

Finally, we would like to express our gratitude to an anonymous referee, who has
directed us to several sources that contain material that has relevance to our work.
Accordingly, we comment briefly about the relevant material in these sources.

Let a, b, n, x, and y be positive integers. By tn(a, b), Sun [14] denotes the number
of representations of n as ax(x − 1)/2 + by(y − 1)/2. Sun then obtains formulas
for tn(1, b) for fifteen values of b. The referee, in complete detail, has demonstrated
that the truth of our conjecture (6) is equivalent to Sun’s Theorem 3.3. In a similar
manner, the truth of our conjecture (11) is equivalent to Sun’s Theorem 3.5, and
the truth of our conjecture (14) is equivalent to Sun’s Theorem 3.7.

For any integer n, and any integers k ≥ m > 0, let r(k,m)(n) denote the number
of solutions, in integers, of

n = kx2
1 + mx2

2. (27)
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Similarly, let t(k,m)(n) denote the number of solutions, in non-negative integers,
of

n = k
x1(x1 + 1)

2
+ m

x2(x2 + 1)
2

. (28)

Then Theorem 1 of Adiga, Cooper and Han [1] produces (among many such rela-
tions) the following:

r(3,2)(8n + 5) = 4t(3,2)(n),

r(5,1)(8n + 6) = 4t(5,1)(n),

r(6,1)(8n + 7) = 4t(6,1)(n),

r(5,2)(8n + 7) = 4t(5,2)(n). (29)

In (29) we have listed only those relations that are relevant to the present work.
For any integer n ≥ 1, write

8n + 6 = 2(4n + 3) = 2× 5s × n0, (30)

for an integer s ≥ 0, and an integer n0 ≥ 1 with (n0, 20) = 1. Then by a result in
Dickson [6], page 84,

r(5,1)(8n + 6) =
(
1−

(n0

5

))
(d1,20(n0) + d3,20(n0) + d7,20(n0) + d9,20(n0)

−d11,20(n0)− d13,20(n0)− d17,20(n0)− d19,20(n0)) . (31)

There are four possibilities for n0 modulo 20, namely

n0 = 20x + 3, n0 = 20x + 7, n0 = 20x + 11, or n0 = 20x + 19,

for x a nonnegative integer. From here, using the same path set forth by the referee
(see the comments above, on the work of Sun), we used the second entry in in (29)
to prove our conjecture (6). Again, in Dickson [6], pages 84-86, there are results for
r(3,2)(n), r(6,1)(n), and r(5,2)(n). These results, when coupled with the appropriate
entries in (29), yield proofs of our conjectures (7), (8), and (10).

Interestingly, Dickson [6] gives r(k,m)(n) for several other instances of (k,m). For
each of these instances, however, Theorem 1 of Adiga, Cooper, and Han [1] is not
broad enough in scope to enable any of our remaining conjectures to be proved.
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