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Abstract
We derive several new convolution identities for the Stirling numbers of the first
kind. As a consequence we obtain a new linear recurrence relation which generalizes
known relations.

1. Introduction

The Stirling numbers of the first and the second kind are fundamental objects in
combinatorics, with important applications in other areas of mathematics. In this
paper we will be mainly concerned with Stirling numbers of the first kind , s(n, k).
They can be defined by the generating function

x(x− 1) . . . (x− n + 1) =
n∑

k=0

s(n, k)xk. (1)

This means that they are the coefficients connecting the two most fundamental bases
of the vector space of single-variable polynomials (while the inverse transformation
between these two bases is given by the Stirling numbers of the second kind). The
main combinatorial interpretation of |s(n, k)| is the number of ways to arrange n
objects into k cycles; see, e.g., [4, p. 259].

It is the purpose of this paper to derive some convolution identities, as well as an
apparently new class of linear identities, all of which can also be seen as recurrence
relations. The most basic recurrence is the “triangular” relation

s(n + 1, k) = s(n, k − 1)− n s(n, k), 1 ≤ k ≤ n. (2)
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Other important types of recurrences are the linear relations

s(n,m) =
n∑

k=m

nk−ms(n + 1, k + 1) (m ≥ 1), (3)

s(n + 1,m + 1) =
n∑

k=m

(−1)m−k

(
k

m

)
s(n, k), (4)

s(n,m) =
n∑

k=m

(
k

m

)
s(n + 1, k + 1). (5)

The best known convolution identity is

(
m

r

)
s(n,m) =

n−r∑

k=m−r

(
n

k

)
s(n− k, r)s(k,m− r), (6)

valid for 0 ≤ r ≤ m (see, e.g., [1, p. 824]). The following identity is of a somewhat
different type:

s(a + b, a + b− n)
(a + b− 1)

(a+b−2
a−1

) =
n∑

k=0

s(a, a− k)s(b, b− (n− k))
(a + b− n− 1)

(a+b−n−2
a−k−1

) , (7)

It can be obtained from Equation (6.46) in [4, p. 272]. Among the more basic
properties, the following will be used in this paper:

s(0, 0) = s(n, n) = 1, s(n, 0) = 0 for n ≥ 1, (8)

s(n, 1) = (−1)n−1(n− 1)!, (9)

s(n, 2) = (−1)n(n− 1)!Hn−1, (10)

where Hk = 1+ 1
2 +. . .+ 1

k is the kth harmonic number, with H0 = 0. By convention
we also have

s(n, k) = 0 for k < 0 and for k > n. (11)

These and numerous other properties can be found, e.g., in the books [1, Ch. 24],
[3], [4], or in the on-line resources [11] or [10, A008277]. Although there are some
advantages to the bracket notation used in [4] (see also [7]) we use here the main
competing notation s(n, k).

In Section 2 we will prove two convolution identities, which will then be used in
Section 3 to derive a linear relation. This will be shown to be a generalization of
some known identities. We finish with some additional remarks in Section 4.
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2. Convolution Identities

Our first convolution identity is related to the sum

s̃(n, k,m) :=
m∑

r=0

(
m

r

)
s(n− r, k + m)

(n− r)!
, (12)

which arose in connection with recurrences for Bernoulli numbers of the second kind
[2]. No closed from for s̃(n, k,m) seems to exist; however, we have the following
relation.

Theorem 1. For any nonnegative integers n, k, and m we have

m∑

r=0

(
m

r

)
s(n− r, k + m)

(n− r)!
=

1
n!

m∑

j=0

(−1)js(n−m,k + j)s(m + 1,m + 1− j). (13)

The identity (13) holds for all n, k,m ≥ 0, but for n < k + m it is trivially true
and quite meaningless since in this case all summands on both sides of (13) vanish,
according to (11). The proof of Theorem 1 is based on the following lemma which
is of interest in its own right.

Lemma 2. (a) The sum s̃(n, k,m) defined in (12) satisfies the recurrence relation

(n + 1) s̃(n + 1, k − 1,m + 1) = s̃(n, k − 1,m) + (m + 1) s̃(n, k,m). (14)

(b) Let t(n, k,m) denote the sum on the right-hand side of (13). Then we have

t(n + 1, k − 1,m + 1) = t(n, k − 1,m) + (m + 1) t(n, k,m). (15)

Proof. (a) We begin by introducing the closely related expressions

t̃(n, k,m) := n! s̃(n, k,m) =
m∑

r=0

(
m

r

)(
n

r

)
r! s(n− r, k + m). (16)

Then it is clear that (14) holds if and only if (15) holds for t̃(n, k,m). We first
apply the identity (m + 1)

(m
r

)
=

(m+1
r+1

)
(r + 1) to (16) and then use the binomial

identity
( n
r−1

)
=

(n+1
r

)
−

(n
r

)
to obtain
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(m + 1) t̃(n, k,m) =
m∑

r=0

(
m + 1
r + 1

)(
n

r

)
(r + 1)! s(n− r, k + m)

=
m+1∑

r=1

(
m + 1

r

)(
n

r − 1

)
r! s(n− r + 1, k + m)

=
m+1∑

r=0

(
m + 1

r

)(
n + 1

r

)
r! s(n− r + 1, k + m)

−
m+1∑

r=0

(
m + 1

r

)(
n

r

)
r! s(n− r + 1, k + m),

where we extended the last two sums to include the case r = 0; note that these two
terms cancel each other. Since the second-last sum is simply t̃(n + 1, k− 1,m + 1),
we are done if we can show that the last sum is t̃(n, k− 1,m). To do this, using the
convention

( m
−1

)
= 0 we write the sum in question as

m+1∑

r=0

((
m

r

)
+

(
m

r − 1

))(
n

r

)
r! s(n− r + 1, k + m)

=
m+1∑

r=0

(
m

r

)(
n

r

)
r! s(n− r + 1, k + m)

+
m∑

r=0

(
m

r

)(
n

r + 1

)
(r + 1)! s(n− r, k + m)

=
m∑

r=0

(
m

r

)(
n

r

)
r!

[
s(n− r + 1, k + m) + (n− r) s(n− r, k + m)

]

= t̃(n, k − 1,m),

since by (2) the term in square brackets is s(n − r, k + m − 1). Note that in the
second-last step we used the simple identity

( n
r+1

)
(r + 1) =

(n
r

)
(n− r). This proves

(14).
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(b) For (15) we use again (2) to obtain

(m + 1) t(n, k,m)

=
m∑

j=0

(−1)js(n−m,k + j)
[
(m + 1) s(m + 1,m + 1− j)

]

=
m∑

j=0

(−1)js(n−m,k + j)
[
s(m + 1,m− j)− s(m + 2,m + 1− j)

]

=
m+1∑

j=1

(−1)j−1s(n−m,k − 1 + j)

×
[
s(m + 1,m + 1− j)− s(m + 2,m + 2− j)

]

= −
m∑

j=0

(−1)js(n−m,k − 1 + j)s(m + 1,m + 1− j) + s(n−m,k − 1)

+
m+1∑

j=0

(−1)js(n + 1− (m + 1), k − 1 + j) s(m + 2,m + 2− j)− s(n−m,k − 1)

= −t(n, k − 1,m) + t(n + 1, k − 1,m + 1),

where we have also used (8) to deal with the initial and final terms in the above
sums.

Proof of Theorem 1. The sums t(n, k,m) and t̃(n, k,m) satisfy the same recurrence,
and we have t(n, k, 0) = t̃(n, k, 0) = s(n, k) for all k and n. Hence they must be
identical, i.e., (13) must hold.

A result similar in nature to (13) can be derived with a different method.

Theorem 3. For positive integers n and r ≤ n + 1 and for integers 0 ≤ m ≤ n we
have

n−r+1∑

j=0

(
r − 1 + j

j

)
mjs(n, r − 1 + j)

=
r∑

j=0

(−1)m+1−r+js(m + 1, r − j)s(n−m, j). (17)
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Proof. In the definition (1) we substitute n by m+1, replace x by −x, and multiply
both sides by (−1)m+1, to obtain

m∏

ν=0

(x + ν) =
m+1∑

j=0

(−1)m+1−js(m + 1, j)xj . (18)

Next, we substitute n by n−m in (1), to get

n−m−1∏

ν=0

(x− ν) =
n−m∑

j=0

s(n−m, j)xj . (19)

The result will be obtained by evaluating the product of the expressions (18) and
(19) in two different ways. The product of the left-hand sides is easily seen to be

x
n−1∏

ν=0

(
(x + m)− ν

)
= x

n∑

j=0

s(n, j)(x + m)j = x
n∑

j=0

s(n, j)
j∑

t=0

(
j

t

)
mj−txt,

where we have used (1) again. Changing the order of summation, we see that the
expression becomes

x
n∑

t=0

n−t∑

j=0

(
t + j

j

)
mjs(n, t + j)xt

=
n+1∑

r=1




n−r+1∑

j=0

(
r − 1 + j

j

)
mjs(n, r − 1 + j)



xr.

The product of the right-hand sides of (18) and (19) is

n+1∑

r=0




r∑

j=0

(−1)m+1−r+js(m + 1, r − j)s(n−m, j)



xr.

Equating the coefficients of xr, for 1 ≤ r ≤ n + 1, in the last two expressions, we
obtain the result.
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3. A Linear Recurrence

By comparing the right-hand sides of (17) and (13), we obtain another interesting
identity. Indeed, set r = k + m + 1 in (17); then we have

n−k−m∑

j=0

(
k + m + j

j

)
mjs(n, k + m + j)

=
k+m+1∑

j=0

(−1)k+js(m + 1, k + m + 1− j)s(n−m, j). (20)

Since s(m + 1, 0) = s(m + 1, x) = 0 for x > m + 1, the sum on the right actually
ranges only from j = k to j = k + m. If we now replace j by j − k in this sum, we
see that it is identical with the sum on the right-hand side of (13). Changing the
summation on the left-hand side of (20), we now get the following apparently new
identity from (13).

Theorem 4. For integers n ≥ 1 and 0 ≤ m ≤ n, 0 ≤ k ≤ n−m we have

n∑

j=k+m

(
j

k + m

)
mj−k−ms(n, j) = n!

m∑

r=0

(
m

r

)
s(n− r, k + m)

(n− r)!
. (21)

We consider some special cases. For m = 0 or for k = n − m the identity is
trivial. However, for m = 1 we get the following more meaningful summation.

Corollary 5. For integers n ≥ 1 and 0 ≤ k ≤ n− 1 we have

n−k−1∑

j=0

(
n− j

k + 1

)
s(n, n− j) = s(n, k + 1) + ns(n− 1, k + 1). (22)

This identity is in fact known; see [5], (52.2.19), or [6], p. 185, for equivalent
formulations. For related identities, see [4], p. 265. If we take k = 0 in (22) and use
(9), we get the identity

n∑

j=1

js(n, j) = (−1)n−2(n− 2)!,

valid for n ≥ 2. It can be found in [6], p. 186; it is also (incorrectly) quoted in [5],
identity (52.2.6).

Similarly, if we let m = 2 in (21) and make a small change in the summation,
then we get
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Corollary 6. For integers n ≥ 2 and 0 ≤ k ≤ n− 2 we have

n−k−2∑

j=0

(
k + 2 + j

k + 2

)
2js(n, k + 2 + j) (23)

= s(n, k + 2) + 2n s(n− 1, k + 2) + n(n− 1) s(n− 2, k + 2),

and in particular, for n ≥ 3,

n∑

j=2

(
j

2

)
2j−2s(n, j) = (−1)n(n− 3)! (2Hn−3 − 3) . (24)

The identity (24) follows easily from (23) by taking k = 0 and using (8)–(10).

4. Further Remarks

1. A result on Bernoulli numbers of the second kind in the authors’ recent paper
[2] can also be seen as a class of convolution identities for Stirling numbers of the
first kind. Indeed, it was pointed out in [2] how we can obtain the identity

m−1∑

j=0

(−1)j s(m, j)s(m,m− j)(m
j

) = m!(m + 1)!
m∑

r=0

(
m

r

)
s(2m + 1− r,m + 1)

(2m + 1− r)!
.

2. Two rather general convolution identities for Stirling polynomials are given in
[4, p. 272]; they can be rewritten in terms of identities for Stirling numbers of both
kinds. Without going into details we just mention that s(n, n− k) can be shown to
be a polynomial in n of degree 2k. After dividing out k + 1 obvious linear factors,
one obtains the kth Stirling polynomial. These polynomials were apparently first
introduced by Nielsen in his treatise on the Gamma function [8], then studied in
great detail in his rare memoir [9]. Stirling polynomials are also treated to some
extent in [6] and in [4], as already cited. As usual, the reader should be aware of
differences in notation which in this case also involves differences in the signs of the
coefficients.
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