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Abstract
We study a card game called Mousetrap, together with its generalization He

Loves Me, He Loves Me Not. We first present some results for the latter game,
based, on one hand, on theoretical considerations and, on the other one, on Monte
Carlo trials. Furthermore, we introduce a combinatorial algorithm, which allows
us to obtain the best result at least for French card decks (52 cards with 4 suits).
We then apply the algorithm to the study of Mousetrap and Modular Mousetrap,
improving recent results. Finally, by means of our algorithm, we study the reformed
permutations in Mousetrap, Modular Mousetrap and He Loves Me, He Loves Me
Not, attaining new results which give some answers to several questions posed by
Cayley and by Guy and Nowakowski in their papers.

1. Introduction

In 1857 Cayley [3] proposed a game called Mousetrap, played with a deck containing
only one suit; here we report the description given in [9, p. 237]:

“Suppose that the numbers 1, 2, . . . , n are written on cards, one to a card. After
shuffling (permuting) the cards, start counting the deck from the top card down. If
the number on the card does not equal the count, transfer the card to the bottom
of the deck and continue counting. If the two are equal then set the card aside and
start counting again from ‘one.’ The game is won if all the cards have been set
aside, but lost if the count reaches n + 1.”

Cayley posed the fundamental question [4]: “Find all the different arrangements
of the cards, and inquire how many of these there are in which all or any given
smaller number of the cards will be thrown out; and (in the several cases) in what
orders the cards are thrown out.”

Relatively few authors (in chronological order: [4], [20], [9], [11], [13], [10],
[12], [19]) have studied the problem, arriving, only recently [10], [13], [19], at very
interesting, though partial, results.
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In [9, p. 238], [10]] and [11] Guy and Nowakowski consider another version of
the game, called Modular Mousetrap, where, instead of stopping the game when
no matching happens counting up to n, we start our counting again from “one,”
arriving either to set aside every card or at a loop where no cards can be set aside
anymore. Obviously, in this game, if n is prime, we have only two possibilities:
either derangement, where no coincidences occur, or winning deck.

The games are studied in the case of only one suit. Here we present for the first
time the generalized version of Mousetrap to the case of several suits (“multisuit”
Mousetrap: n = m · s).

Mousetrap rules could be generalized at least in two different ways: when the
player has counted up to m, without coming to a card which ought to be thrown
out, he can

(a) either stop the game (Mousetrap-like rule), or

(b) eliminate the last m cards and continue his counting, restarting from “one,”
up to the exhaustion of the deck, when all the cards have been eliminated or
stored.

We choose the second option, that recalls a different solitaire, which we consider
in Section 2. It is not known in the mathematical literature, but, as told in [14], it
has been studied for a relatively long time. It is commonly called He Loves Me, He
Loves Me Not ((HLM)2N) or Montecarlo:

“From a deck with s suits and m ranks, deal all the cards into a pile one at a time,
counting “one,” “two,” “three,” etc. When a card whose value is k proves to be of
the rank you call, it is hit. The card is thrown out and stored in another pile, the
score is increased by k, the preceding k− 1 cards are put at the end of the deck, in
the same order in which they were dealt and you start again to count “one,” “two,”
“three,” etc. If you count up to m without any matching, the last m counted cards
are “burned,” i.e., definitively discarded and you begin the count afresh, counting
“one,” “two,” “three,” etc. with the residual cards. When the number nc of cards
in the residual deck is less than m, the count can arrive, at most, at the value nc.
The game ends when you have stored and/or “burned” all the cards and there are
no more cards in the deck. The score of the game is given by the sum of the face
values of all the stored cards.”

The aim of the game is to achieve the greatest possible score.
Up to now, this game has been studied only by means of Monte Carlo methods,

separately by Andrea Pompili [14] and by the author.
Just to better understand the rules of the three solitaires, let us play with the deck

(m = 4, s = 1) 2 1 3 4. We first count “one,” “two,” “three,” visiting respectively
cards “two,” “one,” “three.” Since in the latter case we have a matching, we set
aside the card ”three” and continue our count with the residual deck, which now
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has the form 4 2 1, because “two” and “one” have been moved to the bottom of
the deck. The next matchings happen, in order, counting “two” and “one.” At this
point we have thrown out, in order, cards 3, 2, 1 and the residual deck contains only
the “four.”

Following (HLM)2N rules, since the count can at most arrive at “one,” which is
the minimum between m = 4 and the total number of residual cards, the solitaire
stops, without setting aside the card “four.”

Following Mousetrap rules, we must count up to ‘four,” obtaining a matching
for the residual card, too. At last, we throw out all the cards, creating the new
permutation 3 2 1 4. It follows that we have won at Mousetrap and, obviously, at
Modular Mousetrap, too.

If we consider the deck (m = 8, s = 1) 8 1 5 2 6 4 7 3, counting from “one” we
throw out, in order, 7, 6, 5, 3, 4; the residual deck is formed by 8 1 2.

Following (HLM)2N rules, since we can count only up to “three,” we cannot set
aside further cards.

Following Mousetrap rules, we can count up to “eight,” but again we cannot set
aside further cards.

Following Modular Mousetrap rules, when we arrive at “eight” visiting card
“one,” we start again counting from “one.” In this way, at the second count round,
we have matching at “eight.” Finally we throw out ”one” and “two,” too, forming
the new permutation 7 6 5 3 4 8 1 2.

In this paper we introduce a new technique, which allows us to obtain the number
of winning decks for many values of m and s, without any need of trials, not only
for (HLM)2N , but also for Mousetrap and Modular Mousetrap, in their “multisuit”
version, too. It is nothing other than to reconstruct a winning start position by
progressively rebuilding a deck beginning at the end.

It will be accurately explained in Section 4. Just as an example, the deck 2 1 3 4,
which forms the new permutation 3 2 1 4 playing Mousetrap, can be reconstructed
starting from the new permutation, inserting in a set with only one place the last
card set aside, i.e., the “four.” Then in a set with two places, we first insert the
“one,” obviously in the first place, and the “four” in the only remaining empty place,
creating the string 1 4. In the third step, in a set with three places, we first insert
the “two” in the second place, then the “one” in the first empty place just after the
“two” and the “four” in the only remaining empty place, creating the string 4 2 1.
In the fourth step, in a set with four places, we first insert the “three” in the third
place, then the “two” in the second empty place just after the “three”; since the
set is formed by four places, the “two” must be inserted as in Z4 (the residue class
modulo 4), i.e., in the first place; then we insert “one” in the first empty place just
after the “two,” i.e., in the second place; finally the “four” must be inserted in the
only remaining empty place, creating the original deck 2 1 3 4.
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The technique has been implemented in a computer program. New results have
been obtained in a very efficient way and many others could be reached, if the
algorithm could be implemented in a parallel computing framework.

In their papers devoted to Mousetrap, Guy and Nowakowski proposed to study
the so-called reformed decks (or permutations): “consider a permutation for which
every number is set aside. The list of numbers in the order that they were set aside
is another permutation. Any permutation obtained in this way we call a reformed
permutation. Characterize the reformed permutations.”

The aim of this paper is to apply the new technique to the analysis of reformed
decks, in the three solitaires and to show new results which can answer some open
questions proposed by Cayley and by Guy and Nowakowski.

The paper is divided into seven sections.
In Section 2 we recall the most important results related to the game Mousetrap;

moreover we consider the introductory notions of (HLM)2N and state two conjec-
tures: a stronger one (SC) and a weaker one (WC), concerning the possibility to
find at least one winning deck.

In Section 3 we briefly describe the algorithm, based on Monte Carlo trials, with
which we obtained winning decks just for a small number of cases; up to now, it
represented the unique method used to validate the two conjectures.

In Section 4 we show the new method, which is highly efficient and which allows
us not only to give a positive answer to (SC) at least up to a deck of French
cards (m = 13, s = 4), but, for a large range of m and s, gives the exact number of
winning decks, i.e., of decks giving the best reachable score. Thanks to this method,
an answer to the question of the number of winning decks at (HLM)2N is given,
up to s = 2, m = 16; s = 3, m = 10; s = 4, m = 7.

In Section 5, adapting the backward technique to the games Mousetrap and
Modular Mousetrap, we extend the results attained in [10] up to m = 16, s = 1
and to “multisuit” Mousetrap. Thanks to the method introduced in Section 4,
we give an answer to the question of the number of winning decks, up to s =
1, m = 16; s = 2, m = 9; s = 3, m = 6; s = 4, m = 5 for Mousetrap;
s = 1, m = 13; s = 2, m = 7; s = 3, m = 5; s = 4, m = 4 for Modular Mousetrap.

Moreover, by means of our technique, we give, in a very easy way, a positive
answer to a question originally posed by Cayley [3].

In Section 6, applying the new technique to the study of reformed decks in
the three solitaires, we obtain many (even unexpected and curious) results. In
particular, we show the first 5-reformed deck, for Mousetrap (m = 16, s = 1).
Moreover we discuss the existence of k-reformed decks, with k > 5, by means of
probabilistic considerations.

In Section 7 we give a short review of open problems and perspectives.
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2. Introductory Notions and Preliminary Results on Mousetrap
and (HLM)2N

There are few results on Mousetrap, obtained, in particular, by Steen [20], already
in 1878 and, much more recently, by Guy and Nowakowski [10], Mundfrom [13]
and Spivey [19].

Cayley [3] proposed to investigate, at Mousetrap, whatever the number n of cards
is, which permutations throw out the cards in the same order of their numbers. He
obtained the corresponding permutations for n ≤ 8:

1; 1 2; 1 3 2; 1 4 2 3; 1 3 2 5 4; 1 4 2 5 6 3; 1 5 2 7 4 3 6; 1 6 2 4 5 3 7 8.

Guy and Nowakowski observed that not all the permutations are reformed permu-
tations. On the other hand, the identity permutation 1 2 . . . n is always a reformed
permutation. Since it is not possible, in general, to arrange the cards so that all the
cards may be thrown out in a predetermined order, Cayley [4] posed the following
questions:

(1) for each n find the winning permutations of 1 2 . . . n;

(2) for each n find the number of permutations that eliminate precisely i cards
for each i, 1 ≤ i ≤ n.

He studied the game Mousetrap in the case n = 4, analyzing the 4! = 24 different
decks. Curiously, he made mistakes in six cases.

Steen [20], already in 1878 and, much more recently, Guy and Nowakowski [10],
Mundfrom [13] and Spivey [19], obtained deeper results. Steen calculated, for any
n, the number an,i of permutations that have i , 1 ≤ i ≤ n, as the first card set
aside and the numbers bn,i and cn,i of permutations that have “one” (respectively
“two”) as the first hit and i as the second. He obtained the following recurrence
relations:

an,1 = (n− 1)!, an,i = an,i−1 − an−1,i−1, bn,i = an−1,i−1, i = 2, . . . , n (1)

cn,i = cn,1 − (i− 1)cn−1,1 +
i−2∑

k=2

(−1)k i(i− 1− k)
2

cn−k,1 for all n > i + 1 (2)

Denoting by an,0 the number of derangements; an =
n∑

k=1

an,k the total number

of permutations which give hits; bn,0 the number of permutations giving “one”

as the only hit; bn =
n∑

k=2

bn,k the total number of permutations giving a second
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hit, “one” being the first; cn,0 the number of permutations giving “two” as the only

hit; cn =
n∑

k=1

cn,k (k #= 2) the total number of permutations giving a second hit,

“two” being the first; putting a0,0 = 1, Steen showed that, for 0 ≤ i ≤ n

an,0 = an+1,n+1, an,0 = nan−1,0 + (−1)n, an,i+1 =
i∑

k=0

(−1)k

(
i

k

)
(n− 1− k)! (3)

bn,i = an−1,i−1 = an−2,i−2−an−3,i−2, bn,0 = an,1−bn = an,1−an−1 = an−1,0 (4)

an = n an−1 + (−1)n−1, bn = an−1 (5)

cn,i =

[
i−3∑

k=1

(−1)k+i−1 k(k + 3)
2

(n− i + k − 1)!

]
− (i− 1)(n− 3)! + (n− 2)!. (6)

Guy and Nowakowski [10] and Mundfrom [13] showed separately that Steen’s
formula (6) is not valid for i = n − 1 and i = n and gave the exact relations. We

quote the expressions, together with the equation for cn =
n∑

k=1

cn,k , k #= 2, as

shown by Guy and Nowakowski [10], thanks to their compactness:

cn,n−1 =
n−3∑

k=0

(−1)k

(
n− 3

k

)
(n− k − 2)! (7)

cn,n = (n− 2)! +

[
n−5∑

k=0

(−1)k+1

((
n− 4

k

)
+

(
n− 3
k + 1

))
(n− k − 3)!

]
+ 2(−1)n−3

(8)

cn = (n− 2)(n− 2)!−
[[

1
e
((n− 1)!− (n− 2)!− 2(n− 3)!

]]
, (9)

where [[x]] is the nearest integer to x.
Spivey [19] approaches the game of Mousetrap using staircase rook polynomials

([15, Chapter 7, pp. 163–194]) and determines the rook polynomial for the number
of permutations in which card j is the only card removed and for the number of
permutations in which card j followed by card k are the first two cards removed.
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Defining Mn,j as the number of decks in which card j is the only card removed,
he shows that if n ≥ 4

Mn,2 = an−1,0 − an−2,0 − 2an−3,0 .

Steen [20], Guy and Nowakowski [10] and Mundfrom [13] elaborated some tables
related to formulas (1) – (9). The sequences there reproduced are quoted by Sloane
[16], [17], [18] in the following way:

{an}n∈IN ([20]): [16] N1423, [17] M3507, [18] A002467;

{an,0}n∈IN ([20]): [16] N0766, [17] M1937, [18] A000166;

{an,2}n≥2 ([20]): [16] N1436, [17] M3545, [18] A001563;

{cn}n≥2 ([10], [13], [20]): [16] N1186, [17] M2945, [18] A002468;

{cn,0}n≥2 ([13], [[20]]): [16] N1635, [17] M3962, [18] A002469;

{cn,3}n≥3 ([13], [20]): [18] A018931;

{cn,4}n≥4 ([13], [20]): [18] A018932;

{cn,5}n≥5 ([13], [20]): [18] A018933;

{c2,1} ∪ {cn,n}n≥3 ( [13], [20]): [18] A018934.

Let us observe that, owing to his mistakes in the formula for cn,i, Steen re-
ported erroneous sequences for {cn}n≥2, {cn,0}n≥2, and {c2,1} ∪ {cn,n}n≥3. The
correct sequences, obtained by Mundfrom, are quoted as [18] A002468, A002469
and A018934. Guy and Nowakowski [10] extended the correct form of the sequence
[18] A002468 up to the value n = 20.

Sequences [18] A000166 of derangements {an,0} and A002467 of permutations
with at least one fixed point arrive at n = 21, but can be easily improved by
means of the following classical result, based on the inclusion-exclusion principle
[7, Chapter 4, pp. 88–103], [8, pp. 136–137], [15, Chapter 3, pp. 50–65]:

Lemma 1. The probability of derangement for the games Mousetrap (M) and
Modular Mousetrap (MM) is

PM,m(0) = PMM,m(0) =
m∑

k=0

(−1)k

k!
. (10)

and
lim

m→∞
PM,m(0) = lim

m→∞
PMM,m(0) = Po1(0) = e−1,

where Po1(k) is the poissonian distribution with characteristic parameter 1: Po1(k) =
e−1

k!
.
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Guy and Nowakowski [10] answer to question (2) by Cayley, producing a table,
which gives the numbers of permutations eliminating just i cards (1 ≤ i ≤ 9); the
diagonal represents the numbers of winning permutations, i.e., permutations setting
aside all the n cards and represents a partial answer to question (1) by Cayley. Guy
and Nowakowski computed the terms up to n = 9.

This table is quoted as [18] A028305, up to n = 8.
We can derive other sequences from this table: the first column is the sequence

[18] A000166 of derangements. The second column is the sequence [18] A007710
([17] M1695) of permutations eliminating just one card. The top diagonal is the
sequence [18] A007709 ([17] M1608) of winning (or reformable) decks, i.e., of decks
eliminating all the cards. The sums of the terms of each row, except the terms on
the top diagonal, give the first nine terms of the sequence [18] A007711 ([17] M3546)
of unreformed decks, i.e., of decks which do not eliminate all the cards.

Furthermore, Guy and Nowakowski proved the formula for the probability that
only the card with value k is set aside from a deck of n > 2 cards and showed the
related complete table of values, for 1 ≤ k ≤ n, 1 ≤ n ≤ 10, adding another table,
for 11 ≤ n ≤ 17, but 1 ≤ k ≤ 5.

Sequence [18] A028306 quotes the table, up to n = 8.
Knowing general formulas giving the numbers of permutations that have i as the

k-th hit, given the previous (k − 1) hits, would be very useful to arrive at a closed
formula for the probability distribution of the game. But, as remarked by Steen,
already the computations to obtain cn,i are very difficult and it is hard to expect
more advanced results in this direction.

In Section 5 we present new results, based not on closed formulas but on Com-
putational Combinatorics tools, which extend the results attained in [10] up to
m = 16, s = 1 and to “multisuit” Mousetrap.

Finally, Guy and Nowakowski [10] yielded some results for the game Modular
Mousetrap.

The game He Loves Me, He Loves Me Not ((HLM)2N), described in the Intro-
duction, can be played with arbitrary values of m and s.

Since after every matching we start counting again from “one,” the game recalls
Mousetrap. On the other hand, the game differs from Mousetrap for the following
reasons:

(a) We record the sum of the values of the cards, not their number; obviously, in a
deck of m · s cards, we can, at most, obtain

s ·
m∑

k+1

k =
s

2
m(m + 1)

points.
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(b) We “burn,” i.e., we eliminate m cards, if no coincidences occur counting from
1 to m, but we do not stop the game and we continue our counting starting again
from “one.”

We can either stop the game when, remaining in the deck a number nc < m of
cards, we don’t obtain any matching counting up to nc, or, following Mousetrap
rules, continue our counting up to m; in this second case, if no matching happens
counting up to m, the game stops; otherwise we can restart our counting, after
having stored the last matching card. In the first case, we play (HLM)2N ; in the
second we play the “multisuit” Mousetrap.

According to the author’s opinion, Mousetrap and (HLM)2N are very intriguing,
because there is no a priori information on any potential winning deck.

Moreover, the rule followed by Mousetrap allows the player to store all the m · s
cards (in fact, at Mousetrap, if we remain with only one card in the deck, we know
that we will store it, because we will count up to m visiting always the same card,
whose values is, obviously, less or equal to m). Instead, thanks to the following
proposition we know that in (HLM)2N we can store at most ms − 1 cards. In
other words, when we consider Mousetrap with more than one suit, this game is
easier than (HLM)2N and every deck winning at (HLM)2N wins at Mousetrap.
Proposition 2. In (HLM)2N , for every s,m we can store at most ms− 1 cards
and the score cannot exceed

Cmax :=
s

2
[m(m + 1)]− 2 . (11)

Proof. The proof is based on contradiction. Let us suppose that we can store all
the n = m · s cards. Since the storage mechanism implies that, once a card is
stored, the number of residual cards in the deck is lowered by one, the last stored
card lowers the residual deck from one card to no cards. Consequently, the only card
storable as the last one is an “ace.” Proceeding backward in the storage mechanism,
when we store the last but one card, the deck passes from two cards to one. One
of these two cards, as already observed, is an “ace.” The second one, that must
be stored, can be only an “ace” or a “two.” But if we want to store the “two,”
the other card, which precedes it, cannot be an “ace” (otherwise, counting the two
cards, we should have first stored the “ace!”). Thus the last two cards must be two
“aces.” Continuing our process backward and reasoning in the same way as before,
since we want to store all the last three cards, the last but two cards must be an
“ace,” a “two,” or a “three.” But if the last but two cards is a “two” or a “three,”
if we want to store it we should not have an “ace” as the first of the three cards, in
contradiction with the fact that the other two cards are two “aces.” Consequently,
the last three cards must be three “aces.” The backward reasoning can be iterated,
arriving at the conclusion that, for every k, the last k cards must be “aces.” But
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the number of “aces” is equal to s, so, when k > s, we arrive at a contradiction.
Formula (11) immediately follows from the first assumption.

The crucial question is if it is always possible to find a deck from which we can
store all the cards but a “two” and, consequently, we can obtain Cmax.

We can state the following two conjectures:

Strong Conjecture (SC) In (HLM)2N , for s = 2, m ≥ 6 and s ≥ 3, m ≥ 2,
there exists at least one deck from which we store sm− 1 = n− 1 cards, obtaining
the best score, i.e.,

Cmax =
s

2
m(m + 1)− 2.

Weak Conjecture (WC) In (HLM)2N , for every s ≥ 2, m ≥ 2, there exists at
least one deck from which we store sm− 1 = n− 1 cards.

Remark 3. For s = 1 it is impossible to obtain Cmax. In fact, let us observe that,
for s = 1, the only way to store the card with value m consists in putting it in the
m-th place, without having any other coincidences in the previous (m− 1) places.
Let us indicate with X1 X2 X3 ... Xm−2 Xm−1 an arbitrary derangement of the
first (m− 1) cards; thus the m cards have the following sequence in the deck:

X1 X2 X3 ... Xm−2 Xm−1 m.

But in the turn following the matching of the card m, the residual deck is formed
by (m− 1) cards, placed in a derangement; consequently we cannot have any other
coincidences.

Remark 4. For s = 2 there exist cases for which it is not possible to obtain the
best score given by (11). The case s = 2 , m = 3 (90 different decks) can be verified
directly studying all the cases. The best reachable score, in this case, is 9, instead of
10. In the other cases, with an increasing value of m, we need to rely on a computer:
for s = 2, m = 4 (2530 different decks) and for s = 2, m = 5 (113400 different
decks), we obtain, respectively, 17 points, instead of 18 and 27 points, instead of
28. In Section 4 we prove this fact. For s = 2, 6 ≤ m ≤ 13 we obtained the best
score, given by (11).

3. Monte Carlo Methods

In order to obtain at least experimental answers to (SC) and (WC) for several
values of m and s ≤ 4, we built up a computer software, based on Monte Carlo
trials (which allow us to approximate the probability distribution by means of the
frequency distribution of a sufficiently high number of experiments), according to
the following, simple steps:
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(a) deck “shuffling,” by means of random permutations of an initial deck;

(b) playing the game: in a vector C, with s
2 [m(m + 1)] components, the first sm

components are filled with the shuffled deck. A cursor passes through all the ordered
components. When the first matching happens at a card, whose value is k1, the
preceding (k1 − 1) cards are put in the same order just after the last nonzero
component of C, filling the vector components from the (ms+1)-th position to the
(ms + k1 − 1)-th one. The cursor restarts from the (k1 + 1)-th position, counting
from “one.” The card k1 is stored and the actual score is increased by k1 points.
Subsequently, at the r-th matching, corresponding to the card kr, we shift the
preceding (kr − 1) cards, in the same order, just after the last nonzero component
of the vector and so on.

Calling nc the minimum value between the number of residual cards in the deck
and m, when no coincidences happen after nc cards, they are eliminated and if
nc ≤ m the game stops because there are no more cards to be “visited.”

(c) data storage: at the end of every game, if the score exceeds a determined
threshold (for example, the previous best score), we store in a data file the score,
the number of stored cards and the deck. If we are interested in the statistics, all
the information for every deck is stored in frequency distribution vectors, letting the
program compute the averages of scores, of the number of stored cards and of the
values of stored cards. If we are interested only on the best score, when in a deck
m consecutive cards are eliminated, due to no coincidences, the deck is discarded,
because no longer able to improve the actual best score and the game restarts with
a new deck.

The method is very efficient, considering the speed of execution and, in particular,
the disk usage for the data storage; in fact, after the game, it is always possible to
obtain back the deck we have examined, considering the first m · s components of
the card vector C.

The software has been written in FORTRAN code and implemented in a PC,
equipped with a Pentium IV. On the other hand, Andrea Pompili, in [14], used a
Borland C language.

We can count in three different ways1:

(a) ace (1),m,m− 1,m− 2, . . . , 4, 3, 2;

(b) m,m− 1,m− 2, . . . , 4, 3, 2, ace (1);

(c) ace (1), 2, 3, . . . ,m− 1,m.

1they are the three ways of counting this author knows, from direct experience and from
literature on solitaires, but many other ways could be chosen!
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In this paper we choose the option (c). The number of different decks, in

(HLM)2N as in all the “multisuit” games we consider in this paper, is given by

Nm·s =
(m · s)!
(s!)m

. (12)

The presence of the denominator is related to what Doyle, Grinstead and Laurie
Snell [6] define rank-derangements: when s > 1, a deck obtained from another one
only exchanging the position between cards of the same rank is, playing (HLM)2N
or Mousetrap, identical to the original.

Table 1 shows that the possibility to validate the conjectures becomes very hard
when m and s increase too much. In order to give an idea of the computational
complexity of the problem, let us observe that a French card deck has 52!

(4!)13 ∼ 9.2 ·
1049 permutations (without considering the rank-derangements). Supposing that
each one of the over 6 billion Earth inhabitants could examine 20 billion decks every
day, each one different from the others and from the decks examined by the other
players, with a computer (this is the actual capacity of the author’s FORTRAN
program), we should need more than 2 · 1027 years to test all the different decks!

The threshold for the number of decks to be checked beyond which the numerical
trials seem to become inadequate is around 1020. Nevertheless, the case m = 10, s =
2 is noteworthy. In fact, even after more than 600 billion trials, no evidence of
a winning deck appeared, though the number of different decks is “only” almost
2.38 · 1015. In this case, the Monte Carlo method has only given a positive answer
to (WC), obtaining, at most, 106 points, instead of Cmax = 108, as predicted in
(11). This situation could have been a priori related either to an effective negative
answer to (SC) for m = 10, s = 2 or to the high number of different decks, in
front of a too low number of winning decks. Actually, we answer the question in
a surprisingly easy way in the next section: there are only 656 winning decks and,
consequently, the probability of finding one of them is P10·2(108) ∼ 2.76 · 10−13.
Then it seems that we should have needed between O(1012) and O(1013) trials to
expect to find a winning deck.

4. The Backward Approach

Here we introduce a new technique, which gives much more satisfactory answers
than the numerical trials, in a very efficient way, giving not only a positive answer
to (SC) at least up to m = 13, s = 4, i.e., for the classical deck of French cards
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(though it can be used to explore much larger decks), but also the exact number
of winning decks, and consequently, the exact probability of winning, for a large
number of cases, as shown in Table 2.

Let us first explain the method.
As already observed, after having assigned the first m·s components of the vector

C (which can have, at most, s
2m(m+1)− 1 components), after every matching the

card with value k1 giving this matching is stored and the preceding k1−1 cards are
put just after the last nonzero component of C, ready to be visited again by the
cursor, which, in this way, never comes back, but continues forward, up to the end
of the game.

In other words, playing the game we generate, from every deck, a string whose
length is, at most, Cmax = s

2m(m + 1)− 1 (in this case, we played with a winning
deck and the last component in the string is a “two”), whose first m · s components
give the initial configuration of the system, i.e., the original deck. A derangement
corresponds to a string with length m · s, coinciding with the original deck.

We can also consider another string, formed by the cards which have given a
matching, put in the same order in which they were stored. The length of the
strings generated by winning decks is n = m · s, with the residual “two” put in
the last position. This is a new deck, i.e., a permutation of the original deck.
In other words, the so modified winning strings correspond to the reformed decks
(or permutations) introduced by Guy and Nowakowski [10, Section E37], [11], and
[12].

Let us consider, just as an example, the only two winning decks, found by means
of the Monte Carlo method, in the case m = 7, s = 4, in at least 60 billion trials:

4 3 1 4 7 7 2
6 5 4 7 3 1 3
3 6 2 2 1 7 6
6 5 1 5 4 5 2

(a)

4 3 7 3 1 6 7
2 7 5 3 5 2 2
4 4 6 2 1 7 5
6 3 1 6 5 1 4

(b)

(13)

They generate, respectively, the following strings, S1 and S2:

4531754636427673256751431212

and

6232731474575645636751431212 .

Since our main goal is to study the winning decks, for the sake of simplicity from
now on in our presentation let us focus only on strings generated by winning decks,
if not differently indicated.
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In the winning strings the value 2 is always the final component. Consequently,
the number of all the naive potential winning strings is given by

Sm·s =
(n− 1)!

(s!)m−1 · (s− 1)!
. (14)

If we had a bijective correspondence among the winning decks and the potential
winning strings, we should know the number of winning decks and thus the winning
probability, dividing Sm·s by the number of all the possible decks:

(n− 1)!
(s!)m−1 · (s− 1)!

· (s!)m

n!
=

s

n
=

1
m

. (15)

Unfortunately, we cannot have a bijection. For the sake of simplicity, let us
consider the case m = 2, s = 3. Among the 6!

(3!)2 = 20 decks, only four of them win.
Here we show the winning decks and the associated reduced strings (or reformed
decks):

the string 111222 is generated by the deck 111222;
the string 112122 is generated by the deck 112212;
the string 121122 is generated by the deck 122112;
the string 211122 is generated by the deck 221112.

The potential winning reduced strings are, in this case, 5!
(3!)·(2!) = 10: {221112};

{212112}; {211212}; {211122}; {122112}; {121212}; {121122}; {112212};
{112122}; {111222}. Actually, only the fourth, the seventh, the ninth, and the
tenth are generated by winning decks.

However, even if we cannot have bijection between winning decks and poten-
tial winning reduced strings, we can use formula (15) as a rough upper bound for
P (Cmax).

This estimate can be highly improved, by means of Chebyshev and Markov in-
equalities. This is the subject of a paper in preparation.

When we associate to a winning deck a reduced string we have a very deep
information related to the fact that the procedure of string generation is reversible:
knowing the generated string, we can rebuild the original deck. Considering ex-
ample (13(a)) (m = 7, s = 4), let us consider a vector with 28 components. Let
us put in the fourth component the first element of the string, i.e., the first stored
card, which is clearly a “four.” Then we will put in the (4 + 5 =) ninth component
the second stored card, i.e., a “five” and so on. When the counting arrives at 28,
or, in general, at m · s, we restart our counting from the first component, taking
into account only the zero components, inserting the first 27 stored cards. The last
card, i.e., a “two,” will be put in correspondence with the last zero component.
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In this way we have rebuilt the original winning deck from the winning reduced
string.

The backward approach can thus provide a very efficient method for the study
of the winning decks, highly more efficient than the Monte Carlo methods.

The technique, implemented in a computer program, rebuilds strings of contin-
uing increasing length (up to the winning strings of length n, or n-strings), storing
in data files only those ones so that the sub-decks, rebuilt from them, win playing
(HLM)2N , i.e., store all the cards but the final “two.” The program, starting from
a k-string, read in a data file, builds all the (k + 1)-strings, obtained by adding at
the beginning of the actual k-string all the allowed values from 1 to m; rebuilds the
corresponding sub-decks; and plays with the sub-decks. If a sub-deck sets aside all
the cards, except for a “two” and generates the original string, the program stores
the corresponding winning (k + 1)-string.

More precisely, the algorithm is the following: starting from the last “two,”
we proceed backward, building all the sub-strings, of increasing length that can
guarantee the storing of all the cards, apart from the last “two.” Obviously, the
last stored card can be only an “ace” or a “two;” similarly, the next to last can be
only an “ace” or a “two:” the drawing of a “three” as the next to last stored card
is excluded by Remark 3. Continuing our reasoning, the third from last stored card
can be only an “ace,” a “two” or a “three,” the fourth from last an “ace,” a “two,”
a “three,” or a “four” and so on, up to the mth from last stored card, which cannot
assume a value greater than (m− 1). From the (m + 1)th from last stored card on,
every card value is admitted.

Practically, let us recall that in the winning reduced n-strings the last position
must be occupied by a card whose value is “two” and that, in order to have winning
strings (since the strings of length k ≤ m (or k-strings), cannot be occupied by a
card whose value is greater or equal to k), the position just before the last “two”
can be occupied only by an “ace” or a “two;” thus we have only two winning final
strings of length two: 12 and 22, which are respectively generated by the sub-decks
12 and 22.

The final strings of length three can be four: 112 ; 212 ; 122 ; 222. Clearly, the
choice of these strings is related to s. If, for example, s = 2, the fourth string must
be excluded, because it contains three identical cards.

Each one of these strings is in a one-to-one correspondence with a sub-deck
generating it. In fact

from the string 112 we build the sub-deck 112, which generates the string 112;
from the string 212 we build the sub-deck 221, which generates the string 212;
from the string 122 we build the sub-deck 122, which generates the string 122;
from the string 222 we build the sub-deck 222, which generates the string 222.
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When we pass to the final strings of length four we have 12 possibilities: 1112;
2112; 3112; 1212; 2212; 3212; 1122; 2122; 3122; 1222; 2222; 3222. While we can
associate to eight of them the corresponding generating winning deck, according to
the following list:

the sub-deck 1112 generates the string 1112 ;
the sub-deck 2211 generates the string 2112 ;
the sub-deck 1221 generates the string 1212 ;
the sub-deck 2132 generates the string 3212 ;
the sub-deck 1122 generates the string 1122 ;
the sub-deck 2212 generates the string 2122 ;
the sub-deck 1222 generates the string 1222 ;
the sub-deck 2222 generates the string 2222 ;

(16)

we realize that the strings 3112 ; 2212 ; 3122 ; 3222 have no corresponding winning
deck. In fact, considering, for example, the string 3122, the deck generating it
must have in the third position the card “three;” in the fourth position the card
“ace” and, having no other components after, the second “ace” must be put in first
position. Consequently, the card “two” must be put in the only place remained,
that is in the second position. So the generating deck should be 1231. But it is
evident that this deck, instead of the considered string, generates the losing string
formed only by an “ace,” without any other coincidences.

Moreover, to the string 2212 corresponds the deck 1222, which generates the
string 1222, which is still a winning string, but different from the original one. This
last consideration shows that there is no bijective correspondence between decks and
reduced strings: if every deck generates only one string, the reverse is in general
not guaranteed: the same deck can be rebuilt from different strings!

In order to avoid these situations, the algorithm we have implemented contains a
test where we check if the original string coincides with the reformed string obtained
from the deck given back by the original string. Otherwise the string must be
discarded.

Continuing the procedure, we select winning strings of continuing increasing
length with the fundamental restriction that they must be generated by a deck,
following the rules of (HLM)2N .

In order to save disk usage, the strings are stored as “characters” in the FOR-
TRAN data files. Any idea regarding further memory saving improvements would
be welcome.

By virtue of this technique we have been able to show that (SC) is true at least
up to the case of French cards (m = 13, s = 4), finding, in less than one second,
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four winning decks. The first winning deck of French cards found by the computer
is the following:

7 9 5 9 7 3 8 6 6 2 5 12 11
4 12 9 7 7 10 2 4 5 3 11 13 2
4 4 11 13 3 6 10 10 10 3 5 12 2
1 1 1 1 12 9 11 13 8 8 6 8 13 ,

while the first deck of Italian cards (m = 10 , s = 4) is

6 8 9 7 5 5 3 6 6 10
2 7 4 7 4 10 2 8 5 3
9 2 4 4 3 6 10 7 10 3
5 2 1 1 1 1 9 9 8 8 .

The search for at least one winning deck is, in general, very fast. But, as shown
in Table 2, we have, in many cases, found also the exact number of winning decks.
Let us remark the fact that for the case m = 10, s = 2 (in comparison with un
unsuccessful research of winning decks with Monte Carlo methods, after more than
6 · 1011 trials) we gained all the 656 winning decks, by virtue of the backward
technique, in less than one second.

Let us apply this method to prove the following

Theorem 5. For s = 2, m = 3, 4, 5 there are no winning decks. For s = 2, m = 6
there exists only one winning deck.

Proof. Let us first consider strings with an arbitrary m and s = 2. Following
the above described procedure, we must build all the winning strings of length,
respectively, 3 × 2 = 6; 4 × 2 = 8; 5 × 2 = 10; 6 × 2 = 12, where, as al-
ready remarked, the last position must be occupied by a “two.” According to
the list (16) and recalling that s = 2, the 4-strings we are interested on are
2112; 1212; 3212; 1122. These 4-strings generate only the following 5-strings:
32112; 42112; 31212; 41212; 13212; 33212; 43212; 31122; 41122. Among them,
only 42112; 31212; 13212 are generated by decks (respectively 21142; 21312; 12132).
Continuing backward, we arrive at nine strings of length 6:

342112; 442112; 542112; 331212; 431212; 531212; 313212; 413212; 513212;

among them, only one (431212) is generated by a deck: 312421, which contains
a “four.” Thus, there are no winning 6-strings (and, consequently, winning decks)
for s = 2, m = 3. Let us now build the four final 7-strings: 3431212; 4431212;
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5431212; 6431212. Among them, only two are generated by decks:

3431212 is generated by 2133124;
5431212 is generated by 2421531.

Continuing, among the 9 strings of length 8, only four are generated by decks:
63431212 is generated by 33124621;

35431212 is generated by 31324215;
45431212 is generated by 53142421;
65431212 is generated by 21531624.

All of them contain cards whose value is greater than 4. Consequently, there are
no winning decks for m = 4, s = 2. The nine 9-strings generated by decks are:

563431212 is generated by 462153312;

663431212 is generated by 246216331;
435431212 is generated by 215431324;
345431212 is generated by 213531424;
545431212 is generated by 242155314;
845431212 is generated by 314242185;
365431212 is generated by 243215316;
665431212 is generated by 316246215;
765431212 is generated by 531624721.

In order to conclude the proof, let us now consider only strings where the cards
assume at most value “six.” Among all the 51 10-strings, only 17 are formed with
cards whose value is at most “six.” The strings generated by decks are 21. Among
them, only 7 are formed with cards whose value is at most “six:”

4563431212 is generated by 3124462153;
5563431212 is generated by 3312546215;
4663431212 is generated by 3314246216;
6345431212 is generated by 3142462135;
4365431212 is generated by 3164243215;
5365431212 is generated by 5316524321;
4665431212 is generated by 2154316246.

All of them contain at least one “six.” Consequently, there are no winning decks
for m = 5, s = 2. Finally, iterating the procedure only for cards whose value is
at most “six,” we arrive at 13 12-strings. Among them, only one, 534665431212,
is generated by a deck: 316254632154. Then, for m = 6, s = 2, there is only one
winning deck. !
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In Table 2 we report the number of winning decks for s = 2, 3, 4.
Finally, recalling that in Remark 3 we have already shown that, for s = 1, it is

not possible to reach Cmax, we can, however, determine the best reachable score.
Table 3 shows the best results obtained by virtue of a modified version of the
computer program explained in this section. The results we have achieved following
this method coincide with the best scores obtained with Monte Carlo trials when
the number m is sufficiently small. For larger m, the trials need too much time to
reach the best score, while the backward method arrives at the correct answer very
quickly.

5. Applications to the Game Mousetrap

As already remarked in the Introduction, there are few results related to the game
Mousetrap. In particular, there are no (even approximated) formulas giving the
probability of winning decks. The algorithm introduced in the previous Section,
adequately adapted to this game, allows us to obtain not a closed formula, but a
sequence of values, giving the number Nmax,m·s of winning decks and, consequently,
the probability Pmax,m·s for different values of m and s.

The main change consists in allowing the last card to assume whatever value, as
allowed by the rules of this game.

Up to now, according to [5], [16], [17], and [18], the sequence of values of Pmax

was obtained only for s = 1 and up to m = n = 13. In [18] this sequence cannot be
read in A007709, but can be easily obtained from A007711, from the sequence of
non-winning decks (or unreformed decks), because their number is, obviously, equal
to n!−Nmax,n.

According to Kok Seng Chua [5], this sequence has been obtained playing with all
the n! = m! decks, by means of a computer program generating all the permutations
of a set of n elements.

Our new technique allows us to obtain the same results very quickly (the author’s
PC yielded the exact number of winning 13-decks in 25 minutes, in comparison with
one week job used by K.S. Chua [5]) and to extend the sequence, for s = 1, up to
m = 16.

Hence, the new sequence of reformed decks (starting from n = 1), quoted in [18]
as A007709, is 1, 1, 2, 6, 15, 84, 330, 1, 812, 9, 978, 65, 503, 449, 719, 3, 674, 670,
28, 886, 593, 266, 242, 729∗, 2, 527, 701, 273, 25, 749, 021, 720 while the sequence of
unreformed decks (the total number of non-winning decks), quoted as A007711, is
0, 1, 4, 18, 105, 636, 4, 710, 38, 508, 352, 902, 3, 563, 297, 39, 467, 081, 475, 326, 930,
6, 198, 134, 207, 86, 912, 048, 471∗, 1, 305, 146, 666, 727, 20, 897, 040, 866, 280 (the
values marked with ∗ are the start of new values, while the other values appear
in [18] and [5]).
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We adapted the backward technique to the game Modular Mousetrap, too. Though
experimentally the number of winning decks grows with m much faster than at
Mousetrap, the new technique has proved to be very powerful, for Modular Mouse-
trap too, as shown in Table 5.

Furthermore, we have obtained a huge amount of results in the “multisuit”
Mousetrap (s > 1), arriving, just as a test of the efficiency of the new tech-
nique, at s = 2, m = 9; s = 3, m = 6; s = 4, m = 5 for Mousetrap and at
s = 1, m = 13; s = 2, m = 7; s = 3, m = 5; s = 4, m = 4 for Modular Mousetrap.

These results, shown in Tables 4 and 5, can be extended to the cases s > 4 and,
by means of parallel computing, to higher values of m.

Remark 6. Let us denote with PM,m·s(k) and PMM,m·s(k) the probability of
storing k cards, respectively at Mousetrap and Modular Mousetrap. As already
observed in [10], at Modular Mousetrap, when s = 1 and m is prime, every deck
which is not a derangement is a winning deck: in fact the cards have no possibilities
to end in a loop, because m is relatively prime to all strictly smaller deck sizes.
While, if m is not prime, there is no a priori rule showing what is the winning
probability, Table 5 shows that, when s = 1 and m is prime, it is very easy to know
the exact winning probability:

PMM,m(m) = 1− PMM,m(0) for all prime m.

Thus, knowing the sequence [18] A002467 of permutations with at least one fixed
point, we immediately obtain the sequence of numbers of winning decks, for n prime:
224,837,335,816,336 for n = m = 17; 76,894,368,849,186,894 for n = m = 19, and
so on.

For these cases the backward technique should have proved to be computationally
too costly, for a single PC. Let us remark that, when n is prime, all the k-strings,
with k ≤ n, cannot end in any loop, i.e., are winning strings and must be stored.
Consequently, in our rebuilding procedure, we must examine all the n · (n−1) · (n−

2) · · · (n − k + 1) =
(

n
k

)
k! k-substrings and, in particular, all the n! strings of

length n. Thus, playing Modular Mousetrap, when n is prime, our method coincides
with Chua’s technique, consisting in the analysis of all the n! permutations.

Since, by Lemma 1, the probability of derangement for the games Mousetrap (M)
and Modular Mousetrap (MM) is

PM,m(0) = PMM,m(0) =
m∑

k=0

(−1)k

k!
(17)
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and

lim
m→∞

PM,m(0) = lim
m→∞

PMM,m(0) = e−1 ∼ 0.367879441,

it follows that, at Modular Mousetrap,

lim
m→∞

PMM,m(m) = 1− 1
e
∼ 0.632120559,

if we consider only the sequence of prime numbers m (see Table 5).
For the other values of m, the winning probability seems to oscillate and tend to

zero very slowly, when m→∞.
It is important to remark that, since our technique starts just from a permutation

and tries to rebuild the deck from which the permutation is reformed, the backward
technique can be easily adapted to check if any particular permutation is a reformed
deck. In particular, we can very easily give, for every n, the deck producing as
reformed permutation the identity 1 2 . . . n, giving a positive answer to the original
question by Cayley [3] (“investigate, whatever the number n of cards is, which
permutations throw out the cards in the same order of their numbers”).

Here we report the sequence of the requested decks up to n = 13, but it is a
matter of seconds to find the answer for every value of n.

1 [Ca]; 1 2 [Ca]; 1 3 2 [Ca]; 1 4 2 3 [Ca]; 1 3 2 5 4 [Ca]; 1 4 2 5 6 3 [Ca];

1 5 2 7 4 3 6 [Ca]; 1 6 2 4 5 3 7 8 [Ca]; 1 4 2 8 6 3 7 9 5; 1 8 2 9 7 3 10 5 6 4;

1 10 2 9 6 3 5 8 7 4 11; 1 6 2 7 5 3 11 12 8 4 9 10; 1 8 2 5 10 3 12 11 9 4 7 6 13.

We have inserted the symbol [Ca] to indicate the permutations originally obtained
by Cayley in [3].

At the web site [2] it is possible to read the decks up to n = 100 and it is possible
to build new ones, by means of a specific FORTRAN file.

Remark 7. The new technique becomes computationally expensive when either
m or s grows too much and we cannot achieve the number of winning decks for all
the cases considered in Tables 4 and 5.

However, we have estimated, by means of Monte Carlo methods, the winning
probability for all the missing cases (up to m = 13, s = 4).

It is worthy to note that, playing multisuit Modular Mousetrap, when m is
prime, we can only store k · m cards (k = 0, 1, . . . , s). In this case, we exper-
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imentally observe that

limm→∞ PMM,m(m · s) ∼ 0.52 if s = 2

limm→∞ PMM,m(m · s) ∼ 0.48 if s = 3

limm→∞ PMM,m(m · s) ∼ 0.46 if s = 4.

The reason for these asymptotic values is, up to now, not clear.
On the other hand, when m is not prime, there are decks which store a number of

cards strictly lying between zero and m ·s. In these cases, from Table 5 we can note
that, for s fixed, the higher the number of divisors of m is, the lower the winning
probability is. This is related to the fact that the deck has more chances to end in
a loop than decks with less divisors.

6. Searching for Reformed Decks

Thanks to its efficiency, the new technique has proved to be extremely useful when
applied to the study of reformed decks (or reformed permutations): as already
recalled, when a deck wins at Mousetrap, Modular Mousetrap or (HLM)2N , it
generates a new deck which is called its reformed deck. We can play again with this
new deck in order to check if it will win again.

When we can repeat this operation k times, we will define k-times reformable
deck the original deck and k-reformed deck the permutation obtained in the k-th
reformation.

The reformation mechanism can produce peculiar situations like cycles.
A cycle is a sequence of reformed decks where one reformation coincides with

one of the previous reformations (not necessarily the original deck). We classify the
cycles more clearly in the second part of this section, devoted to Modular Mousetrap.

Guy and Nowakowski [10] first proposed the study of reformed decks posing the
following questions:

(3) characterize the reformed permutations;

(4) for a given n, what is the longest sequence of reformed permutations?

(5) are there sequences of arbitrary length? are there any non-trivial cycles, i.e.,
cycles other than

1 → 1 → 1 . . . and 1 2 → 1 2 → 1 2 . . . ?

(6) in Modular Mousetrap are there k-cycles for every k? what is the lowest value
of n which yields a k-cycle?
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Playing Mousetrap, they investigated the cases s = 1 ,m ≤ 9. They achieved
3-reformed decks and did not find any non-trivial cycle.

K. S. Chua [5] achieved a substantial improvement for the game Mousetrap find-
ing for the first time a 4-reformed deck, for s = 1, m = 11. His results are quoted
by Sloane [18] in the sequences A007711, A007712, A055459, A067950.

Here we further improve these results, extending the sequences A007711, A007712,
A055459, A067950 up to m = 16 for Mousetrap, obtaining for the first time a 5-
reformable deck:

1 16 12 15 6 8 14 10 9 3 4 11 13 2 7 5

for m = 16. With the new results, reported in Table 1, the first terms of the
sequence of numbers of 4-times (but not 5-times) reformable permutations are

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 4, 14, 57.

They are now classified in [18] as sequence A127966.
The discovery of the 5-reformed permutation can represent a useful step in the

direction of a positive answer to question (5).
How many chances do we have to find 6-reformed decks?
The answer must be related to the probability PM,m·s(m · s), given by the ratio

between the number of reformed decks and the number of all the permutations of
the deck.

We can give a rough estimate of the number of at least k-reformed decks multiply-
ing the number of at least (k− 1)-times reformable permutations by PM,m·s(m · s).
Obviously, the probability to obtain a reformed deck is, in general, not equal to
the probability to obtain from all the reformed decks a 2-reformed one and, in gen-
eral, from all the decks reformed at least k times, a (k + 1)-reformed one. But
experimentally all these probabilities are comparable. For example, indicating with
N≥k,m·s the number of decks which are at least k-reformable, we have, in the case
s = 1, m = 16,

PM,16·1(15) = N≥1,16·1
16! ∼ 0.00123; N≥2,16·1

N≥1,16·1
∼ 0.00124;

N≥3,16·1
N≥2,16·1

∼ 0.00127; N≥4,16·1
N≥3,16·1

∼ 0.00143; N≥5,16·1
N≥4,16·1

∼ 0.0172.

Multiplying the numbers N≥k,16·1 by PM,16·1(16) ∼ 0.00123, the estimates for
the number of k-reformed decks (apart from the very peculiar case of k = 5) are
very close to the real values quoted in Table 6.
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The estimate 0.06 for the number of 5-reformed decks, obtained by multiplying
the number of 4-reformed decks by PM,16·1(16), was still too small to expect a 5-
reformed deck. Nevertheless we fortunately and unexpectedly found the first (and
up to now unique) 5-reformable deck

1 16 12 15 6 8 14 10 9 3 4 11 13 2 7 5.

Clearly, for m ≤ 16 we know the exact value of PM,m·s(m · s), together with the
exact number of k-reformed decks, too. But when we have no information about
the number of k-reformed decks, knowing even only an estimate of PM,m·s(m · s)
could allow us at least roughly to predict for which value of m we can expect the
first 6-reformed decks. To this aim, thanks to their high reliability, Monte Carlo
methods considerably help to know the estimate of PM,m·1(m) with sufficiently
high accuracy. We have estimated, by means of Monte Carlo methods, the winning
probability for 17 ≤ m ≤ 35. Analyzing the evolution of the values of PM,m·1(m),
we can make a prediction on the order of number of k-reformed decks, for values of
m that we have not yet studied with our technique.

Our prediction strongly depends on the competition between the growth rate of
NM,m·s and the decrease rate of PM,m·s(m · s).

Starting from the experimental observation that varying k the ratios N≥(k+1),m·1
N≥k,m·1

are quite identical for the same m, we can obtain a rough estimate Ne
≥k,m·1 of the

number of decks k-reformed (k ≥ 6) through the value

Ne
≥k,m·1 = m! · (PM,m·1(m))k . (18)

Thus, the rough estimate of the number of 6-reformed decks can be computed
multiplying the number m! of decks by [PM,m·1(m)]6.

We obtain
PM,17·1(m) ∼ 0.00077; Ne

≥6,17·1 ∼ 0.000074;

PM,18·1(m) ∼ 0.00050; Ne
≥6,18·1 ∼ 0.00010;

PM,19·1(m) ∼ 0.00031; Ne
≥6,19·1 ∼ 0.00011;

PM,20·1(m) ∼ 0.00021; Ne
≥6,20·1 ∼ 0.00021;

PM,21·1(m) ∼ 0.00013; Ne
≥6,21·1 ∼ 0.00025;

PM,22·1(m) ∼ 0.000081; Ne
≥6,22·1 ∼ 0.00032;

PM,23·1(m) ∼ 0.000052; Ne
≥6,23·1 ∼ 0.00051;

PM,24·1(m) ∼ 0.000034; Ne
≥6,24·1 ∼ 0.00096;
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PM,25·1(m) ∼ 0.000021; Ne
≥6,25·1 ∼ 0.0013;

PM,26·1(m) ∼ 0.000013; Ne
≥6,26·1 ∼ 0.0019;

PM,27·1(m) ∼ 0.0000084; Ne
≥6,27·1 ∼ 0.0038;

PM,28·1(m) ∼ 0.0000054; Ne
≥6,28·1 ∼ 0.0076;

PM,29·1(m) ∼ 0.0000034; Ne
≥6,29·1 ∼ 0.0014;

PM,30·1(m) ∼ 0.0000022; Ne
≥6,30·1 ∼ 0.030;

PM,31·1(m) ∼ 0.0000014; Ne
≥6,31·1 ∼ 0.062;

PM,32·1(m) ∼ 0.00000087; Ne
≥6,32·1 ∼ 0.11;

PM,33·1(m) ∼ 0.00000055; Ne
≥6,33·1 ∼ 0.24;

PM,34·1(m) ∼ 0.00000036; Ne
≥6,34·1 ∼ 0.64;

PM,35·1(m) ∼ 0.00000023; Ne
≥6,35·1 ∼ 1.53.

Thus we can reasonably expect the first 6-reformed permutations for m ≥ 35.
The crucial observation is based on the fact that, up to now, for every 7 ≤ m ≤ 35,

0.6 ≤
PM,(m+1)·1(m + 1)

PM,m·1(m)
≤ 0.7 .

Thus we can state the following

Theorem 8. If

0.6 ≤
PM,(m+1)·1(m + 1)

PM,m·1(m)
for all m ≥ 7, (19)

then there exists m = m(k) such that

N≥k,m·1(m) ≥ 1 for all m ≥ m .

Proof. Let us denote by me the highest value for which (by means of Monte Carlo
methods) the estimate of PM,me·1(me) is known (up to now me = 35). Thus, by
virtue of (19),

PM,m·1(m) ≥ (0.6)m−me · PM,me·1(me) for m > me . (20)

From (18) it follows that

Ne
≥k,m·1 ≥ m! · (PM,me·1(me))

k ·
[
(0.6)m−me

]k for m > me . (21)
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The right-hand side of (21) is greater than 1 if and only if

m! ·
[
(0.6)k

]m ≥
[
(0.6)mek

]

(PM,me·1(me))
k

. (22)

Once k and me are fixed, the right-hand side of (22) is a constant. Since

an · n!→n→∞ ∞ for a > 0 , (23)

we have the theorem. !

Remark 9. Theorem 6 tells us that, under hypothesis (19), we can reasonably
expect a positive answer to question (5). The importance of hypothesis (19) can be
read in the limit (23) which cannot be used if

PM,(m+1)·1(m + 1)
PM,m·1(m)

→ 0 for m→∞ .

Finally, the lower bound 0.6 in (19) is given experimentally. Theorem 6 is still valid
using the more general hypothesis

there exits α > 0 such that 0 < α ≤
PM,(m+1)·1(m + 1)

PM,m·1(m)
for all m ≥ 7

uniformly with respect to m.

The extension of our analysis to s > 1 confirms the above proposed arguments
concerning the relationship between PM,m·s(m·s) and the appearance of k-reformed
decks.

Also in this case, in order to look for 4-reformed permutations, we can compare
the growth rate of NM,m·s and the decrease rate of PM,m·s(m · s). In the most
advanced cases we have examined (i.e., m = 9, s = 2; m = 6, s = 3; m = 5, s = 4)
we found a large number of 3-reformed decks. Though PM,m·s(m · s) was rapidly
decreasing, we expected 4-reformed decks already for s = 2, 9 ≤ m ≤ 11; s = 3, 7 ≤
m ≤ 9; s = 4, 7 ≤ m ≤ 8. In fact very recently we studied the case m = 9, s = 2
and we found four 4-reformed decks:

2 5 1 9 5 7 2 9 3 7 8 6 6 8 4 3 1 4;

6 9 8 8 5 7 2 1 1 9 2 5 4 3 4 7 6 3;

5 4 2 1 8 7 3 8 5 1 9 6 3 6 9 7 4 2;

1 3 9 6 4 5 7 1 2 5 8 2 8 6 9 4 3 7.
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Let us observe that, for m = 3, s = 4, we found the first (and up to now unique)
non-trivial 1-cycle: 1 1 1 1 2 2 3 2 2 3 3 3. Consequently, the second part of question
(5) receives a positive answer, but only in a “multisuit” framework, while a negative
answer is highly probable for s = 1.

For what concerns reformed decks and cycles, Modular Mousetrap is much more
intriguing. First we will need some terminology, in order to distinguish the different
situations we will deal with.

We can interpret the reformation sequences as discrete dynamical systems [1, 21],
where every reformation A is a state and the deck preceding it is a pre-image of A.
As shown by the deck 1 2 3 . . . n, a deck A may have several different pre-images
(their total number is the in-degree of A).

Decks without pre-images are known as Garden of Eden states.
Besides the k-reformed decks we must consider the cycles.
When a trajectory encounters a state that occurred previously, we have a cycle.

The trajectory leading to the cycle is called transient or pre-period. The period of
a k-cycle is the number k of states in it.

A 1-cycle can be seen as a fixed point of the dynamical system. The deck
1 2 3 . . . n generates a 1-cycle, i.e., is a fixed point.

If the k-th reformation coincides with the h-th reformation (1 ≤ h < k), we will
divide the total k-trajectory into two parts:

(i) an h-pre-period, where there is a sequence of h reformations;

(ii) a (k − h)-cycle, starting from the h-th reformation and stopping at the k-th
reformation, which coincides with the h-th one.

Guy and Nowakowski analyzed all the reformed permutations for s = 1, m ≤ 5.
Clearly, this analysis cannot be easily performed “by hand” for greater values of m.
Indeed, for m = 6, they considered only decks where the first card is an “ace”.

We have improved their results to many more cases and to 1 < s ≤ 4, as shown
in Tables 10 – 13.

Thanks to the high winning probability, in particular if n is prime, the game
Modular Mousetrap has produced many interesting and intriguing results. In par-
ticular, we obtained very long sequences of reformed decks and cycles; the reason
for it must be found in the fact that, as already remarked, in this game, when
n is prime, we always have either a winning deck or a derangement and that the
probability of finding a winning deck is very high (see Table 5). Consequently, in
this case it is very easy to obtain a reformed one from a deck. Due to the highly
increasing number of permutations when m grows, we were able to study all the
decks in Modular Mousetrap, for s = 1, only up to m = 13.

The most complete and exhaustive investigation has been performed for s =
1, m = 11 and s = 1, m = 13.
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Table 10 shows the huge increase of the number of cycles, with respect to smaller
values of m. For m = n = 11, as shown in Table 14, we found six 203-trajectories,
starting respectively from the decks

1 11 5 8 2 6 9 4 7 10 3; 1 11 5 8 2 6 9 10 7 4 3; 1 11 5 9 2 6 10 8 7 4 3;

1 11 5 8 2 6 4 9 7 10 3; 1 11 5 8 2 6 4 9 10 3 7; 1 11 5 9 2 6 8 10 7 4 3,

which, after 137 reformations, reach the state

1 2 3 4 7 5 6 8 9 10 11

which produces a 66-cycle.
For m = 13 the length of reformed decks grows: we have found eleven 51-

reformable decks. One of them is

6 2 5 11 1 8 13 12 7 9 10 3 4 .

Longest cycles were discovered for m = 13, too: the deck

1 2 6 13 3 9 5 12 10 8 7 11 4

is characterized by a very long cycle; after a 839-pre-period we obtain the deck

1 2 3 4 5 6 7 8 9 10 11 12 13

and the trajectory ends in a 1-cycle.
Curiously, for m = 11 the decks gave only 1-, 2-, 3-, 4-, 14-, 15- and 66-cycles.

The number of decks entering in a 66-cycle is very high: 1, 701, 937. For m = 13 we
found only 1-, 2-, 3-, 6-, 7- and 12-cycles.

Since we expect to achieve many more interesting results whenever n is prime,
we have also examined the first 100 million reformed decks for s = 1 and m = 17
and the first 320 million reformed decks for s = 1 and m = 19.

We can understand the potential richness of results of Modular Mousetrap con-
sidering that in our investigations, though we analyzed only few decks among all the
17! ∼ 3.56 · 1014 permutations and the 19! ∼ 1.22 · 1017 permutations, we obtained
again a 51-reformed deck for s = 1, m = 17, as for s = 1, m = 13, and, most
interestingly, a 39924-trajectory, from the deck

1 16 11 14 9 8 4 2 5 15 13 6 12 3 10 7 17

and a 521339-trajectory, from the deck

1 2 12 14 3 6 10 16 18 9 15 19 13 7 17 11 5 4 8
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both ending in the trivial 1-cycle (clearly, we did not check the correctness of all
the reformations, but we have sufficiently tested the computer program to believe
it!).

Moreover, for m = 17, we found two 267-trajectories, starting respectively from
the decks

1 14 15 6 9 13 7 2 11 4 5 12 17 10 3 8 16 ; 1 3 8 14 15 6 9 13 7 2 11 4 5 12 17 10 16

which, after 58 reformations, reach the state

1 7 3 8 2 9 12 14 4 15 16 10 11 5 6 17 13

which produces a 209-cycle, while, for m = 19, we found a 55355-trajectory, starting
from the deck

1 7 17 8 5 4 9 2 14 11 3 6 18 15 10 12 16 19 13

which, after 40424 reformations, reaches the state

1 5 14 11 7 6 2 12 15 8 9 18 16 3 4 10 13 19 17

which produces a 14931-cycle.
Consequently, it is highly probable that the above mentioned scores could be

improved, if we would study more cases for s = 1, m prime and m > 13.
Concerning the 1-cycles, for s = 1 there is no evidence of other cycles than the

trivial one (1 2 . . .m).
When we pass to “multisuit” Modular Mousetrap, we not only have the trivial

1-cycle

1 2 . . . m 1 2 . . . m . . . 1 2 . . . m ,

but several other non-trivial 1-cycles whose structure in general seems not to have
any regularity: for example, the decks

1 1 2 2; 1 3 1 2 2 3; 1 4 3 1 2 2 3 4 ; 1 6 3 4 5 1 2 2 3 4 5 6; 1 3 4 5 1 2 2 3 4 5;

2 7 6 5 7 1 3 2 4 3 4 5 6; 2 6 6 5 7 1 1 3 2 4 3 4 5 7; 2 5 6 5 7 1 1 3 2 4 3 4 6 7;

2 7 6 5 1 1 3 5 2 4 3 4 6 7; 3 6 3 2 4 4 5 1 7 1 2 5 6 7; 1 3 4 5 6 7 1 2 2 3 4 5 6 7;

1 3 5 3 2 1 4 6 5 2 4 6 7 7; 1 1 1 2 2 2; 1 3 1 2 2 3 1 2 3; 1 1 1 2 2 3 3 2 3, etc.,

are fixed points.
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Up to now, we have achieved the greatest number of 1-cycles for s = 3, m = 5
and for s = 4, m = 4, where we found ten different 1-cycles. Since the two cases
are the most advanced in our studies, we can suppose that we could obtain greater
numbers of no- trivial 1-cycles if we would continue our analysis for higher values
of m.

The explosion of the number of k-cycles and k-reformed decks, already for s = 1,
allows us to give a partial answer to questions (5) and (6) for Modular Mousetrap,
as shown in Table 18. However, the results reported in this table seem to suggest a
positive answer to the first part of question (6).

Due to the difficulty of reporting all the results for Modular Mousetrap, we have
built the website [2] where we show the numbers of trajectories, pre-periods, cycles
and reformed decks for the different values of m and s we investigated. The page
is still under construction and many documents are still written in Italian, but the
meaning of the results is clear.

We extended the study of reformed decks to the game (HLM)2N , too.
We can repeat the considerations related to the connection between the appear-

ance of k-reformed decks and the probability to obtain the best score, which we
indicate with Pmax := P (Cmax). Knowing the low probability to have winning
decks at (HLM)2N (see Table 2), we cannot expect to easily attain k-reformed
decks, with k ≥ 2, at this game.

In fact, Table 19 shows that, excluding the trivial 1-cycles 1 1 . . . 1 and 1 1 . . .
1 2 2 . . . 2 , there is no evidence of k-reformed decks (k ≥ 2), apart from the unique,
very special case m = 2, s = 4, where we attained the following four 2-times
reformable decks:

2 2 2 2 1 1 1 1; 1 2 2 2 2 1 1 1; 1 1 2 2 2 2 1 1; 1 1 1 2 2 2 2 1.

The very fast decrease of Pmax, when m grows, seems not to allow us obtaining
2-reformed decks in other cases.

Thus, we have focused on the reformed decks satisfying (WC), instead of (SC). As
shown in Table 20, we have found new 2-reformed decks only in the cases s = 4, 4 ≤
m, where the growth rate of the number of total reformed decks is sufficiently high
to compensate the decrease of the probability Pmax(WC) and to produce decks
satisfying (WC). Since Pmax,6·4(WC) ∼ 4 · 10−8, it is an open question if it is
possible to obtain 3-reformed decks for higher values of m.

The case s = 1 has been studied only for 1 ≤ m ≤ 4, because, as shown by
the author (Table 3), (WC) is satisfied only for these values of m. For m = 1, the
unique deck 1 is a 1-cycle. For m = 2, we have only the 1-cycle 12. For m = 3
we have two 1-reformable decks: 1 3 2 and 3 2 1. For m = 4 we have only the
1-reformable deck 2 1 3 4.
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As already remarked, the existence of sequences of arbitrary length is still an
open problem for Mousetrap. Thus, in some sense, it can be considered on the
boundary between the classes of games producing reformed decks and of games
without reformed decks.

7. Conclusions and Further Developments

The backward technique here introduced has proved to be very powerful for the
study of the games He Loves Me, He Loves Me Not, Mousetrap, and Modular
Mousetrap and in particular for what concerns the reformed permutations. Clearly,
it can give only the number of winning decks, without any possibility of reaching a
closed formula. But the complexity of the game studied is so high making it very
difficult to expect finding general closed formulas. In fact, as already remarked,
only partial results have been obtained in the previous literature.

The contraindication of this backward method (which consists in rebuilding the
winning decks starting from strings, of increasing length, formed by the last stored
cards in the decks) is related to disk usage problems: in order to build all the strings
of length (k + 1), the program needs to store all the strings of length k.

Even if we should not be interested in the storage of all the winning decks, but
only in their number, in our FORTRAN program it is however necessary to store
all the winning (n− 2)-strings.

In the game Mousetrap, for m = 16, s = 1, the storage of all the winning
(n− 3 = 13)-strings needed a 325 GB memory, while the storage of all the winning
(n− 2 = 14)-strings needed a 596 GB memory.

Moreover, in the case of French cards (m = 13, s = 4), considering the growth
rate of the number of winning cards at (HLM)2N when m grows, for s = 4, we
should expect, in the most cautious estimate, at least 1024 winning decks. Actually,
a number absolutely unreasonable, for an actual PC.

Certainly, the usage of parallel computers or (as actually done playing the games
in the most advanced cases) the storage of all the k-strings in several data subfiles,
which can be processed separately, can help the search of all the winning decks for
increasing values of m and/or s.

Anyway, the importance of the technique consists first in having shown that (SC)
is true at least for m = 13, s = 4 (but the test can be performed for much larger
decks). The growth rate of the number of winning decks allows us to suppose that
(SC) is true for every value of m and s, though the winning probability decreases
with m. However this technique cannot give a definitive positive answer to (SC) for
every value of m and s.

Moreover, up to now, the backward technique seems to be the unique one ca-
pable of giving more complete answers to questions (1) – (6). However, none of
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them has yet received a definitive answer. In particular, finding 5-reformed decks
at Mousetrap brings to conjecture that, for increasing values of m, it is possible
to find k-reformed decks for every value of k (question (4)). As already observed,
the answer strongly depends on the competition between the growth rate of the
number of total reformed decks and the decrease rate of Pmax, when m grows. It
could be very useful to study the game for increasing values of m, by means not
only of Monte Carlo methods, but mainly of the backward technique implemented
in a parallel computing framework in order to know the evolution, with m, not only
of PM,m·1(m), but also of the different probabilities P≥k to achieve decks which are
at least k-reformable.

The improvement of the technique, mainly concerning the memory saving prob-
lems, could lead to more satisfactory results.

For example, it is highly probable that the scores attained at Modular Mousetrap
by the deck

6 2 5 11 1 8 13 12 7 9 10 3 4,

which is 51-times reformable, by the deck

1 2 12 14 3 6 10 16 18 9 15 19 13 7 17 11 5 4 8

which yielded a 521339-trajectory and by the 14931-cycle

1 5 14 11 7 6 2 12 15 8 9 18 16 3 4 10 13 19 17

could be improved, if we would study more cases for s = 1, m prime and m > 13.
In order to encourage further suggestions to improve the memory saving and

the algorithm we implemented, we inserted all the FORTRAN files used for our
researches at the website [2], together with all the results for Modular Mousetrap.
The page is still under construction and the comments in the FORTRAN files are
still written in Italian. However, until their translation into English is ready, I am
at the disposal of everyone who would like to collaborate in this research in order
to explain the passages in the FORTRAN files.

Some other problems can be explored in the games analyzed in this paper. For
example, since Modular Mousetrap gives very long sequences of reformed decks, it
could be interesting to determine the number of Garden of Eden points, or the
in-degree of every cycle.

Actually, since our technique starts from a permutation and rebuilds its preim-
age(s), it can be easily adapted to the study of the second problem. In Table
21, just as an example, we show the in-degree of the permutation 1 2 3 . . .m, for
2 ≤ m ≤ 25, s = 1. It is absolutely trivial to compute the in-degree of whatever
state.
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Appendix: Tables

s = 2 s = 3 s = 4

m = 2

6

4/4 (3/3)− SC

immediate

20

7/7 (5/5)− SC

immediate

70

10/10 (7/7)− SC

immediate

m = 3

90

9/10 (5/5)−WC

immediate

1680

16/16 (8/8)− SC

immediate

34650

22/22 (11/11)− SC

immediate

m = 4

2520

17/18 (7/7)−WC

immediate

369600

28/28 (11/11)− SC

immediate

63063000

38/38 (15/15)− SC

immediate

m = 5

113400

27/28 (9/9)−WC

immediate

168168000

43/43 (14/14)− SC

355, 932

∼ 3.06 · 1011

58/58 (19/19)− SC

14, 461, 409

m = 6

7484400

40/40 (11/11)− SC

4, 530, 195

∼ 1.37 · 1011

61/61 (17/17)− SC

123, 289, 316

∼ 3.25 · 1015

82/82 (23/23)− SC

314, 429, 118

m = 7

681080400

54/54 (13/13)− SC

62, 241, 794

∼ 1.83 · 1014

82/82 (20/20)− SC

7, 332, 146, 168

∼ 6.65 · 1019

110/110 (27/27)− SC

63, 227, 020, 954

m = 8

∼ 8.17 · 1010

70/70 (15/15)− SC

4, 152, 727, 936

∼ 3.69 · 1017

106/106 (23/23)− SC

∼ 147, 000, 000, 000

∼ 2.39 · 1024

139/142 (31/31)−WC

∼ 264, 386, 000, 000

m = 9

∼ 1.25 · 1013

88/88 (17/17)− SC

∼ 90, 000, 000, 000

∼ 1.08 · 1021

131/133 (26/26)−WC

∼ 255, 000, 000, 000

∼ 1.41 · 1029

172/178 (34/35)

> 207, 000, 000, 000

m = 10

∼ 2.38 · 1015

106/108 (19/19)−WC

> 600, 000, 000, 000

∼ 4.39 · 1024

154/163 (28/29)

> 81, 000, 000, 000

∼ 1.29 · 1034

205/218 (37/39)

> 217, 000, 000, 000

m = 11

∼ 5.49 · 1017

128/130 (21/21)−WC

92, 800, 000, 000

∼ 2.39 · 1028

184/196 (31/32)

36, 700, 000, 000

∼ 1.75 · 1039

224/262 (39/43)

2, 000, 000, 000

m = 12

∼ 1.51 · 1020

139/154 (22/23)

12, 000, 000, 000

∼ 1.71 · 1032

204/232 (33/35)

2, 000, 000, 000

∼ 3.40 · 1044

273/310 (43/47)

1, 000, 000, 000

m = 13

∼ 4.92 · 1022

158/180 (22/25)

2, 000, 000, 000

∼ 1.56 · 1036

235/271 (34/38)

5, 000, 000, 000

∼ 9.20 · 1049

305/362 (45/51)

4, 000, 000, 000

Table 1 - BEST SCORES IN (HLM)2N OBTAINED WITH MONTE CARLO METHODS
In each box we report the number Nm·s of different decks; the ratio between the best score and
Cmax; the ratio between the best number of stored cards and the number predicted by (WC); the
number of trials performed before achieving the first winning deck or performed without obtaining
any winning deck. The number of trials is given by the sum of the trials done by F. Scigliano and
by the author, while we have no information about the number of trials done by A. Pompili. The
symbols SC and WC indicate if we proved the strong or the weak conjecture, respectively.
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s = 2 s = 3 s = 4

m = 2 3/6 ; Pmax = 0.5 4/20 ; Pmax = 0.2 15/70 ; Pmax ∼ 0.21

m = 3 0/90 ; Pmax = 0 4/1680 ; Pmax ∼ 0.0024 5/34650 ; Pmax ∼ 0.00014

m = 4 0/2520 ; Pmax = 0
9/369, 600

Pmax ∼ 0.000024

229/63, 063, 000

Pmax ∼ 0.0000036

m = 5 0/113400 ; Pmax = 0
63/168, 168, 000

Pmax ∼ 0.000000375

10568/3.06 · 1011

Pmax ∼ 0.000000035

m = 6
1/7, 484, 400

Pmax ∼ 1.34 · 10−7

1177/1.37 · 1011

Pmax ∼ 0.000000009

1, 212, 483/3.25 · 1015

Pmax ∼ 3.73 · 10−10

m = 7
7/681, 080, 400

Pmax ∼ 1.00 · 10−8

36144/1.83 · 1014

Pmax ∼ 1.98 · 10−10

411, 488, 689/6.65 · 1019

Pmax ∼ 6.19 · 10−12

m = 8
8/8.17 · 1010

Pmax ∼ 9.79 · 10−11

1, 677, 968/3.69 · 1017

Pmax ∼ 4.54 · 10−12

m = 9
105/1.25 · 1013

Pmax ∼ 8.40 · 10−12

127, 255, 522/1.08 · 1021

Pmax ∼ 1.18 · 10−13

m = 10
656/2.38 · 1015

Pmax ∼ 2.76 · 10−13

14, 569, 821, 371/4.39 · 1024

Pmax ∼ 3.32 · 10−15

m = 11
6745/5.49 · 1017

Pmax ∼ 1.23 · 10−14

m = 12
76823/1.51 · 1020

Pmax ∼ 5.07 · 10−16

m = 13
986, 994/4.92 · 1022

Pmax ∼ 2.00 · 10−17

m = 14
17, 175, 636/1.86 · 1025

Pmax ∼ 9.23 · 10−19

m = 15
320, 152, 788/8.09 · 1027

Pmax ∼ 3.96 · 10−20

m = 16
7, 062, 519, 606/4.02 · 1030

Pmax ∼ 1.76 · 10−21

Table 2 - WINNING DECKS AT HE LOVES ME HE LOVES ME NOT
In each box we report the ratio between the number of winning decks and the total number of
decks and the winning probability Pmax = P (Cmax).
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s = 1 winning deck(s)

m = 2 1/1 (1/1) 1 , 2

m = 3 3/4 (1/2 and 2/2) three decks

m = 4 6/8 (3/3) 2 , 1 , 3 , 4

m = 5 9/13 (3/4) 2 , 5 , 1 , 4 , 3

m = 6 14/19 (4/5) 6 , 1 , 4 , 3 , 5 , 2

m = 7 18/26 (4/6) 3 , 7 , 1 , 5 , 2 , 6 , 4

m = 8 25/34 (5/7) 8 , 1 , 5 , 2 , 6 , 4 , 7 , 3

m = 9 31/43 (7/8) 4 , 1 , 2 , 6 , 9 , 7 , 3 , 8 , 5

m = 10 39/53 (6/9) 10 , 1 , 6 , 2 , 7 , 3 , 8 , 5 , 9 , 4

m = 11 47/64 (8/10 and 9/10) six decks

m = 12 56/76 (7/11 and 10/11) three decks

m = 13 67/89 (11/12) two decks

m = 14 79/103 (12/13) two decks

m = 15 93/118 (13/14) two decks

m = 16 108/134 (14/15) two decks

.....

Table 3
In this table we report the ratio between the best score at (HLM)2N with one suit and Cmax and
the ratio between the number of stored cards and the number of cards satisfying (WC). In some
cases it is possible to obtain the same best score with a different number of cards. When there is
only one winning deck, we report it in the third column.



INTEGERS: 10 (2010) 610
s

=
1

s
=

2
s

=
3

s
=

4

m
=

2
1/

2
;

P
=

0.
5

[G
−

N
]

3/
6

;
P

=
0.

5
4/

20
;

P
=

0.
2

15
/7

0
;

P
∼

0.
21

m
=

3
2/

6
;

P
∼

0.
33

[G
−

N
]

12
/9

0
;

P
∼

0.
13

90
/1

68
0

;
P
∼

0.
05

4
67

5/
34

65
0

;
P
∼

0.
01

9

m
=

4
6/

24
;

P
=

0.
25

[G
−

N
]

14
7/

25
20

;
P
∼

0.
05

8
52

32
/3

69
, 6

00

P
∼

0.
01

4

21
0,

06
9/

63
,0

63
,0

00

P
∼

0.
00

33

m
=

5
1
5/

12
0

P
=

0.
12

5
[G
−

N
]

23
22

/1
13

,4
00

P
∼

0.
02

0

47
6,

04
2/

16
8,

16
8,

00
0

P
∼

0.
00

28

11
9,

37
5,

88
1/

3.
06

·1
01

1

P
∼

0.
00

03
9

m
=

6
84

/7
2
0

P
∼

0.
12

[G
−

N
]

71
62

9/
7,

48
4,

40
0

P
∼

0.
00

96

11
1,

66
0,

35
2/

1.
37

·1
01

1

P
∼

0.
00

08
1

P
∼

0.
00

00
70

[M
C

]

m
=

7
3
30

/5
0
40

P
∼

0.
0
65

[G
−

N
]

2,
21

4,
25

8/
68

1,
08

0,
40

0

P
∼

0.
00

33
P
∼

0.
00

01
6

[M
C

]
P
∼

0.
00

00
08

1
[M

C
]

m
=

8
1
81

2/
4
03

20

P
∼

0.
0
45

[G
−

N
]

11
8,

22
8,

86
8/

8.
17

·1
01

0

P
∼

0.
00

14
P
∼

0.
00

00
46

[M
C

]
P
∼

0.
00

00
01

5
[M

C
]

m
=

9
99

78
/3

62
,8

80

P
∼

0.
02

7
[G
−

N
]

6,
59

7,
27

9,
57

8/
1.

25
·1

01
3

P
∼

0.
00

05
3

P
∼

0.
00

00
10

[M
C

]
P
∼

0.
00

00
00

2
[M

C
]

m
=

1
0

65
50

3/
3,

62
8,

80
0

P
∼

0.
01

8
[C
−

S
]

P
∼

0.
00

02
2

[M
C

]
P
∼

0.
00

00
02

6
[M

C
]

P
∼

0.
00

00
00

03
[M

C
]

m
=

11
44

9,
71

9/
39

,9
16

,8
00

P
∼

0.
0
11

[C
−

S
]

P
∼

0.
00

00
83

[M
C

]
P
∼

0.
00

00
00

6
[M

C
]

2
·1

0−
9

<
P

<
6
·1

0−
9

[M
C

]

m
=

12
3,

67
4,

6
70

/4
79

,0
01

,6
00

P
∼

0.
00

77
[C
−

S
]

P
∼

0.
00

00
36

[M
C

]
P
∼

0.
00

00
00

08
4

[M
C

]
10
−

1
0

<
P

<
10
−

9
[M

C
]

m
=

13
28

,8
86

,5
93

/6
,2

27
, 0

20
,8

00

P
∼

0.
00

46
[C
−

S
]

P
∼

0.
00

00
13

[M
C

]
3
·1

0−
8

<
P

<
5
·1

0−
8

[M
C

]
10
−

1
1

<
P

<
10
−

1
0

[M
C

]

m
=

14
26

6,
24

2,
72

9/
8.

72
·1

01
0

P
∼

0.
0
03

1

m
=

1
5

2,
5
27

,7
01

,2
73

/1
.3

1
·1

01
2

P
∼

0.
00

19

m
=

16
25

,7
49

,0
21

,7
20

/2
.0

9
·1

01
3

P
∼

0.
00

12

T
ab

le
4

-
W

IN
N

IN
G

D
E

C
K

S
A
T

M
O

U
S
E
T
R

A
P

In
ea

ch
b
ox

w
e

re
p
or

t
th

e
ra

ti
o

b
et

w
ee

n
th

e
n
u
m

b
er

of
w

in
n
in

g
d
ec

k
s

an
d

N
m

·s
an

d
th

e
w

in
n
in

g
p
ro

b
ab

il
it
y

P
:=

P
M

,m
·s

(m
·s

).
W

e
in

d
ic

at
e

w
it
h

[G
-N

]
an

d
w

it
h

[C
-S

]
th

e
re

su
lt

s
al

re
ad

y
q
u
ot

ed
re

sp
ec

ti
ve

ly
in

[1
0]

an
d

in
[5

],
[1

8]
.

W
e

in
d
ic

at
e

w
it

h
[M

C
]

th
e

es
ti

m
at

es
ob

ta
in

ed
b
y

m
ea

n
s

of
M

on
te

C
ar

lo
tr

ia
ls

.



INTEGERS: 10 (2010) 611

s
=

1
s

=
2

s
=

3
s

=
4

m
=

2
1/

2
;

P
=

0.
5

[G
-N

]
5/

6
;

P
∼

0.
83

19
/2

0
;

P
=

0.
95

69
/7

0
;

P
∼

0.
98

6

m
=

3
4/

6
;

P
∼

0.
67

[G
-N

]
60

/9
0

;
P
∼

0.
67

10
81

/1
68

0
;

P
∼

0.
64

22
89

8/
34

65
0

P
∼

0.
66

m
=

4
9/

24
;

P
=

0.
37

5
[G

-N
]

11
82

/2
52

0
;

P
∼

0.
47

17
3,

05
3/

36
9,

60
0

P
∼

0.
47

29
,6

42
,1

85
/6

3,
06

3,
00

0

P
∼

0.
47

m
=

5
76

/1
20

;
P
∼

0.
63

3
[G

-N
]

63
06

3/
11

3,
40

0

P
∼

0.
56

86
,6

36
,3

03
/1

68
,1

68
,0

00

P
∼

0.
52

P
∼

0.
49

[M
C

]

m
=

6
19

0/
72

0
;

P
∼

0.
26

1,
79

7,
35

0/
7,

48
4,

40
0

P
∼

0.
24

P
∼

0.
23

[M
C

]
P
∼

0.
22

[M
C

]

m
=

7
31

86
/5

04
0

;
P
∼

0.
63

21
43

36
4,

57
2,

15
6/

68
1,

08
0,

40
0

P
∼

0.
54

P
∼

0.
49

[M
C

]
P
∼

0.
46

[M
C

]

m
=

8
11

35
1/

40
32

0

P
∼

0.
28

P
∼

0.
24

[M
C

]
P
∼

0.
22

[M
C

]
P
∼

0.
21

[M
C

]

m
=

9
13

2,
68

4/
36

2,
88

0

P
∼

0.
37

P
∼

0.
31

[M
C

]
P
∼

0.
28

[M
C

]
P
∼

0.
27

[M
C

]

m
=

10
88

4,
37

1/
3,

62
8,

80
0

P
∼

0.
24

P
∼

0.
20

[M
C

]
P
∼

0.
18

[M
C

]
P
∼

0.
18

[M
C

]

m
=

1
1

25
,2

32
,2

30
/3

9,
91

6,
80

0

P
∼

0.
63

21
20

56
1

P
∼

0.
53

[M
C

]
P
∼

0.
48

[M
C

]
P
∼

0.
45

[M
C

]

m
=

12
50

,4
3
6,

48
8/

47
9,

00
1,

60
0

P
∼

0.
11

P
∼

0.
08

5
[M

C
]

P
∼

0.
07

7
[M

C
]

P
∼

0.
07

3
[M

C
]

m
=

13
3,

93
6,

2
27

,8
68

/6
,2

27
, 0

20
,8

00

P
∼

0.
63

21
20

55
9

[A
0
0
2
4
6
7
]

P
∼

0.
53

[M
C

]
P
∼

0.
48

[M
C

]
P
∼

0.
45

[M
C

]

T
ab

le
5

-
W

IN
N

IN
G

D
E

C
K

S
A
T

M
O

D
U

L
A

R
M

O
U

S
E
T
R

A
P

In
ea

ch
b
ox

w
e

re
p
or

t
th

e
ra

ti
o

b
et

w
ee

n
th

e
n
u
m

b
er

of
w

in
n
in

g
d
ec

k
s

an
d

N
m

·s
an

d
th

e
w

in
n
in

g
p
ro

b
ab

il
it
y

P
:=

P
M

M
,m

·s
(m

·s
).

W
e

in
d
ic

at
e

w
it
h

[G
-N

]
th

e
re

su
lt
s

al
re

ad
y

q
u
ot

ed
in

[1
0]

.
T

h
e

re
su

lt
co

rr
es

p
on

d
in

g
to

m
=

13
,

s
=

1
ca

n
b
e

al
so

ob
ta

in
ed

b
y

su
b
tr

ac
ti

n
g

th
e

to
ta

l
n
u
m

b
er

of
d
er

a
n
ge

m
en

ts
to

th
e

to
ta

l
n
u
m

b
er

of
d
ec

k
s,

n
!

=
m

!
(b

ec
au

se
m

is
p
ri

m
e)

.
W

e
in

d
ic

at
e

it
w

it
h

[A
0
0
2
4
6
7
].

W
e

in
d
ic

at
e

w
it

h
[M

C
]

th
e

es
ti
m

at
es

o
b
ta

in
ed

b
y

m
ea

n
s

of
M

on
te

C
ar

lo
m

et
h
o
d
s.



INTEGERS: 10 (2010) 612

u
n
re

fo
rm

ed
1-

re
fo

rm
ed

2-
re

fo
rm

ed
3-

re
f.

4-
re

f.
5-

re
f.

1-
cy

cl
es

to
ta

l
re

fo
rm

ed

m
=

1
0

0
0

0
0

0
1

1

m
=

2
1

0
0

0
0

0
1

1

m
=

3
4

2
0

0
0

0
0

2

m
=

4
18

4
2

0
0

0
0

6

m
=

5
10

5
14

1
0

0
0

0
15

m
=

6
63

6
72

11
1

0
0

0
84

m
=

7
47

10
31

6
14

0
0

0
0

33
0

m
=

8
38

50
8

17
30

81
1

0
0

0
18

12

m
=

9
35

2,
90

2
97

28
24

2
8

0
0

0
99

78

m
=

10
3,

56
3,

29
7

64
33

0
11

42
31

0
0

0
65

50
3

m
=

11
39

,4
67

,0
81

44
4,

89
0

47
71

56
2

0
0

44
9,

71
9

m
=

1
2

47
5,

32
6,

93
0

3,
64

5,
44

1
29

00
9

21
9

1
0

0
3,

67
4,

67
0

m
=

13
6,

19
8,

13
4,

20
7

28
, 7

58
,1

11
12

7,
87

6
60

5
1

0
0

28
,8

86
,5

93

m
=

14
86

,9
12

, 0
48

,4
71

26
5,

43
4,

29
3

80
5,

94
7

24
85

4
0

0
26

6,
24

2,
72

9

m
=

15
1,

30
5,

14
6,

66
6,

72
7

2,
52

2,
82

2,
88

1
4,

86
8,

68
1

96
97

14
0

0
2,

52
7,

70
1,

27
3

m
=

16
20

,8
97

,0
40

,8
66

, 2
80

25
,7

17
,1

18
, 3

38
31

,8
62

,7
53

40
57

1
57

1
0

25
,7

49
,0

21
,7

20

T
ab

le
6

N
u
m

b
er

of
u
n
re

fo
rm

ed
a
n
d

re
fo

rm
ed

d
ec

k
s

at
M

o
u
se

tr
a
p

fo
r

s
=

1.
T

h
e

va
lu

es
fo

r
1
≤

m
≤

9
w

er
e

re
p
or

te
d

b
y

G
u
y

an
d

N
ow

ak
ow

sk
i
[1

0]
.

T
h
e

va
lu

es
fo

r
10
≤

m
≤

1
3

w
er

e
re

p
or

te
d

b
y

C
h
u
a

[5
]
an

d
S
lo

an
e

[1
8]

.
T

h
er

e
is

on
ly

on
e

5-
re

fo
rm

ed
d
ec

k
fo

r
m

=
16

.
T

h
e

fi
rs

t
co

lu
m

n
ex

te
n
d
s

th
e

se
q
u
en

ce
[1

8]
A

0
07

71
1;

th
e

se
co

n
d

co
lu

m
n

ex
te

n
d
s

[1
8]

A
00

77
12

;
th

e
th

ir
d

co
lu

m
n

ex
te

n
d
s

[1
8]

A
05

54
59

;
th

e
fo

u
rt

h
co

lu
m

n
ex

te
n
d
s

[1
8]

A
06

79
50

;
th

e
fi
ft

h
co

lu
m

n
co

rr
es

p
on

d
s

to
[1

8]
A

12
79

66
;
th

e
la

st
co

lu
m

n
ex

te
n
d
s

[1
8]

A
00

77
09

.



INTEGERS: 10 (2010) 613

unreformed 1-reformed 2-reformed 3-ref. 4-ref. 1-cycles total reformed

m = 1 1 0 0 0 0 1 1

m = 2 3 2 0 0 0 1 3

m = 3 78 12 0 0 0 0 12

m = 4 2373 132 14 1 0 0 147

m = 5 111, 078 2270 51 1 0 0 2322

m = 6 7, 412, 771 70766 857 6 0 0 71629

m = 7 678, 866, 142 2, 207, 169 7071 18 0 0 2, 214, 258

m = 8 81, 611, 419, 132 118, 065, 748 162, 871 249 0 0 118, 228, 868

m = 9 12, 498, 038, 864, 422 6, 593, 940, 635 3, 337, 216 1723 4 0 6, 597, 279, 578

Table 7
Number of unreformed and reformed decks at Mousetrap for s = 2. The case m = 9 yielded for
the first time four 4-reformed deck.

unreformed 1-reformed 2-reformed 3-reformed 1-cycles total reformed

m = 1 0 0 0 0 1 1

m = 2 16 3 0 0 1 4

m = 3 1590 86 4 0 0 90

m = 4 364, 368 5148 84 2 0 5232

m = 5 167, 691, 958 474, 658 1384 1 0 476, 042

m = 6 137, 113, 427, 648 111, 570, 619 89649 84 0 111, 660, 352

Table 8
Number of unreformed and reformed decks at Mousetrap for s = 3. There is no evidence of
4-reformed decks in any case we have examined.

unreformed 1-reformed 2-reformed 3-reformed 1-cycles total reformed

m = 1 0 0 0 0 1 1

m = 2 55 11 4 0 1 15

m = 3 33975 639 35 0 1 675

m = 4 62, 852, 931 209, 411 658 0 0 210, 069

m = 5 305, 420, 859, 119 119, 321, 646 54210 25 0 119, 375, 881

Table 9
Number of unreformed and reformed decks at Mousetrap for s = 4. In the case m = 3 we find for
the first time a non-trivial 1-cycle: 111122322333. There is no evidence of 4-reformed decks, in
any case we have examined.
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unreformed k-reformed cycles total reformed

m = 1 0 0 1 1

m = 2 1 0 1 1

m = 3 2 2 2 4

m = 4 15 4 5 9

m = 5 44 37 39 76

m = 6 530 170 20 190

m = 7 1854 2336 850 3186

m = 8 28969 11077 274 11351

m = 9 230, 196 129, 869 2815 132, 684

m = 10 2, 744, 429 883, 700 671 884, 371

m = 11 14, 684, 570 21, 529, 972 3, 702, 258 25, 232, 230

m = 12 428, 565, 112 50, 435, 136 1352 50, 436, 488

m = 13 2, 290, 792, 932 3,456,154,665 480,073,203 3, 936, 227, 868

Table 10
Number of unreformed and reformed decks at Modular Mousetrap for s = 1. The values for
1 ≤ m ≤ 5 were reported by Guy and Nowakowski [10]. Since in this game, for s = 1 and m
prime, a deck can only either win or give a derangement, we can obtain the number of unreformed
decks by a theoretical point of view because it coincides with the number of derangements (see
sequences [18] A000166 and A002467 and formula (17)).

unreformed k-reformed cycles total reformed

m = 1 0 0 1 1

m = 2 1 0 5 5

m = 3 30 39 21 60

m = 4 1338 1027 155 1182

m = 5 50337 57581 5482 63063

m = 6 5, 687, 050 1, 796, 111 1239 1, 797, 350

m = 7 316, 508, 244 364, 074, 715 497, 441 364, 572, 156

Table 11
Number of unreformed and reformed decks at Modular Mousetrap for s = 2.

unreformed k-reformed cycles total reformed

m = 1 0 0 1 1

m = 2 1 0 19 19

m = 3 599 615 466 1081

m = 4 196, 547 161, 772 11281 173, 053

m = 5 81, 531, 697 86, 339, 122 297, 181 86, 636, 303

Table 12
Number of unreformed and reformed decks at Modular Mousetrap for s = 3.
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unreformed k-reformed cycles total reformed

m = 1 0 0 1 1

m = 2 1 0 69 69

m = 3 11752 15466 7432 22898

m = 4 33, 420, 815 29, 381, 680 260, 505 29, 642, 185

Table 13
Number of unreformed and reformed decks at Modular Mousetrap for s = 4.

MAX k-reformed MAX k-trajectory MAX k-pre-period MAX k-cycle number of 1-cycles

m = 1 0 1 0 1 1

m = 2 0 1 0 1 1

m = 3 2 2 1 1 1

m = 4 2 3 2 1 1

m = 5 3 5 4 2 1

m = 6 5 5 4 1 1

m = 7 10 19 18 2 1

m = 8 8 9 8 2 1

m = 9 13 13 11 2 1

m = 10 10 6 5 3 1

m = 11 41 203 156 66 1

m = 12 8 7 6 1 1

m = 13 51 840 839 12 1

m = 17 ≥ 51 ≥ 39924 ≥ 39923 ≥ 209 ≥ 1

m = 19 ≥ 51 ≥ 521339 ≥ 521338 ≥ 14931 ≥ 1

Table 14
Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops,
k-cycles) at Modular Mousetrap for s = 1. In the last column we show the number of 1-cycles.
For every value of m, the permutation {1 , 2 , 3 , · · · , m− 1 , m} gives a 1-cycle. There is no
evidence for other (non-trivial) 1-cycles. In the cases m = 17, 19 we have respectively examined
only 100 million and 320 million winning decks, because the total number of decks to be examined
it too high. Since 17 and 19 are prime numbers, it is highly probable that further investigation
can improve the values we have up to now obtained.
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MAX k-reformed MAX k-trajectory MAX k-pre-period MAX k-cycle number of 1-cycles

m = 1 0 1 0 1 1

m = 2 0 3 2 1 2

m = 3 4 3 2 1 2

m = 4 9 7 5 2 2

m = 5 14 15 14 3 2

m = 6 13 7 6 2 2

m = 7 29 24 23 2 8

Table 15
Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops,
k-cycles) at Modular Mousetrap for s = 2. In the last column we report the number of 1-cycles.
For every value of m, the permutation {1 , 2 , 3 , · · · , m− 1 , m , 1 , 2 , 3 , · · · , m− 1 , m}
gives a 1-cycle. However, in this case we produced other (non-trivial) 1-cycles.

MAX k-reformed MAX k-trajectory MAX k-pre-period MAX k-cycle number of 1-cycles

m = 1 0 1 0 1 1

m = 2 0 4 2 2 2

m = 3 8 10 7 6 3

m = 4 17 12 10 2 5

m = 5 30 19 18 4 10

Table 16
Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops,
k-cycles) at Modular Mousetrap for s = 3. In the last column we report the number of 1-cycles.
For every value of m, the permutation {1 , 2 , 3 , · · · , m−1 , m , · · · 1 , 2 , 3 , · · · , m−1 , m}
gives a 1-cycle. However, in this case we produced other (non-trivial) 1-cycles.

MAX k-reformed MAX k-trajectory MAX k-pre-period MAX k-cycle number of 1-cycles

m = 1 0 1 0 1 1

m = 2 0 5 3 3 3

m = 3 15 12 11 4 6

m = 4 28 17 14 3 10

Table 17
Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops,
k-cycles) at Modular Mousetrap for s = 4. In the last column we report the number of 1-cycles.
For every value of m, the permutation {1 , 2 , 3 , · · · , m−1 , m , · · · 1 , 2 , 3 , · · · , m−1 , m}
gives a 1-cycle. However, in this case we produced other (non-trivial) 1-cycles.



INTEGERS: 10 (2010) 617

lowest value of n lowest value of n lowest value of n

yielding a k-cycle yielding a k-trajectory yielding a k-reformed deck

k = 1 1 1 3

k = 2 5 3 3

k = 3 10 4 5

k = 4 11 5 6

k = 5 – 5 6

k = 6 13 7 7

k = 7 13 7 7

Table 18
Lowest value of n which produces a k-cycle, or a k-trajectory, or a k-reformed deck at Modular
Mousetrap, with s = 1. The table is based on the complete results obtained for m ≤ 13 and the
partial results for m = 17. Let us observe that for m = 11, 13 we found even longer k-cycles,
corresponding only to the values k = 14, 15, 66 for m = 11 and k = 6, 7, 12 for m = 13. For
m = 17, up to now, we found only 1, 2, 170, 209-cycles.

The first value of n yielding k-trajectories, for 8 ≤ k ≤ 19, is 7; the first value of n yielding k-
trajectories, for 20 ≤ k ≤ 203, is 11; the first value of n yielding k-trajectories, for 204 ≤ k ≤ 840,
is 13. Though in the case m = 17 we have only partial results, we know that 17 is the first value
of n yielding at least all the k-trajectories for 841 ≤ k ≤ 39924.

The first value of n yielding k-reformed decks, for 8 ≤ k ≤ 10, is 7; the first value of n
yielding k-reformed decks, for 11 ≤ k ≤ 13, is 9; the first value of n yielding k-reformed decks, for
14 ≤ k ≤ 41, is 11; the first value of n yielding k-reformed decks, for 42 ≤ k ≤ 51, is 13.
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s = 2 (SC) s = 3 (SC) s = 4 (SC)

m = 1
1 1− cycle

1 total reformed

1 1− cycle

1 total reformed

1 1− cycle

1 total reformed

m = 2

1 1− cycle

2 1− reformed

3 total reformed

1 1− cycle

3 1− reformed

4 total reformed

1 1− cycle

10 1− reformed

4 2− reformed

15 total reformed

m = 3 only unreformed
4 1− reformed

4 total reformed

5 1− reformed

5 total reformed

m = 4 only unreformed
9 1− reformed

9 total reformed

229 1− reformed

229 total reformed

m = 5 only unreformed
63 1− reformed

63 total reformed

10568 1− reformed

10568 total reformed

m = 6
1 1− reformed

1 total reformed

1177 1− reformed

1177 total reformed

1, 212, 483 1− reformed

1, 212, 483 total reformed

m = 7
7 1− reformed

7 total reformed

36144 1− reformed

36144 total reformed

411, 488, 689 1− reformed

411, 488, 689 total reformed

m = 8
8 1− reformed

8 total reformed

1, 677, 968 1− reformed

1, 677, 968 total reformed

m = 9
105 1− reformed

105 total reformed

127, 255, 522 1− reformed

127, 255, 522 total reformed

m = 10
656 1− reformed

656 total reformed

14, 569, 821, 371 1− reformed

14, 569, 821, 371 total reformed

m = 11
6745 1− reformed

6745 total reformed

m = 12
76823 1− reformed

76823 total reformed

m = 13
986, 994 1− reformed

986, 994 total reformed

m = 14
17, 175, 636 1− reformed

17, 175, 636 total reformed

m = 15
320, 152, 788 1− reformed

320, 152, 788 total reformed

m = 16
7, 062, 519, 606 1− reformed

7, 062, 519, 606 total reformed

Table 19
Number of reformed decks satisfying (SC) at (HLM)2N . Since the value of Pmax decreases very
quickly when m grows, we cannot expect 2-reformed decks, apart from the case m = 2, s = 4.
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s = 2 (WC) s = 3 (WC) s = 4 (WC)

m = 1
1 1− cycle

1 total reformed

1 1− cycle

1 total reformed

1 1− cycle

1 total reformed

m = 2

1 1− cycle

2 1− reformed

3 total reformed

1 1− cycle

4 1− reformed

5 total reformed

1 1− cycles

10 1− reformed

4 2− reformed

15 total reformed

m = 3
6 1− reformed

6 total reformed

30 1− reformed

30 total reformed

160 1− reformed

160 total reformed

m = 4
10 1− reformed

10 total reformed

278 1− reformed

278 total reformed

7410 1− reformed

1 2− reformed

7411 total reformed

m = 5
56 1− reformed

56 total reformed

5027 1− reformed

5027 total reformed

669, 948 1− reformed

4 2− reformed

669, 952 total reformed

m = 6
200 1− reformed

200 total reformed

132, 437 1− reformed

132, 437 total reformed

133, 085, 352 1− reformed

15 2− reformed

133, 085, 367 total reformed

m = 7
1094 1− reformed

1094 total reformed

6, 131, 753 1− reformed

6, 131, 753 total reformed

m = 8
7016 1− reformed

7016 total reformed

436, 816, 134 1− reformed

436, 816, 134 total reformed

m = 9
55661 1− reformed

55661 total reformed

m = 10
586, 810 1− reformed

586, 810 total reformed

m = 11
7, 340, 841 1− reformed

7, 340, 841 total reformed

m = 12
114, 616, 993 1− reformed

114, 616, 993 total reformed

m = 13
2, 030, 647, 546 1− reformed

2, 030, 647, 546 total reformed

Table 20
Number of reformed decks satisfying (WC) at (HLM)2N . For s = 4, since the number of reformed
decks grows very quickly, it is possible to find 2-reformed decks.
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in-degree

m = 2 1

m = 3 2

m = 4 3

m = 5 9

m = 6 7

m = 7 33

m = 8 39

m = 9 87

m = 10 79

m = 11 669

m = 12 318

m = 13 1386

m = 14 1064

m = 15 3287

m = 16 5875

m = 17 21743

m = 18 8390

m = 19 49906

m = 20 57192

m = 21 151339

m = 22 125867

m = 23 1260437

m = 24 427183

m = 25 2192735

Table 21
In-degree, i.e., number of pre-images, of the trivial permutation 1, 2, 3, . . . , m, for 2 ≤ m ≤ 25, s =
1, in the game Modular Mousetrap. The rate of growth of the in-degree strongly depends on the
number of divisors of m. The less they are, the faster is the growth of the in-degree.
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