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Abstract
We discuss a simplified version of the well-known card game War in which the cards
in the deck have a strict ranking from 1 to n and in which the winning card and
losing card are immediately placed, in that order, at the bottom of the winning
player’s deck. Under this variation of War we show that it is possible for a standard
fifty-two card deck to cycle, and we exhibit such a cycle. This result is a special case
of a more general result that exhibits a cycle construction for an n-card deck for any
value of n that is not a power of 2 or 3 times a power of 2. We also discuss results
that show that under some assumptions the types of cycles we exhibit are the only
types of cycles that can occur. Finally, we give some open questions related to
cycles in War.

1. Introduction

The card game War usually takes so long to play that it often seems as if it will
last forever. Is this actually possible, though? Can a War deck enter a cycle and
thus truly last forever? That question is the focus of this paper.

War involves a standard deck of fifty-two cards of four suits, each with thirteen
denominations, being dealt out, face-down, to two players. A turn, or skirmish,
entails each player flipping over the card at the top of his deck onto the table. The
player with the larger-denominated card takes both of these cards and places them
face down at the bottom of his deck. If the players turn over cards with the same
denomination (e.g., a queen of hearts and a queen of spades), then the players battle:
Each player places three more cards on the table and then turns over a fourth card.
The player with the larger-denominated fourth card takes all the cards currently
on the table. If the fourth cards have the same denomination then battles continue
to be held until one player wins a battle, taking all the cards accumulated on the
table. The game ends when one player has won all of the cards.

As a first attempt at addressing the question of cycles in War we consider a
simplified version of the game in which the fifty-two cards in the deck have a strict
ranking from 1 to 52. This makes battles impossible. There are also different
options for returning cards that one has won to one’s deck; we consider the variation
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in which the winning card and losing card are immediately placed, in that order, at
the bottom of the winning player’s deck. Under this variation of War we show that
it is possible for a fifty-two card deck to cycle, and we exhibit such a cycle. This
result is a special case of a more general result that exhibits a cycle construction for
an n-card deck, where n = m · 2k, k ≥ 0, m ≥ 5, and m odd. We also have several
results that show that under some assumptions the types of cycles we exhibit are
the only types of cycles that can occur.

There has been only a little work done analyzing War. Brodie [3] investigates
the probability that, with a four-suit deck of 4n cards, there are no battles in the
first 2n skirmishes. In particular, he determines that this probability converges to
e−3/2 as n approaches infinity. Ben-Naim and Krapivsky [1] consider a variation
in which each player draws a card randomly from his deck rather than the card
on the top. They primarily consider continuous distributions, and they determine
steady-state behavior for the players’ decks given initial card value densities. Most
of their results are for the case in which each player has an infinite number of cards.
However, they do investigate the finite-deck case – both the version in which cards
are drawn randomly from the deck and a deterministic version in which the winner
places both cards at the bottom of his deck. In both situations they predict that the
number of skirmishes required for the game to end is O(n2), where n is the number
of cards in the deck, unless the players start with approximately the same card value
densities, in which case the number of skirmishes is O(n2 lnn). Their experimental
results bear this out. Interestingly enough, their Monte Carlo simulations appear
to have missed any cycles in the deterministic case, while our work shows that they
can occur. This points to the rarity of cycles. Berlekamp, Conway, and Guy also
report in Vol. 4 of Winning Ways for Your Mathematical Plays [2, p. 892] that
Marc Paulhus has shown that the similar game of Beggar-My-Neighbor can cycle,
although the cycles are rare: About 1 in 150,000 games played with the usual 52-
card deck cycle. (For more on Beggar-My-Neighbor, see Paulhus [5].) Finally, a
paper by Lakshtanov and Roshchina [4] on cycles in War appeared on the arXiv in
the final stages of the refereeing process for this paper. They prove that if there are
positive probabilities of both the winning card and of the losing card being placed
first at the bottom of the winning player’s deck then expected time until the game’s
completion is finite.

2. Constructing Cycles

A key idea in our approach is to focus on categories of cards rather than individual
cards. This turns out to make the analysis simpler. Given a sequence of skirmishes
in War divide the cards into categories as follows: Cards that never lose are denoted
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“A” cards. Cards that only lose to A cards are denoted “B” cards. Similarly, cards
that lose only to A or B cards are denoted “C” cards, cards that only lose to A, B,
or C cards are denoted “D” cards, and so forth. Part of the reason this category
approach works is that if we replace cards with their category labels we can then
play through the sequence of skirmishes using the category rankings instead of the
individual card rankings to determine the winning card in each skirmish. Because
of the way the category labels are defined this preserves the win-loss pairings for
the sequence.

Before proving our first lemma we need to define the following term: A category
cycle is a distribution of category cards such that after a sequence of skirmishes we
reach a distribution of category cards previously held. Since there may be multiple
cards in each category this implies that a category distribution may cycle before all
cards in the distribution even skirmish.

Lemma 1 There is a n-card cycle in War if and only if there is an n-card category
cycle in War.

Proof. (⇒) Suppose there is an n-card cycle in War. Place the cards into categories
based on the sequence of skirmishes consisting of one iteration of the cycle. Since
the category labels preserve the win-loss pairings for the sequence, the category
version also cycles.
(⇐) Suppose there is an n-card category cycle in War. Suppose there are a cards
in category A, b cards in category B, and so forth. Replace the A cards with
cards ranked from 1 through a, the B cards with cards ranked from a + 1 through
a + b, and so forth. Since every numbered card in a particular category beats every
numbered card in a lower-ranked category the win-loss pairings for the category
cycle are preserved in the sequence of numbered cards. However, one complete play
through the category cycle, while preserving the category positions, permutes the
numbered cards within each category and so may not produce a cycle with the
numbered cards. Since there are only a finite number of permutations of numbered
cards within each category, though, there are some finite number of iterations of
the category cycle that must produce a cycle with the numbered cards. !

Because of Lemma 1 it is sufficient to consider categories of cards rather than
numbered cards when searching for cycles.

We also have the following lemma.

Lemma 2 In a distribution that cycles there must be at least one category A card
in each player’s deck.



INTEGERS: 10 (2010) 750

Proof. Suppose, without loss of generality, that Player 1 has the highest-ranking
card, which must be an A card, and there is no category A card in Player 2’s deck.
Let k denote the highest-ranking card Player 2 ever has in his deck during the cycle.
Since k is not an A card, k must lose at least once. However, Player 2 never has
any cards ranked higher than k and thus never wins k back. This contradicts the
assumption that Player 2 has card k at some point during a cycle. !

Theorem 3 Let n = m · 2k, where k ≥ 0 and m is odd. If m ≥ 5 then War with n
cards can cycle.

Proof. By Lemma 2 each player must have an A card. Moreover, in a distribution
that cycles each A card in a deck must be followed by the card that it defeated
most recently. In addition, A cards cannot skirmish. Thus it is not possible for
both players to have an A card simultaneously at the top of their decks, and so one
player must have at least one card in front of an A card. Therefore, a deck with four
or fewer cards cannot cycle. The following distribution cycles after two skirmishes,
and thus the smallest deck size that can cycle is five.

Player 1: AB
Player 2: BAB

This distribution can be extended to produce cycles for any odd deck size n by
repeatedly adding AB at the end of the players’ decks in an appropriate fashion, so
that one player always has exactly one more card than the other.

Now, suppose n = m · 2k, where k ≥ 1 and m is an odd number five or greater.
Create an n-card distribution in the following manner: Start with an m-card cycle.
Then expand the card distribution according to the following algorithm:

1. Let i = 1.

2. Insert after each card in the current distribution a card of the category ranked
immediately below it. For instance, after an A card insert a B card, after a
B card insert a C card, and so forth.

3. If i < k then i = i + 1 and go to Step 2; otherwise, stop.

For example, for n = 10 and n = 20 the algorithm produces the following distri-
butions.

Deck size 10 cards 20 cards
Player 1 ABBC ABBCBCCD
Player 2 BCABBC BCCDABBCBCCD
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Since there are k iterations of the algorithm, and the number of cards doubles
each iteration, the algorithm outputs a distribution with exactly m · 2k = n cards.
Moreover, since Player 1 and Player 2 alternate winning skirmishes in the original
m-card distribution, and each iteration inserts after each card in the current dis-
tribution a card of the category ranked immediately below it, after iteration k we
have a distribution in which each player wins 2k skirmishes in a row. Because of
the construction of the distribution any of these 2k consecutive skirmishes involves
the same cards in the same order as any other of the 2k consecutive skirmishes.
Thus the distribution has cycled after Player 1 wins 2k skirmishes and then Player
2 wins 2k skirmishes, which is when the second A card in Player 1’s deck reaches
the front.

Finally, the distribution output by the algorithm has one player with 2k cards
more than the other. While this is not possible, unless n is odd, for a standard deal
of the cards (for k ≥ 1 each player has the same number initially), this distribution
can be reached from a standard deal of the cards very quickly. To construct such a
deal, start with the distribution output by the algorithm. Take the 2k extra cards
at the end of Player X’s deck. From these, place the winning cards in the same
order in the front of X’s deck and the losing cards in the same order in the front of
Y ’s deck. This will produce a deck in which each player has n/2 cards. Player X
wins the first 2k−1 skirmishes, at which point the distribution is the same as that
output by the algorithm. !

Minor variations of the cycles described in the proof of Theorem 3 are possible.
For example, if n = m · 2k, with the same restrictions on m and k as in Theorem 3,
cycles can be obtained for decks of size n by having Player 1’s deck consist of AB,
Player 2’s deck consist of B followed by a finite sequence of AB pairs so the total
number of A’s and B’s is m, and then expanding the deck via the algorithm in
Theorem 3 k times. The resulting distribution cycles after 2k+1 skirmishes.

Finally, Theorem 3 shows that the standard fifty-two-card deck can cycle, if one
adds a convention that removes the possibility of battles. The algorithm described
in the proof of Theorem 3 gives us the following initial fifty-two-card category
distribution that cycles after eight skirmishes:

Player 1: CDABBCBCCDABBCBCCDABBCBCCD

Player 2: BCBCCDABBCBCCDABBCBCCDABBC

If we say in the case of a tie in denomination that a spade beats a heart, which
beats a diamond, which beats a club, then we have an ordering of the cards in the
deck from 1 to 52. Replace the A cards with the aces and the kings of spades and
hearts; the B cards with the other kings, the queens, the jacks, the tens, the nines,
and the eight of spades; the C cards with the other eights, the sevens, sixes, fives,



INTEGERS: 10 (2010) 752

fours, and the three of spades; and the D cards with the other threes and the twos.
Then this distribution cycles (it takes 31,920 skirmishes to do so).

It is unclear whether, in general, the cycles described in the proof of Theorem 3
extend directly to cycles for decks containing two or more suits. For instance,
because of the nature of the construction of cycles in the proof of Theorem 3 the
number of B cards divided by the number of A cards has a remainder of 1. Thus,
if the number of suits is two or more, and a Theorem 3-style construction is used
to attempt to create a cycle, there will have to be some cards designated “A” cards
and some designated “B” cards that have the same denomination. We do not know
whether these specific A and B cards can be distributed so that they never skirmish.

3. Types of Cycles Possible

In this section we give some restrictions on the types of cycles possible. First,
though, we introduce an alternative labeling system that allows for the possibil-
ity of more than 26 categories of cards. In this system we denote the categories
0, 1, 2, 3, . . ., where a card is in category j for j ≥ 1 if and only if the highest-ranked
card to which it loses is in category j−1, and a card is in category 0 if and only if it
never loses. We continue to use the A, B, C, etc., labeling system, though, except
in the few places we truly need the numerical labels, as we find the alphabetical
labels generally easier to work with.

Our most important result on the types of cycles possible is that under some
assumptions those described in the proof of Theorem 3 are the only kinds of cycles
possible. This result is that the following are equivalent:

1. The players alternate winning m consecutive skirmishes for some m ≥ 1.

2. The players alternate winning 2k consecutive skirmishes for some k ≥ 0.

3. If a card loses it does so to one in the category above it.

4. If a card loses it does so to one in the category above it or two categories
above it.

5. The players alternate winning 2k consecutive skirmishes for some k ≥ 0, the
total number of cards in the deck is congruent to 2k mod 2k+1, the first of the
2k consecutive skirmishes is won by an A card, and a card is in category j if
and only if it appears i positions, 0 ≤ i ≤ 2k+1 − 1, behind an A card, where
j is the number of 1’s in the binary representation of i.

The cycles exhibited in the proof of Theorem 3 have the property in Statement 3:
When a card loses it does so to one in the category above it. Thus Statement 5 turns
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out to be a description of those kinds of cycles, including the claim about where a
card appears in the deck behind an A card.

A natural approach to constructing cycles is to look for those in which the players
have the same number of cards every m skirmishes, for fixed m. The following result
shows that such cycles cannot begin with one of the players playing an A card. This
is what we see (although it is not proved) with Theorem 3; every cycle there in which
a player has an A card at the top of his deck has the players holding a different
number of cards.

Theorem 4 Let a be a category A card held by Player 1 in some distribution that
cycles. Then there exists at least one place in the cycle in which a is at the top of
Player 1’s deck and Players 1 and 2 hold a different number of cards.

Proof. Suppose not. Then every time a is at the top of Player 1’s deck both players
hold the same number of cards. This means that every card must skirmish exactly
once from a time a is at the top of Player 1’s deck until the next time it is at the
top. Therefore, if card y is closer to the top of Player 2’s deck than card z when a
appears at the top of Player 1’s deck, and y and z both win their next skirmishes,
then y is closer to the top of Player 2’s deck than is z when a returns to the top of
Player 1’s deck. Call this Property 1.

Fix a distribution that cycles in which a is at the top of Player 1’s deck. Because
A cards never skirmish each other Player 2 cannot have an A card at the top of
his deck in this distribution. Let x be the highest-ranked card that is in front of
Player 2’s first A card in this distribution. Since x is not an A card, x must lose
at least once in the cycle and end up in Player 1’s deck. However, initially there
are no cards in front of Player 2’s first A capable of recapturing x. Furthermore,
Property 1, together with the fact that a card that just lost a skirmish is placed at
the bottom of a player’s deck behind the card that defeated it, implies that Player
2 will never have a card in front of its first A capable of winning x back. Thus
when x is recaptured by Player 2 it must appear behind Player 2’s first A. But
then Property 1 implies that x must remain behind Player 2’s first A until it is won
back by Player 1. Therefore, x cannot return to a position in Player 2’s deck in
front of the first A card. Thus the distribution cannot cycle. !

The remainder of the results in this section build up to showing that under certain
conditions the kinds of cycles described in the proof of Theorem 3 are the only kind
possible.

Call a card that won its previous skirmish a winning card and a card that lost
its previous skirmish a losing card.
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Lemma 5 For a distribution that cycles, if there are an even number of cards in
the deck then winning cards skirmish winning cards and losing cards skirmish losing
cards, and if there are an odd number of cards in the deck then winning cards
skirmish losing cards.

Proof. If there are an even number of cards in the deck then the players’ decks have
the same number of cards initially. After each skirmish the winning player gains one
card and the losing player loses one card. Thus both players’ decks change parity
with each skirmish. Thus the players’ decks always have the same parity. Because
cards are placed at the bottom of a player’s deck two at a time, a winning card
placed at the bottom of a player’s deck will next skirmish a winning card from the
other player’s deck if and only if the players’ decks currently have the same parity.
Thus winning cards skirmish winning cards and losing cards skirmish losing cards.

If there are an odd number of cards in the deck then one player has an even
number of cards and the other has an odd number of cards. Since the player’s decks
switch parity after each skirmish they never have the same parity. The rest of the
argument is similar to that in the even case. !

Theorem 6 characterizes cycles when the number of cards in the deck are odd.

Theorem 6 For a distribution that cycles the following conditions are equivalent:

1. The number of cards in the deck are odd.

2. There are only two categories of cards, A and B, and each skirmish is won by
an A card.

3. The players alternate winning skirmishes.

Proof. (1 ⇒ 2) Suppose a B card wins a skirmish that appears in a cycle. Then
this card becomes a winning card for one of the players. Since winning cards only
meet the other player’s losing cards (by Lemma 5) this B card can never skirmish
another A card. Thus it never loses after its first win. But this is a contradiction,
as B cards that appear in cycles must lose periodically to A cards. Thus no B card
ever wins a skirmish. Thus category B must be the lowest card category. Therefore,
there are only two categories of cards, A and B, and each skirmish is won by an A
card.

(2 ⇒ 3) Two A cards cannot appear next to each other in a player’s deck in
a cycle, as one of the two consecutive cards must be a losing card, and A cards
cannot lose. Thus if each skirmish is won by an A card then a player cannot win
two skirmishes in a row. Therefore, the players must alternate winning skirmishes.
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(3 ⇒ 1) At some point in the cycle Player 1 has an A card at the top of his
deck. Since every skirmish places a pair of cards at the bottom of a player’s deck
Player 1 must have an even number of cards at this point. Also, if the next skirmish
is denoted skirmish zero, then Player 1 wins the even-numbered skirmishes, while
Player 2 wins the odd-numbered skirmishes. Thus Player 2 has an A card in some
odd-numbered position. Since Player 2 has an odd number of cards before this A
and an odd number of cards after it, Player 2 currently holds an odd number of
cards. Therefore, the total number of cards in the deck must be odd. !

The following four lemmas are all related, and their proofs are similar, although
only Lemmas 8 and 9 are used subsequently.

Lemma 7 For an even-card distribution that cycles, each A card has the property
that at some point in the cycle it must be immediately followed by a card that will
win its next skirmish.

Proof. Suppose not. Then there is an A card such that every card that loses to
the A card loses its next skirmish as well. Suppose z loses to an A card and that
Az skirmishes xy next. By supposition z loses to y, which, by Lemma 5, must
have lost its previous skirmish to x, which must lose to A. Then the next skirmish
involving Ax will have x losing to some card w, which in its previous skirmish lost
to some card v, which must lose to A. Since this pattern continues we have an
infinite number of cards, which is a contradiction. !

Lemma 8 For any distribution that cycles each A card has the property that at
some point in the cycle it must be immediately preceded by a card that will lose its
next skirmish.

Proof. Suppose not. Then there is an A card such that, at every point in the
cycle, the card that immediately precedes the A card wins its skirmish. Suppose
x precedes the A card. Then x wins its next skirmish versus some card y. The A
card wins its next skirmish as well, which means that xyA is now a sequence at the
bottom of the player’s deck. Then y wins its next skirmish against some card z,
which means that that the sequence yzA next appears at the bottom of the player’s
deck. Since this pattern continues we must have an infinite number of cards, which
is not possible. !

The proofs of Lemmas 9 and 10 are similar to those of Lemmas 8 and 7, respec-
tively, and so we do not give them explicitly.
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Lemma 9 For any distribution that cycles each card in the lowest category has the
property that at some point in the cycle it must be immediately followed by a card
that will win its next skirmish.

Lemma 10 For an even-card distribution that cycles each card in the lowest cate-
gory has the property that at some point in the cycle it must be immediately preceded
by a card that will lose its next skirmish.

The assumptions in the next four theorems – Theorems 11, 12, 13, and 14 – all
lead to cycles of the type constructed in the proof of Theorem 3. We state and
prove these theorems, and afterward we discuss their conclusions.

Theorem 11 Suppose, in a distribution that cycles, the players alternate winning
m consecutive skirmishes. Then the first skirmish in such a sequence of consecutive
skirmishes is won by an A card, and A cards only appear in the first such skirmish.
Furthermore, the total number of cards in the deck is congruent to m mod 2m.

Proof. Since each player wins exactly m consecutive skirmishes, cards are effectively
placed at the bottom of a player’s deck in sequences of length 2m. Because each
player wins m skirmishes and then loses m skirmishes, each player’s win/loss cycle
has a period of 2m, and thus the position of the card in the sequence of length 2m
when it is placed at the bottom of a player’s deck determines whether it wins or loses
its next skirmish. Let x0, x1, . . . , x2m−1 denote the sequence of positions of 2m cards
placed at the bottom of Player 1’s deck, and let z0, z1, . . . , z2m−1 denote the similar
sequence of positions for Player 2. Let w0, w1, . . . , wm−1 be the positions in the
sequence x0, x1, . . . , x2m−1 that are the winning positions (i.e., positions such that
if a card appears in one of them it will win its next skirmish), and let y0, y1, . . . , ym−1

be the positions in the sequence z0, z1, . . . , z2m−1 that are the winning positions.
(These may wrap around so that, for example, there is some i such that wi = x2m−1

and wi+1 = x0.) Because two cards are placed at the bottom of a player’s deck
with each skirmish, a card in position wi (yi) next appears in position x2i (z2i).

By Lemma 2 Player 1 has at least one A card. Suppose Player 1 has an A card
that does not appear in position w0. Then, as the A card never loses, it must re-
main in positions that comprise some subset of {w1, w2, . . . , wm−1}. However, the
card immediately preceding a card in any of these positions is also in a winning
position and so wins its next skirmish. This contradicts Lemma 8. Therefore, all
A cards appear at least once in position w0. Moreover, because winning and los-
ing are determined by position, this also implies that any card that passes through
position w0 appears in the same set of positions as does an A card and thus can never



INTEGERS: 10 (2010) 757

lose. Therefore, the only cards that appear in position w0 are A cards. A similar
argument holds, of course, for position y0.

Since cards appearing in positions w0 and y0 next appear in positions x0 and z0,
respectively, we have that the cards in positions x0 and z0 are A cards. We now
show that w0 = x0 and y0 = z0. Let v be a card of the lowest category. Let w−1

and y−1 be the last losing positions in the sequence of losing positions for Players
1 and 2, respectively (so that they are the positions immediately preceding w0 and
y0). By Lemma 9 and an argument similar to that for the A cards, v must appear
at some point in position w−1 or y−1. However, a card that appears in position w−1

loses to a card in position ym−1 and thus next appears in position z2m−1. Similarly,
a card that appears in position y−1 loses to a card in position wm−1 and thus next
appears in position x2m−1. It follows, therefore, that x2m−1 and z2m−1 cannot both
be winning positions. Suppose, without loss of generality, that x2m−1 is a losing
position. In order to have x0 be a winning position, then, we must have w0 = x0.
Let u be a card that appears in position y−1. Then, as we have just argued, u next
appears in position x2m−1. Because w0 = x0 this is also position w−1, and therefore
u next appears in position z2m−1. Since a card that appears in position x2m−1 also
appears in position z2m−1, and a card of the lowest category must appear in at
least one of x2m−1 and z2m−1, we have that z2m−1 must be a losing position as
well. Therefore, y0 = z0.

Since every A card eventually appears in position w0 or y0, and w0 = x0, y0 = z0

means that these positions map to themselves, we have that A cards only appear as
the first card in a sequence of m consecutive skirmishes won by one of the players.

At some point in the cycle Player 1 has an A card at the top of his deck. Since
each A card begins a sequence of 2m cards Player 1 must have some multiple of 2m
cards in his deck. Player 1 wins the first m skirmishes beginning with this A card,
at which point Player 2 wins the next m skirmishes, beginning with an A card of
his. Thus Player 2’s deck must consist of m cards, followed by some multiple of 2m
cards. Thus the total number of cards in the deck can be placed in groups of 2m
cards with m left over. !

Theorem 12 Suppose that, in a distribution that cycles, players alternate winning
m consecutive skirmishes. Then m = 2k for some k ≥ 0.

Proof. By Theorem 11 the first skirmish in each sequence of m consecutive wins is
won by an A card, and A cards only appear at the beginning of a sequence of m
consecutive wins. Thus cards in positions 1 through m − 1 behind an A card win
their next skirmish, and cards in positions m through 2m − 1 behind an A card
lose their next skirmish. Also, because cards are placed in pairs at the bottom of
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a player’s deck with each skirmish, a card that appears n positions, n < m, behind
an A card next appears 2n positions behind the A card. Let b be a B card. Then
b loses to an A card a held by Player 1 at some point in the cycle, after which b is
one position behind that A card. Since b’s position behind a doubles with each win
when it loses next it must be 2k positions behind a, for some k ≥ 0. This implies
2k−1 < m ≤ 2k. Moreover, since b is a B card its next loss must be to an A card
held by Player 2. Since A cards signify the beginning of a sequence of consecutive
wins Player 2 must begin a sequence of m consecutive wins 2k positions behind a.
Since m > 2k−1 this must be Player 2’s next sequence of consecutive wins. Thus
Player 1 wins 2k consecutive skirmishes, which implies m = 2k. !

Theorem 13 Suppose that, in a distribution that cycles, the players alternate win-
ning 2k consecutive skirmishes, for some k ≥ 0. Then a card is in category j if and
only if it appears i positions, 0 ≤ i ≤ 2k+1 − 1, behind an A card, where j is the
number of 1’s in the binary representation of i. Moreover, a card only loses to cards
in the category immediately above it.

Proof. As in the proof of Theorem 12, Theorem 11 implies that A cards appear in
the first skirmish in each sequence of consecutive wins, A cards only appear there,
cards in positions 1 through 2k− 1 behind an A card win their next skirmish, cards
in positions 2k through 2k+1 − 1 behind an A card lose their next skirmish, and
a card that appears i positions, 0 ≤ i ≤ 2k − 1, behind an A card next appears
2i positions behind the A card. Because there are 2k consecutive skirmishes won,
when a card i positions, 2k ≤ i ≤ 2k+1 − 1, behind an A card loses, it does so to a
card i− 2k positions behind an A card held by the other player, at which point it
next appears 2(i− 2k) + 1 positions behind the other player’s A card.

Let x be a card that appears in a position i, 0 ≤ i ≤ 2k+1− 1, behind an A card.
The difference between the binary representations of i and 2i is that the latter has
an additional 0 at the end. The difference between the binary representations of i
and i− 2k for 2k ≤ i ≤ 2k+1 − 1 is that the latter does not have the leading 1 that
the former does. The difference between the binary representations of 2i and 2i+1
is that the latter has a 1 at the end, whereas the former has a 0. Thus when x wins
a skirmish, its current position and its next position have the same number of 1’s
in their binary representations. When x loses a skirmish, it does so to a card in a
position with one fewer 1’s in its binary representation, and x’s next position still
has the same number of 1’s in its binary representation. Therefore, the number of
1’s in the binary representations of the positions in which a card appears is constant.

Suppose that, for 0 ≤ h ≤ j, a card appears in a position with h 1’s in its
binary representation if and only if it is in category h. This is true for j = 0, as
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the only position with zero 1’s in its binary representation is position 0, and only
A cards appear there. Let x be a card that appears in a position with j + 1 1’s in
its binary representation. When x loses it does so to a card with j 1’s in its binary
representation. Thus x only loses to cards in category j. Therefore x is in category
j + 1. Now, suppose x is in category j + 1. Then x loses to at least one card
(actually, only cards) in category j. But all cards in category j have j 1’s in their
binary representations. Thus x must have j + 1 1’s in its binary representation.
This establishes the induction claim.

This argument also implies that when a card loses, it does so to a card one
category above it. !

Theorem 14 Suppose, in a distribution that cycles, a card never loses to another
card more than two categories above it. Then the players alternate winning 2k

consecutive skirmishes, for some k ≥ 0.

Proof. By Theorem 6 the claim is true for k = 0, the case when the number of cards
are odd. Assume that the number of cards are even. The remainder of the proof is
by induction. The induction hypothesis is as follows:

1. Skirmishes are won 2k−1 at a time, not necessarily alternating, with 2k cards
effectively placed at the bottom of a player’s deck at a time,

2. Of 2k such cards, the first 2k−1 are won or lost as a group on their next
skirmish, and the second 2k−1 are won or lost as a group on their next skirmish,

3. A player’s first card in a sequence of 2k such cards skirmishes the first card
in such a sequence of the other player’s,

4. An A card can only appear in position 0 (the first position) of a sequence of
2k such cards.

By Lemma 5 these assumptions are true, for k = 1, when the number of cards
is even. Let w and x be cards in positions 0 and 2k−1, respectively, in a sequence
of 2k cards for one player, and let y and z be the cards that skirmish w and x,
respectively, when w and x are in these positions. Thus y and z are in positions
0 and 2k−1, respectively, for the other player. The assumptions imply that both
w and x won their immediate prior skirmishes and therefore previously appeared
in positions 0 and 2k−2 of a sequence of 2k−1 cards. Therefore, they appeared in
a sequence of 2k cards in those very positions or in positions 2k−1 and 3 · 2k−2.
Either way, they both appeared in even positions, and so they must have won their
previous skirmishes as well. Moreover, the distance between their positions is now
2k−2 rather than 2k−1. This argument can be continued, with the distance between
them halving each time, until one of the cards appears in an odd-numbered position.
Because card x is in position 2k−1, it must have appeared in an odd-numbered
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position k − 1 skirmishes previously. As card w appears in position 0, it must not
have appeared in an odd-numbered position fewer than k skirmishes previously.
Because the distance between the two cards halves with each skirmish back, k − 1
skirmishes previously the distance was 1. Thus k skirmishes prior w must have
defeated x. Similarly, k skirmishes previously z must have lost to y.

Assume, without loss of generality, that w defeats y when w and x meet y and
z. By hypothesis neither x nor y can be more than two categories below w. Thus
x is in the category immediately above y, in the same category as y, or in the
category immediately below y. In the first two cases x defeats z. Moreover, x
cannot be in the same category as z, which means that in the third case z must be
two categories below y. Thus x defeats z in this case as well. Therefore, the player
who wins the first 2k−1 skirmishes in a sequence of 2k skirmishes wins the second
2k−1 skirmishes as well. Thus each player actually wins 2k consecutive skirmishes,
each player effectively places 2k+1 cards at the bottom of his deck at a time, and
the first and second groups of 2k cards in such a sequence of 2k+1 cards are won or
lost as a group.

Our assumptions imply that in such a sequence of 2k+1 cards an A card can only
appear in position 0 or in position 2k. However, if an A card appears in position
2k then its immediate prior position would have been 2k−1 in some sequence of 2k

cards, and we just showed that that card must have lost at some point. Thus an
A card cannot appear in position 2k, and A cards can only appear in position 0 of
such a sequence of 2k+1 cards.

By assumption, a player’s card in position 0 in such a sequence of 2k+1 cards
must skirmish a card of the other player’s that is either in position 2k or in po-
sition 0. Suppose the former. Now, suppose a B card appears in position 0 in
such a sequence of 2k+1 cards. It does not skirmish an A card next, as A cards
cannot appear in position 2k. The B card therefore wins its next skirmish and
appears again in position 0. This will continue, with the B card never losing after
appearing in position 0. Since any B card must lose to an A card at some point
in the cycle this is a contradiction, and therefore B cards cannot appear in posi-
tion 0. Suppose a C card appears in position 0. It does not skirmish an A card
next. Suppose it loses to a B card next. Then the B card has just won a skir-
mish in position 2k and thus appears next in position 0. We know that this cannot
happen, and thus the C card must win its skirmish when it appears in position 0.
But then it appears again in position 0 and so will continue to do so. As with the
B cards, this is a contradiction. A similar argument holds for any other category
of card. Thus only A cards can appear in position 0. Since position 0 is the only
possible position for an A card we have that an A card appears precisely once ev-
ery 2k skirmishes, alternating between players. Therefore, each skirmish won by
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an A card begins a run of exactly 2k consecutive wins by the player holding that A
card.

If a player’s first card in a sequence of 2k+1 cards skirmishes the other player’s
first card, then we have satisfied the hypotheses in the induction step for the next
higher value of k. This completes the proof. !

As we stated at the beginning of this section Theorems 11, 12, 13, and 14 imply
that the following are equivalent and describe the kinds of cycles in the proof of
Theorem 3.

1. The players alternate winning m consecutive skirmishes for some m ≥ 1.

2. The players alternate winning 2k consecutive skirmishes for some k ≥ 0.

3. If a card loses it does so to one in the category above it.

4. If a card loses it does so to one in the category above it or two categories
above it.

5. The players alternate winning 2k consecutive skirmishes for some k ≥ 0, the
total number of cards in the deck is congruent to 2k mod 2k+1, the first of the
2k consecutive skirmishes is won by an A card, and a card is in category j if
and only if it appears i positions, 0 ≤ i ≤ 2k+1 − 1, behind an A card, where
j is the number of 1’s in the binary representation of i.

We have the following interesting corollary as well, which characterizes the situ-
ation in which there are three categories of cards.

Corollary 15 For a distribution that cycles there are three categories of cards if
and only if players alternate winning two consecutive skirmishes. Moreover, each
pair of skirmishes involves an A card beating a B card and then a B card beating a
C card. Also, the total number of cards is congruent to 2 mod 4.

Proof. Suppose there are three categories of cards: A, B, and C. By Theorem 6
there are an even number of cards in the deck. By Lemma 5, then, winning cards
only meet winning cards and losing cards only meet losing cards. As C cards can
never win, this implies A cards never skirmish C cards. Thus A cards only de-
feat B cards, and B cards only defeat C cards. Since cards are placed in pairs at
the bottom of a player’s deck after each skirmish each player’s deck must like look
a sequence of pairs, each of which is either AB or BC (with the top card in the
deck possibly the second in a pair). However, an AB pair cannot skirmish an AB
pair, nor a BC pair another BC pair. Thus every pair of skirmishes must involve
AB vs. BC. Therefore, each player wins at least two skirmishes in a row. When
a player wins two skirmishes, though, the four cards that go into the bottom of
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his deck are the sequence ABBC. The third and fourth cards are a BC pair that
must skirmish (and thus lose to) an AB pair. Since this must be true throughout
a player’s deck in order for a cycle to occur a player cannot win more than two
skirmishes in a row.

Now suppose players alternate winning two consecutive skirmishes. Then The-
orem 13 implies that a player’s two wins result in placing the sequence ABBC at
the bottom of his deck, and an ABBC sequence for one player skirmishes a BCAB
sequence for the other. Thus there are only three categories of cards.

Theorem 11 indicates that the total number of cards in the deck is congruent to
2 mod 4. !

A somewhat more involved but basically similar argument to that in Corollary 15
shows that there are four categories of cards if and only if players alternate winning
four consecutive skirmishes. These four skirmishes consist of an A vs. B, then two
of B vs. C, and finally a C vs. D, and the total number of cards is congruent
to 4 mod 8. Unfortunately, a version of Corollary 15 for five categories would be
more difficult to prove (and might not even be true), partly because the number of
possible pairs is so much larger and partly because a player is not guaranteed to
win two consecutive skirmishes: The possible AD vs. BC matchup, for example,
would have one player winning the first skirmish and the other player winning the
second.

4. Conclusions

We have shown how to construct cycles for War decks of size n for n = m · 2k,
k ≥ 0, m is odd, and m ≥ 5. We have also shown that if players alternate winning
m consecutive skirmishes or if no card loses to a card more than two categories
above it then these types of cycles are the only such cycles possible. In addition,
we have characterized cycles in the case where n is odd and where there are exactly
two or three categories of cards. We have also discussed a characterization of cycles
in which there are exactly four categories of cards.

Other variations of War are possible, too. If the losing card from a skirmish
enters the winning player’s deck before the losing card, then corresponding versions
of the results obtained in the previous sections hold. In particular, the version of
Theorem 3 for this variation now produces cycles for any n not a power of 2. In
the variation in which there are more than two players it is possible to have cycling
distributions of the kind described in the proof of Theorem 3. However, unless
the number of players is a power of 2 such distributions are not reachable from a
standard deal of the deck of cards.
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There are many more questions to be addressed concerning cycles in War, in-
cluding the following:

1. Are there other types of cycles than those constructed in the proof of Theo-
rem 3?

2. Do cycles exist for deck sizes n, where n = 2k or n = 3 · 2k, k ≥ 0?

3. What is the probability that an initial deal of cards eventually enters a cycle?
For instance, when n = 10, we have that almost 11% of (395,940 of 10! =
3, 628, 800) deals do so. (This was obtained via enumeration.)

4. What can we say about cycle structures when there are s suits, s > 1, so that
battles are possible? A standard deck has s = 4.

5. Can a standard deal of the cards produce a cycle of some kind when the
number of players is not a power of 2?

6. Are there types of cycles possible with more than two players that do not
exist in the two-player case?

7. The proofs of many of the main results given in Section 3 involve messy case
analyses. Is there some algebraic structure in which our discussion of cycles
in War could be placed that would yield cleaner, simpler proofs (and possibly
lead to new insights)?

Acknowledgments. Thanks to Manley Perkel for pointing out the existence of
the cycles described immediately after the proof of Theorem 3. Thanks also go to
the referee for many suggestions that improved the focus of the paper.
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