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Abstract
Let ϕ denote Euler’s totient function. The frequency with which ϕ(n) is a perfect
square has been investigated by Banks, Friedlander, Pomerance, and Shparlinski,
while the frequency with which ϕ(n) is a sum of two squares has been studied by
Banks, Luca, Saidak, and Shparlinski. Here we look at the corresponding three-
squares question. We show that ϕ(n) is a sum of three squares precisely seven-
eighths of the time. We also investigate the analogous problem with ϕ replaced by
Carmichael’s λ-function. We prove that the set of n for which λ(n) is a sum of three
squares has lower density > 0 and upper density < 1.

1. Introduction

Let ϕ(n) denote Euler’s totient function, defined as the size of the unit group
(Z/nZ)×. A theorem of Banks et al. [2, pp. 40, 43] asserts that for any � > 0 and
all large x,

x0.7038 ≤ #{n ≤ x : ϕ(n) = �} ≤ x

L(x)1−�
, (1)

where
L(x) = exp(

�
log x log log log x).

We write “�” here and below to denote a generic member of the set {n2 : n =
0, 1, 2, 3, . . . } of perfect squares. The same authors present a heuristic argument
that the left-hand side of (1) can be replaced with x1−�. An investigation into the
corresponding question for sums of two squares appeared the following year, where
it was shown [4, p. 124, eq. (1)] that

#{n ≤ x : ϕ(n) = � + �} � x

(log x) 3
2
. (2)

1The author is supported by an NSF postdoctoral research fellowship.
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(Recall that “F � G” means that the ratio F/G is bounded between two positive
constants.) This may be compared with the theorem of Landau [11] that as x→∞,

#{n ≤ x : n = � + �} ∼




1√
2

�

p≡3 (mod 4)
p prime

�
1− 1

p2

�− 1
2




x

(log x)1/2
.

See [15] for an extended discussion of Landau’s theorem and its generalizations, and
see [20, pp. 183–185] for what seems to be the most elementary proof.

What about sums of three squares? (By a theorem of Lagrange, every positive
integer is a sum of four squares, so this is the last interesting case.) The natural
numbers which are sums of three squares are characterized by a theorem of Legendre:
n = � + � + � precisely when n is not of the form 4k(8l + 7), where k and l are
nonnegative integers (see, e.g., [21, Appendix to Chapter IV]). A straightforward
consequence of this characterization is that about 5/6 of all natural numbers up
to x are expressible as a sum of three squares, once x is large. The error term in
this approximation is easily seen to be O(log x), but as discussed in [22] and [17],
it displays somewhat complicated pointwise and average behavior. Our first result
is the determination of the density of n for which ϕ(n) = � + � + �.

Theorem 1. The set of n for which ϕ(n) is a sum of three squares has asymptotic
density 7/8. More precisely, for x ≥ 2, we have

#{n ≤ x : ϕ(n) = � + � + �} =
7
8
x + O

�
x

(log x)3/10

�
. (3)

It seems amusing that for k = 1, 2, and 3, the odds that ϕ(n) is a sum of k squares
are alternately higher, then lower, then higher, than the corresponding odds that n
is a sum of k squares. One can anticipate a possible objection to these comparisons:
Since ϕ(n) is even for n > 2, we should compare ϕ(n) only with even m. An even
number m is a sum of three squares with probability 11/12, and so ϕ(n) is less
likely to be a sum of three squares than its even brethren. This is all true, but we
can respond as follows: ϕ(n) is almost always a multiple of 4 (since almost every
n has at least two different odd prime divisors), and a multiple of 4 is a sum of
three squares with probability 5/6. Our hypothetical detractor can then counter
by suggesting we consider multiples of 8 (where the probability is again 11/12),
to which we counter with multiples of 16 (where it is 5/6), etc. In any case, the
objection highlights the importance of the highest power of 2 dividing ϕ(n), which
will feature prominently in the proof of Theorem 1 below.

What happens if we replace ϕ with a cognate arithmetic function? Candidates
here include the sum of divisors function σ(n) and Carmichael’s function λ(n),
defined as the exponent of the group (Z/nZ)×. The estimates (1) and (2) remain
valid with σ (see [2, pp. 31, 43] and [4, Theorem 2]), and it is straightforward to
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prove that Theorem 1 also holds for σ. (See the remarks following the proof of the
Theorem 3, which is a generalization of Theorem 1.) One can also show that (1)
and (2) hold with ϕ replaced by λ (see [2, Theorem 6.3 and §7] and [3]). For sums
of three squares, we can prove the following:

Theorem 2. We have

0 < lim inf
x→∞

1
x

#{n ≤ x : λ(n) = � + � + �}

≤ lim sup
x→∞

1
x

#{n ≤ x : λ(n) = � + � + �}

< 1.

Perhaps surprisingly, we conjecture that Theorem 1 does not hold for λ. In fact,
we believe that the lim inf and lim sup in Theorem 2 do not coincide, so that the
set of n for which λ(n) = � + � + � does not possess an asymptotic density.

1.1. Notation

We write ω(n) :=
�

p|n 1 for the number of distinct prime factors of n and Ω(n) :=�
p�|n 1 for the number of prime factors of n counted with multiplicity. P (n) denotes

the largest prime factor of n, with the understanding that P (1) = 1. We write d � n
(read “d exactly divides n”) if d divides n and gcd(d, n/d) = 1. Throughout the
paper, the letters p and q are reserved for primes. For each prime p and each natural
number n, we write vp(n) for the p-adic order of n; thus, vp(n) = 0 if p � n, and if
p | n, then vp(n) is the unique positive integer for which pvp(n) � n.

The Bachmann–Landau o and O-symbols (see [1, p. 401], [12, §12]), as well as
Vinogradov’s � and � symbols, appear with their usual meanings. For x > 0, we
set log1 x = max{log x, 1}, and we let logk denote the kth iterate of log1.

2. Euler’s Function

2.1. Proof of Theorem 1

For each natural number m, define u(m) (the odd part of m) by the relation m =
2v2(m)u(m). Note that v2 is completely additive while u is completely multiplicative.

Let G denote the group (Z/2Z)× (Z/8Z)×. We let θ denote the map from N to
G defined by

n �→ (v2(ϕ(n)) mod 2, u(ϕ(n)) mod 8).

Then θ is a G-valued multiplicative function, in the sense that θ(mn) = θ(m)θ(n)
whenever m and n are coprime. By Legendre’s theorem,

ϕ(n) = � + � + �⇐⇒ θ(n) �= (0 mod 2, 7 mod 8).
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To prove Theorem 1, we show that as n runs over the natural numbers, the elements
θ(n) ∈ G become equidistributed.

Our starting point is a pretty theorem of Wirsing [24] from probabilistic number
theory, which confirmed a conjecture of Erdős and Wintner.

Theorem A. Let f be a real-valued multiplicative function satisfying −1 ≤ f(n) ≤
1 for all n ∈ N. If the series

�

p

1− f(p)
p

diverges, then f has mean value zero.

Theorem A is enough to obtain Theorem 1 without the error term. To justify the
error expression, we use the following effective version due to Hall and Tenenbaum
[9] (see also [23, Theorem 7, p. 345]):

Theorem B. Suppose that f is a real-valued multiplicative function with −1 ≤
f(n) ≤ 1 for all n ∈ N. Let φ0 be the unique solution on (0, 2π) of the equation
sin(φ0) + (π − φ0) cos(φ0) = 1

2π, and put L = cosφ0 ≈ 0.32867. Then for x ≥ 1,

1
x

�

n≤x

f(n)� exp



−L
�

p≤x

1− f(p)
p



 ,

where the implied constant is absolute.

Proof of Theorem 1. Let Ĝ denote the character group of G. Since G has exponent
2, each χ ∈ Ĝ assumes values in {1,−1}. Given χ ∈ Ĝ, we “lift” χ to N by setting
χ(n) = χ(θ(n)) for each n ∈ N. (By abuse of notation, we use the same symbol
for the function on N and the function on G.) Then χ is a multiplicative function
taking values in {−1, 1}. By the orthogonality relations, to prove Theorem 1, it will
suffice to show that �

n≤x

χ(n)� x

(log x)3/10
(4)

for each nontrivial χ.
We have Ĝ ∼= �(Z/2Z) × �(Z/8Z)×. Moreover, the isomorphism shows that for

each nontrivial χ, there is a ζ ∈ {−1, 1} and a Dirichlet character χ̃ to the modulus
8, with

χ(n) = ζv2(ϕ(n))χ̃(u(ϕ(n)))

for all natural numbers n. Since χ is nontrivial, either ζ �= 1 or χ̃ is not the trivial
character mod 8.
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Suppose first that χ̃ is trivial, so that ζ = −1. In this case, χ(n) = (−1)v2(ϕ(n)).
Then χ(p) = −1 whenever p ≡ 3 (mod 4), so that

�

p≤x

1− χ(p)
p

≥ 2
�

p≤x
p≡3 (mod 4)

1
p

∼ log log x,

where the asymptotic relation holds as x → ∞. Here we use a form of Dirichlet’s
theorem on primes in progressions (see, e.g., [5, p. 57]): Whenever a and m are
coprime natural numbers,

�

p≤x
p≡a (mod m)

1
p
∼ 1

ϕ(m)
log log x as x→∞. (5)

The estimate (4) for this χ now follows from Theorem B. In fact, we can replace
the exponent 3/10 on the right-hand side of (4) with any constant smaller than L.

Suppose now that χ̃ is nontrivial. Fix a large natural number K, and decompose

�

p≤x

χ(p)
p

=
χ(2)

2
+

�

1≤k≤K

ζk
�

b mod 8
gcd(b,8)=1

χ̃(b)
�

p≤x
v2(p−1)=k

u(p−1)≡b (mod 8)

1
p

+
�

p≤x
v2(p−1)≥K+1

χ(p)
p

=
χ(2)

2
+

�
1
+

�
2
.

We estimate the triple sum
�

1 using (5): For fixed k and b, the condition on p in�
1 says precisely that p ≡ 2kb + 1 (mod 2k+3). So the sum over p is asymptotic

(as x → ∞) to 1
2k+2 log log x. Notice that the coefficient of log log x exhibits no

dependence on b. Since
�

χ̃(b) vanishes when b runs over a system of coprime
residues modulo 8, it follows that

�
1 = o(log log x) as x→∞. Also,

lim sup
x→∞

1
log log x

���
�

2

��� ≤ lim sup
x→∞

1
log log x

�

p≤x
v2(p−1)>K

1
p

=
1

2K
,

by (5) with m = 2K+1 and a = 1. Since K was arbitrary, these estimates show that�
p≤x χ(p)/p = o(log log x). But

�
p≤x

1
p ∼ log log x (by (5) with a = m = 1), and

so we deduce that �

p≤x

1− χ(p)
p

∼ log log x

as x→∞. Now (4) follows from Theorem B, as above.
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2.2. A Generalization

A similar argument allows us to prove a more general equidistribution result: Let
Q be a finite, nonempty set of primes, and redefine u(n) as the part of n coprime
to

�
q∈Q q, so that

n = u(n)
�

q∈Q
qvq(n).

Suppose that to each q ∈ Q is associated a positive integer mq. Finally, assume
that we are also given a positive integer l, and put

M :=
�

q∈Q
ql. (6)

We now introduce the group

G :=




�

q∈Q
(Z/mqZ)



× (Z/MZ)×,

and we define θ : N→ G by

n �→ ((vq(ϕ(n)) mod mq)q∈Q, u(ϕ(n)) mod M) .

Theorem 3. As n ranges over N, the elements θ(n) become equidistributed in G.
In other words, for each g ∈ G, the set θ−1(g) has asymptotic density |G|−1 =
(ϕ(M)

�
q∈Q mq)−1.

Remarks

1. We recover the density statement of Theorem 1 by taking Q = {2}, m2 = 2,
and l = 3.

2. Since l may be taken arbitrarily large, it follows that the equidistribution
statement of Theorem 3 holds for any M supported on the primes in Q, not
only those of the particular form (6).

3. The restriction to moduli M supported on primes in Q is a natural one.
Indeed, if M � is a fixed integer coprime to

�
q∈Q q, then M � | u(ϕ(n)) for

almost all natural numbers n. A somewhat stronger claim appears as [14,
Lemma 2].

The proof of Theorem 3 is similar to the argument of the last section. The key
difference is that the characters of G need no longer be real-valued, so that Wirsing’s
theorem may not apply. But the following result of Hall [8] is a suitable stand-in:
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Theorem C. Let D be a closed, convex proper subset of the closed unit disc in
C which contains 0. Suppose that f is a complex-valued multiplicative function
satisfying |f(n)| ≤ 1 for all n ∈ N and f(p) ∈ D for all primes p. If the series

�

p

1−�(f(p))
p

(7)

diverges, then f has mean value zero. In fact, letting L(D) denote the perimeter of
D, we have

1
x

������

�

n≤x

f(n)

������
� exp



−1
2

�
1− L(D)

2π

� �

p≤x

1−�(f(p))
p





for x ≥ 1. The implied constant here depends only on the region D.

For each χ ∈ Ĝ, we lift χ to a multiplicative function on N by setting χ(n) =
χ(θ(n)). We will apply Theorem C with f = χ, where we take D as the convex
hull of the #Gth roots of unity. Notice that for each prime p, either f(p) = 1 or
1−�(f(p)) ≥ 1− cos 2π

#G > 0. (We assume here that #G > 1; otherwise Theorem
3 is trivial.) So the series (7), with f = χ, diverges if

�
p : χ(p)�=1

1
p diverges. We

will show that this is true for every nontrivial χ.
Let χ be a nontrivial character. Then there are complex numbers {ζq}q∈Q, with

each ζ
mq
q = 1, and a Dirichlet character χ̃ mod M , with

χ(n) =




�

q∈Q
ζvq(ϕ(n))
q



 χ̃(u(ϕ(n)))

for all n ∈ N. Suppose first that χ̃ is not trivial, and choose an integer a coprime
to M with χ̃(a) �= 1. Then χ(p) = χ̃(a) �= 1 for all primes p satisfying

p ≡ 1 + a
�

q∈Q
qmq (mod

�

q∈Q
qmq+l).

The sum of the reciprocals of these primes p diverges by Dirichlet’s theorem. Now
suppose that χ̃ is trivial. Since χ is nontrivial, we must have ζq �= 1 for some q ∈ Q,
say ζq0 �= 1. But then χ(p) = ζq0 �= 1 if

p ≡
�

1 + q (mod q2) when q = q0,

1 + qmq (mod qmq+1) when q ∈ Q \ {q0}.

The sum of the reciprocals of these primes diverges also, again by Dirichlet’s result.
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Remarks

1. As in Theorem 1, the error term in the asymptotic formula of Theorem 3 may
be taken as O(x/(log x)c) for some c > 0 (which may depend on Q, the mq,
and l). To see this, we have only to insert into the above argument the form
of Dirichlet’s result appearing in the proof of Theorem 1 and the quantitative
half of Hall’s Theorem C.

2. To prove that Theorems 1 and 3 are valid with σ in place of ϕ, it is only
necessary is to replace each (implicit) occurrence of “p−1” in the proofs with
“p + 1”. The reason this is so simple is that Theorems A–C refer only to the
values of f at prime arguments, and not at proper prime powers.

3. It is clear that Theorem 3 does not hold for all positive integer-valued mul-
tiplicative functions, but a very general result of Ruzsa [19, Theorem (1.4)]
implies that for any such function, each of the sets θ−1(g) referred to in that
theorem has an asymptotic density.

3. Carmichael’s Function

While Carmichael’s λ-function is not multiplicative, it is nonetheless easy to com-
pute λ(m) given the prime factorization of m. For any two coprime positive in-
tegers a and b, the isomorphism (Z/abZ)× ∼= (Z/aZ)× × (Z/bZ)× yields that
λ(ab) = lcm[λ(a),λ(b)]. As a consequence,

λ(m) = lcm{λ(pk) : pk � m}; (8)

moreover, for each prime power pk,

λ(pk) =

�
pk−1(p− 1) if p is odd, or if p = 2 but k ∈ {1, 2},
pk−2 if p = 2 and k ≥ 3.

(9)

(For a proof of (9), see, e.g., [10, Chapter 4].) These facts will be used without
further comment in the sequel.

We will treat the upper and lower bounds in Theorem 2 separately. To begin,
we need a strengthening of (5) in the case a = 1, which can be found in [16] or [18]:

Lemma 4. For all integers m > 1 and all x ≥ 3,

�

p≤x
p≡1 (mod m)

1
p

=
log log x

ϕ(m)
+ O

�
log m

ϕ(m)

�
, (10)

with an O-constant uniform in both m and x.
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The next lemma is implicit in the work of Li [13, proof of Theorem 3.1]. We
include a proof for the sake of completeness.

Lemma 5. Fix H > 0. Suppose that x is large, depending on H. Then for any
integer R with log3 x

log 2 −H ≤ R ≤ log3 x
log 2 +H, there are � x values of n ≤ x satisfying

v2(λ(n)) = R. The implied constant here depends at most on H.

Proof. We will construct� x odd numbers n ≤ x of the form mp, where v2(p−1) =
R and

v2(q − 1) < R for all primes q | m. (11)

Notice that each n constructed in this way satisfies v2(λ(n)) = maxp|n v2(p−1) = R,
as desired.

Fix a prime p ≤ x1/2 satisfying v2(p − 1) = R. For each such p, we count the
number of odd m ≤ x/p satisfying (11). Put y := exp(log x/ log log x), and from all
odd m ≤ x/p, remove those with a prime factor q ≡ 1 (mod 2R) with q ≤ y. Since
y = xo(1) and x/p ≥ x1/2, the fundamental lemma of the sieve (see [7, Theorem
7.2]) guarantees that the number of m surviving this process is

� x

2p

�

q≤y
q≡1 (mod 2R)

�
1− 1

q

�
� x

p
exp



−
�

q≤y
q≡1 (mod 2R)

1
q



 .

We estimate the sum over q with (10). Since 2R � log log x, we see that
�

q≤y
q≡1 (mod 2R)

1
q

=
log log y

ϕ(2R)
+ O

�
log (2R)

2R

�
� 1,

and so the number of remaining m is � x/p. If m has not been sieved out, but m
fails (11), then m has a prime divisor q ≡ 1 (mod 2R) with q > y. But the number
of such m is

� x

p

�

y<q≤x/p
q≡1 (mod 2R)

1
q

=
x

p

�
log log (x/p)− log log y

ϕ(2R)
+ O

�
log(2R)

2R

��
� x

p

log log log x

log log x
.

So for large x, the number of odd m ≤ x/p satisfying (11) is � x/p, uniformly in
p. Summing over p, we see that the number of n constructed in this way is

� x
�

p≤x1/2

p≡1 (mod 2R)
p�≡1 (mod 2R+1)

1
p

= x

�
log log (x1/2)

ϕ(2R)
− log log (x1/2)

ϕ(2R+1)

�
+ O

�
x

log(2R)
2R

�

= x
log log x

2R
+ O

�
x

log log log x

log log x

�
� x.



INTEGERS: 11 (2011) 10

Notice that there is no overcounting here, since in the decomposition n = mp, the
prime p is the unique prime divisor of n with v2(p− 1) = R.

We can now prove half of Theorem 2.

Proof of the lower bound in Theorem 2. Applying Lemma 5 with H = 1 and R the
nearest odd integer to log3 x/ log 2 (breaking ties arbitrarily), we see that there are
� x values of n ≤ x with v2(λ(n)) odd. But then λ(n) = � + � + � by Legendre’s
criterion.

The proof of the upper bound in Theorem 2 is more difficult. The strategy we
will use was suggested to the author by Florian Luca and Carl Pomerance.

We begin by quoting a special case of [6, Theorem 4.1]. Let

E(n, x) :=
�

p≤log log x
p�λ(n)

1
p

+
�

p>log log x
p|λ(n)

1
p
. (12)

Lemma 6. For x ≥ 1, we have
�

n≤x E(n, x)� x/ log3 x.

In [6], the lemma is stated with ϕ(n) in place of λ(n), but from (8) and (9), the
numbers ϕ(n) and λ(n) always share the same set of prime factors. As an immediate
consequence of Lemma 6, the number of n ≤ x with E(n, x) > � is � �−1x/ log3 x.

Proof of the upper bound in Theorem 2. We start with a summary of our strategy:
Let R be the nearest even integer to log3 x

log 2 , and consider pairs (m,p) with v2(λ(m)) =
R and v2(p− 1) ≤ R. Assume also that p is coprime to m. Then with n := mp,

λ(n) =
p− 1

d
λ(m), where d := gcd(p− 1,λ(m)).

The number (p − 1)/d is odd, so that v2(λ(n)) = v2(λ(m)) = R. In particular,
v2(λ(n)) is even. Using again u(·) to denote the odd part, we have that

u(λ(n)) =
p− 1

d
u(λ(m)).

Thus, if we define Am ∈ {1, 3, 5, 7} so that

Am · u(λ(m)) ≡ 7 (mod 8),

and if p is such that
p− 1

d
≡ Am (mod 8), (13)

then u(λ(n)) ≡ 7 (mod 8). So by Legendre’s criterion, λ(n) is not a sum of three
squares. We now show how to construct � x such values of n ≤ x.
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Since we are seeking a lower bound, we are free to impose convenient conditions
on the pairs (m,p) which we consider. In order to ensure that p is coprime to m and
that the representation of n in the form mp is unique (so as to avoid overcounting),
we require that

x1/6 < m ≤ x1/3

and that
1
2
x/m < p ≤ x/m,

so that p > 1
2x2/3 > x1/3 ≥ m for large x. Thus, the number of n ≤ x for which

λ(n) �= � + � + � is bounded below by
�

d

�

x1/6<m≤x1/3

d|λ(m)
v2(λ(m))=R

�

1
2 x/m<p≤x/m
(p−1,λ(m))=d

v2(p−1)≤R
p−1

d ≡Am (mod 8)

1.

To simplify the situation slightly, let us sum only over d for which 2 � d. Note that
for large x, the condition v2(p − 1) ≤ R then follows automatically from the two
conditions (p− 1,λ(m)) = d and v2(λ(m)) = R; in fact, we get that v2(p− 1) = 1.
For technical reasons having to do with limitations in the range of uniformity of
the prime number theorem in arithmetic progressions, we impose further arithmetic
restrictions on m and d: We require that E(m,x), defined by (12), satisfies

E(m,x) ≤ 1

and that the number and size of the prime factors of d are constrained,

Ω(d) ≤ 2 log4 x and P (d) ≤ log log x. (14)

Reordering the sums, we are led to the following lower bound, valid for all large x:

#{n ≤ x : λ(n) �= � + � + �} ≥
�

x1/6<m≤x1/3

v2(λ(m))=R
E(m,x)≤1

�

d|λ(m), 2�d
P (d)≤log log x
Ω(d)≤2 log4 x

�

1
2 x/m<p≤x/m

p−1
d ≡Am (mod 8)
(p−1,λ(m))=d

1. (15)

Instead of requiring in the final sum of (15) that gcd(p − 1,λ(m)) = d, for the
sake of subsequent estimates it is expedient to impose a slightly weaker condition
on p, viz.

min{vq(p− 1), vq(λ(m))} = vq(d) for all q ≤ log2 x. (16)

In other words, we require only that d be the (log2 x)-smooth part of gcd(p −
1,λ(m)). This change causes us to count some additional integers, but this does
not hurt us since, as we show below, the number A(x) of additional integers satisfies

A(x)� x/ log3 x. (17)
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Indeed, suppose that p satisfies (16) but that gcd(p − 1,λ(m)) �= d. Since P (d) ≤
log2 x, it follows that there is some q > log2 x with q | gcd(p − 1,λ(m)). So the
contribution of these p to the right-hand side of (15) is bounded by

�

x1/6<m≤x1/3

�

q>log log x
q|λ(m)

�

p≤x/m
q|p−1

1�
�

x1/6<m≤x1/3

�

q>log log x
q|λ(m)

x

mq log x

� x

log x

�

x1/6<m≤x1/3

1
m

�

q>log log x
q|λ(m)

1
q
.

(Here we have applied the Brun–Titchmarsh inequality; note that mq ≤ m2 ≤ x2/3,
so that log x

mq � log x.) For x1/6 ≤ y ≤ x1/3, we have

�

m≤y

�

q>log log x
q|λ(m)

1
q
≤

�

m≤y

E(m, y)� y

log3 y
,

so that by Abel summation,

�

x1/6<m≤x1/3

1
m

�

q>log log x
q|λ(m)

1
q
� log x

log3 x
.

Collecting our estimates, we have (17). Hence, to show that the right-hand side of
(15) is � x, it is enough to show that

�

m

�

d

�

x/2m<p≤x/m
p satisfies (13), (16)

1� x. (18)

Here and below, a sum over m or d without additional subscripts indicates that the
conditions of summation are the same as in (15).

The sum over p in (18) can be estimated using standard results on the distribution
of primes in progressions. We may interpret (13) and (16) as asserting that p falls
into a certain collection of residue classes modulo M , where

M := 8d
�

2<q≤log log x
q|λ(m)/d

q.

Notice that by the prime number theorem and (14),

M ≤ 8d
�

q≤log log x

q ≤ 8(log log x)2 log4 x(log x)1+o(1) < (log x)3/2
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for large x. One checks that the number of coprime residue classes modulo M
consistent with both (13) and (16) is

ϕ(M)
8

1
ϕ(d/2)

�

q|λ(m)/d
2<q≤log log x

�
1− 1

q

�
.

Now a moderately strong form of the prime number theorem for progressions (see,
e.g., [5, Chapter 20]) gives that the sum over p in (18) is

�




1

ϕ(d)

�

q|λ(m)/d
q≤log log x

�
1− 1

q

�



x

m log x
≥ 1

ϕ(d)
x

m log x

�

q≤log log x

�
1− 1

q

�

� 1
ϕ(d)

x

m log x

1
log log log x

.

Hence the triple sum on the left-hand side of (18) is

� x

log x

�

m

1
m

�
1

log log log x

�

d

1
ϕ(d)

�
. (19)

We now turn our attention to the sum over d in (19). We start by observing that
�

d

1
ϕ(d)

≥
�

d|λ(m), 2�d
P (d)≤log log x

1
ϕ(d)

−
�

d|λ(m), 2�d
P (d)≤log log x
Ω(d)>2 log4 x

1
ϕ(d)

. (20)

The first right-hand sum in (20) is easy to estimate: Since λ(m) is even, we have

�

d|λ(m), 2�d
P (d)≤log log x

1
ϕ(d)

≥
�

d|λ(m), 2�d
P (d)≤log log x
d squarefree

1
ϕ(d)

=
1

ϕ(2)

�

2<q≤log log x
q|λ(m)

�
1 +

1
q − 1

�

� exp




�

q|λ(m)
q≤log log x

1
q



� log log log x,

where we use that
�

q|λ(m)
q≤log log x

1
q
≥

�

q≤log log x

1
q
−E(m,x) ≥ log4 x + O(1).

(Recall that E(m,x) ≤ 1.) We now show that the second sum on the right-hand
side of (20) is o(log3 x), so that the left-hand side of (20) is� log3 x. Consider first
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the contribution of those d with ω(d) > 3
2 log4 x. Using the multinomial theorem,

we see that this contribution is bounded by

�

d : P (d)≤log log x
ω(d)> 3

2 log4 x

1
ϕ(d)

≤
�

k> 3
2 log4 x

1
k!




�

q≤log2 x

�
1

ϕ(q)
+

1
ϕ(q2)

+ . . .

�


k

≤
�

k> 3
2 log4 x

1
k!

(log4 x + O(1))k < (log3 x)9/10.

(To verify the last estimate in this chain, it is helpful to keep in mind the elementary
inequality k! ≥ (k/e)k and to observe that the sum over k is dominated by its first
term.) Now consider the contribution of those d with ω(d) ≤ 3

2 log4 x. Write
d = d1d2, where d1 is the largest squarefree divisor of d. Then

Ω(d2) = Ω(d)− Ω(d1) = Ω(d)− ω(d) >
1
2

log4 x.

Put e := d2
�

q|d2
q. Then e is a squarefull divisor of d, and clearly

e ≥ 2Ω(e) ≥ 2Ω(d2) > 2
1
2 log4 x.

Moreover, e is coprime to d� := d/e, and so ϕ(d) = ϕ(e)ϕ(d�). So the contribution
from these d to the second sum on the right of (20) is

�
�

e squarefull
e>2(log4 x)/2

1
ϕ(e)

�

d�|λ(m)
P (d�)≤log2 x
d� squarefree

1
ϕ(d�)

≤
�

e squarefull
e>2(log4 x)/2

1
ϕ(e)

�

q≤log2 x

�
1 +

1
q − 1

�

� log3 x
�

e squarefull
e>2(log4 x)/2

1
ϕ(e)

.

The final sum over e is the tail of a convergent series, since

�

e squarefull

1
ϕ(e)

=
�

q

�
1 +

1
ϕ(q2)

+
1

ϕ(q3)
+ . . .

�
<∞.

So those d with ω(d) ≤ 3
2 log4 x also contribute o(log3 x), as desired.

Referring back to (19), we now have a lower bound which is

� x

log x

�

x1/6<m≤x1/3

v2(λ(m))=R
E(m,x)≤1

1
m

.



INTEGERS: 11 (2011) 15

For x1/6 ≤ y ≤ x1/3, there are � y values of m ≤ y with v2(λ(m)) = R, by Lemma
5. (We use here that log3 is very slowly varying, so that | log3 y

log 2 − R| ≤ 1.1, say,
for all such y.) Requiring E(m,x) ≤ 1 excludes only o(y) of these m. (Indeed, if
E(m,x) > 1, then E(m, y) ≥ 1/2, and there are only o(y) of these m in [1, y] by
Lemma 6.) The estimate

� 1
m � log x now follows by partial summation. Inserting

this above shows that there are � x values of n ≤ x for which λ(n) is not a sum of
three squares.
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