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Abstract

Recently, Tu and Deng proposed a combinatorial conjecture about binary strings,
and, on the assumption that the conjecture is correct, they obtained two classes of
Boolean functions which are both algebraic immunity optimal, the first of which
are also bent functions. The second class gives balanced functions, which have
optimal algebraic degree and the best nonlinearity known up to now. In this paper,
using three different approaches, we prove this conjecture is true in many cases
with different counting strategies. We also propose some problems about the weight
equations which are related to this conjecture. Because of the scattered distribution,
we predict that an exact count is difficult to obtain, in general.

1. Introduction

In [3], Tu and Deng proposed the following combinatorial conjecture.

Conjecture 1. Let St = {(a, b) | a, b ∈ Z2k−1, a+b ≡ t (mod 2k−1), w(a)+w(b) ≤
k − 1}, where 1 ≤ t ≤ 2k − 2, k ≥ 2, and w(x) is the Hamming weight of x. Then,
the cardinality #St ≤ 2k−1.

They validated the conjecture by computer for k ≤ 29. Based on this conjecture,
Tu and Deng [3] constructed some classes of Boolean functions with many optimal
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cryptographic properties. It is perhaps worth mentioning that these functions (un-
der some slight modifications) have the best collection of cryptographic properties
currently known for a Boolean function.

In this paper we attack this conjecture and prove it for many parameters, depen-
dent upon the binary weight of t. We found out that the distribution of the pairs in
St is very scattered. With our method, the counting complexity increases directly
with the weight of t, or t�, where t� = 2k−t. Our counting approach is heavily depen-
dent on the number of solutions of the equation w(2i1 +2i2 +· · ·+2is +x) = r+w(x),
where 2i1 + 2i2 + · · · + 2is = t or t�.

This paper is organized as follows. In Section 2, we introduce some notations
and basic facts about the binary weight functions which will be frequently used
in the rest of the paper. In Section 3, we prove that the conjecture is true when
w(t) = 1, 2. In Section 4 we prove the conjecture when t = 2k − t�, w(t�) ≤ 2.
In Section 5, we prove the conjecture when t = 2k − t�, 3 ≤ w(t�) ≤ 4 and t� is
odd. In Section 6, we give some open questions about the number of solutions of
w(2i1 + 2i2 + · · · + 2is + x) = r + w(x), where 0 ≤ x ≤ 2k − 1 and 0 ≤ i1 < i2 <
. . . < is ≤ k − 1.

Since our purpose is to attack the previous combinatorial conjecture, we will not
discuss the cryptographic significance of functions constructed assuming the above
conjecture. Since we first wrote the paper and posted it on ePrint, several other
works have been published [1, 2, 4] on this important class of functions. Our method
of attacking the conjecture is somewhat ad-hoc, and covers several cases, which are
not covered by the more recent paper [2]. In turn, the paper [2], also gives several
results, which are not covered by our approach.

2. Preliminaries

If x is an nonnegative integer with binary expansion x = x0 + x12 + x222 + · · ·
(xi ∈ F2 = {0, 1}), we write x = (x0x1x2....). The (Hamming) weight (sometimes
called the sum of digits) of x is w(x) =

�
i xi. The following lemma is well known

and easy to show.

Lemma 2. The following statements are true:

w(2k − 1− x) = k − w(x), 0 ≤ x ≤ 2k − 1;
w(x + 2i) ≤ w(x), if xi = 1;
w(x + y) ≤ w(x) + w(y), with equality if and only if xi + yi ≤ 1, for any i;
w(x) = w(x− 1)− i + 1, x ≡ 2i (mod 2i+1), i.e., the first nonzero digit is xi.

The last statement implies that: w(x) = w(x−1)+1 if x is odd; w(x) = w(x−1)
if x ≡ 2 (mod 4); w(x) = w(x − 1) − 1 if x ≡ 4 (mod 8), etc., and so, for two
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consecutive integers, the weight of the even integer is never greater than the weight
of the odd integer.

Lemma 3. If 0 ≤ x ≤ 2m − 1 and 0 ≤ i < j ≤ m− 1, then:

1. w(x + 2i + 2j) = 1 + w(x) if and only if

xi = 0, xj = 1, xj+1 = 0,

or, xi = 1, xi+1 = 0, xj = 0 (j > i + 1);

2. w(x + 2i + 2j) = w(x) if and only if

xi = 0, xj = 1, xj+1 = 1, xj+2 = 0 (j < m− 1);

xi = 1, xi+1 = 1, xi+2 = 0, xj = 0 (j > i + 2);

xi = 1, xi+1 = 0, xj = 1, xj+1 = 0 (j > i + 1);

or, xi = 1, xj = 1, xj+1 = 0 (j = i + 1).

Proof. The proof of the above lemma is rather straightforward, and we sketch below
the argument for the solutions of w(x + 2i + 2j) = 1 + w(x). We look at the binary
sum x + 2i + 2j , where

2i + 2j = . . . 0
i
10 . . . 0

j
10 . . .

x = . . . xi . . . xj xj+1 . . .

and we consider four cases:

Case 1: xi = 0, xj = 0; this is impossible, since then, w(x + 2i + 2j) = 2 + w(x).

Case 2: xi = 0, xj = 1; in this case, it is obvious that one needs xj+1 = 0.

Case 3: xi = 1, xj = 0; as in Case 2, we have xi+1 = 0 and j > i + 1.

Case 4: xi = 1, xj = 1; this case is impossible by the second item of Lemma 2.

The second part of the lemma can be proved similarly.

The previous result can be used to show the next lemma, whose straightforward
proof is omitted.

Lemma 4. Given a positive integer m, let

N (i,j)
r = #{x | 0 ≤ x ≤ 2m−1, w(2i +2j +x) = r+w(x)}, where 0 ≤ i < j ≤ m−1.

Then N (i,j)
2 = 2m−2, N (i,j)

r = 0 if r ≥ 3. Further, if r = 1, then

N (i,j)
1 =






2m−2 + 2m−3, i + 1 < j = m− 1
2m−2, i + 1 = j = m− 1
2m−2, i + 1 < j ≤ m− 2
2m−3, i + 1 = j ≤ m− 2.
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Finally, if r = 0, then N (i,j)
0 =






2m−3 + 2m−4, i + 2 < j = m− 1
2m−3, i + 2 = j = m− 1
2m−2, i + 1 = j = m− 1
2m−2, i + 2 < j = m− 2
2m−3 + 2m−4, i + 2 = j = m− 2
2m−2, i + 1 = j = m− 2
2m−3 + 2m−4, i + 2 < j ≤ m− 3
2m−3, i + 2 = j ≤ m− 3
2m−3 + 2m−4, i + 1 = j ≤ m− 3.

Similarly, as in the previous two lemmas, we have the next case.

Lemma 5. Let N (i,j,l)
r = #{x | 0 ≤ x ≤ 2m − 1, w(2i + 2j + 2l + x) = r + w(x)},

where 0 ≤ i < j < l ≤ m− 1. The following hold:

1. If r = 3, w(2i + 2j + 2l + x) = 3 + w(x) ⇔ xi = xj = xl = 0; Further,

N (i,j,l)
3 = 2m−3

.

2. If r = 2, w(2i + 2j + 2l + x) = 2 + w(x)⇔
xi = 0, xj = 0, xl = 1, xl+1 = 0;

or, xi = 0, xj = 1, xj+1 = 0, xl = 0 (l > j + 1);
or, xi = 1, xi+1 = 0, xj = 0, xl = 0 (j > i + 1).

Further, N (i,j,l)
2 =






2m−2, i + 2 < j + 1 < l = m− 1
2m−3 + 2m−4, i + 2 = j + 1 < l = m− 1
2m−3 + 2m−4, i + 2 < j + 1 = l = m− 1
2m−3, i + 2 = j + 1 = l = m− 1
2m−3 + 2m−4, i + 2 < j + 1 < l ≤ m− 2
2m−3, i + 2 = j + 1 < l ≤ m− 2
2m−3, i + 2 < j + 1 = l ≤ m− 2
2m−4, i + 2 = j + 1 = l ≤ m− 2.

3. If r = 1, w(2i + 2j + 2l + x) = 1 + w(x)⇔
xi = 0, xj = 0, xl = 1, xl+1 = 1, xl+2 = 0 (l ≤ m− 2);

or, xi = 0, xj = 1, xj+1 = 1, xj+2 = 0, xl = 0 (l > j + 2);
or, xi = 0, xj = 1, xl = 1, xl+1 = 0 (l = j + 1);
or, xi = 1, xi+1 = 1, xi+2 = 0, xj = 0, xl = 0 (j > i + 2);
or, xi = 1, xj = 0, xj+1 = 0, xl = 0 (j = i + 1, l > j + 1);
or, xi = 0, xj = 1, xj+1 = 0, xl = 1, xl+1 = 0 (l > j + 1);
or, xi = 1, xi+1 = 0, xj = 0, xl = 1, xl+1 = 0 (j > i + 1);
or, xi = 1, xi+1 = 0, xj = 1, xj+1 = 0, xl = 0 (l > j + 1, j > i + 1).

Further,
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N (i,j,m−1)
1 =






2m−3 + 2m−4 + 2m−5, i + 4 < j + 2 < l = m− 1
2m−3 + 2m−4, i + 4 = j + 2 < l = m− 1
2m−3 + 2m−5, i + 3 = j + 2 < l = m− 1
2m−3 + 2m−4, i + 4 < j + 2 = l = m− 1
2m−3 + 2m−5, i + 4 = j + 2 = l = m− 1
2m−3, i + 3 = j + 2 = l = m− 1
2m−3 + 2m−4 + 2m−5, i + 3 < j + 1 = l = m− 1
2m−3 + 2m−4, i + 3 = j + 1 = l = m− 1
2m−3, i + 2 = j + 1 = l = m− 1

N (i,j,m−2)
1 =






2m−3 + 2m−4 + 2m−5, i + 4 < j + 2 < l = m− 2
2m−3 + 2m−4, i + 4 = j + 2 < l = m− 2
2m−3 + 2m−4, i + 3 = j + 2 < l = m− 2
2m−3 + 2m−4, i + 4 < j + 2 = l = m− 2
2m−3 + 2m−5, i + 4 = j + 2 = l = m− 2
2m−3 + 2m−5, i + 3 = j + 2 = l = m− 2
2m−3 + 2m−4, i + 3 < j + 1 = l = m− 2
2m−3 + 2m−5, i + 3 = j + 1 = l = m− 2
2m−3, i + 2 = j + 1 = l = m− 2,

N (i,j,l)
1 =






2m−3 + 2m−4, i + 4 < j + 2 < l ≤ m− 3
2m−3 + 2m−5, i + 4 = j + 2 < l ≤ m− 3
2m−3 + 2m−5, i + 3 = j + 2 < l ≤ m− 3
2m−3 + 2m−5, i + 4 < j + 2 = l ≤ m− 3
2m−3, i + 4 = j + 2 = l ≤ m− 3
2m−3, i + 3 = j + 2 = l ≤ m− 3
2m−3 + 2m−5, i + 3 < j + 1 = l ≤ m− 3
2m−3, i + 3 = j + 1 = l ≤ m− 3
2m−4 + 2m−5, i + 2 = j + 1 = l ≤ m− 3.

Since integers b will be uniquely determined by a in St, we will count the number
of such a’s. When a ≤ t, the counting strategy is different from that of a > t.
Hence, we will partition the set of a’s into two subsets:
Group I: a = 0, 1, . . . , t, b = t− a;
Group II: a = t + v, b = 2k − 1− v, v = 1, 2, . . . , 2k − t− 2.

In the following three sections, we will find the number of a’s which satisfy
w(a) + w(b) ≤ k − 1. For ease in writing and to distinguish between the above
two groups, we let σ := w(a) + w(t − a) corresponding to Group I, and we let
Σ := w(t + v) + w(2k − 1 − v), corresponding to Group II. So, in Group II, the
number of a will be equal to the number of v. The equation Σ = k ± r or σ = k ± r
will usually be reduced to some cases of w(2i1 +2i2 + · · ·+2is +x) = r+w(x) which
have been discussed in this section (but we will consider the solutions only in Group
I or II). In both groups, sometimes we directly count the number of solutions in St.
Oftentimes, though, we get the number of solutions Σ = k+r (or σ = k+r), r ≥ 0,
then subtract it from the corresponding group cardinality.
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3. The Conjecture is True for t = 2
i
and t = 2

j
+ 2

i

Theorem 6. We have #St ≤ 2k−1
, t = 2i

, 0 ≤ i ≤ k − 1.

Proof. In Group II, 1 ≤ v ≤ 2k − 2i − 2. So,

Σ = w(2i + v) + k − w(v) ≤ 1 + k.

Then
Σ = k + 1⇔ w(2i + v) = 1 + w(v)⇔ vi = 0.

There are 2k−1 v, 0 ≤ v ≤ 2k − 1, with vi = 0. When v > 2k − 2i − 1 then vi �= 0.
Moreover, v = 2k−2i−1 and v = 0 are two solutions of the above equation. Hence,
there are 2k−1− 2 v (or a) in Group II such that Σ = 1 + k. So, if i = k− 1, Group
II makes no contributions to St (since all the 2k−1− 2 v’s (or a’s) make Σ = 1+ k).
When i ≤ k − 2,

Σ = k ⇔ w(2i + v) = w(v)⇔ vi = 1, vi+1 = 0.

There are 2k−2 v, 0 ≤ v ≤ 2k−1, such that Σ = k. When v ≥ 2k−2i−1, vi+1 = 1,
and 0 is not a solution of the above equation. Therefore, all v’s such that vi = 1
and vi+1 = 0 must be between 1 and 2k − 2i − 2. Hence, there are 2k−2 a’s such
that Σ = k.

In summary, there are exactly 2k − 2i − 2− (2k−1 − 2)− 2k−2 = 2k−2 − 2i a’s in
St belonging to Group II when i ≤ k − 2.

In Group I, 0 ≤ a ≤ t. Let

σ = w(a) + w(2i − 1− (a− 1)) = w(a) + i− w(a− 1)
�

= i + 1 if a ≡ 1 (mod 2)
≤ i if a ≡ 0 (mod 2),

which gives σ ≤ i + 1 ≤ k − 1 when i ≤ k − 2. So when i ≤ k − 2, All a’s in Group
I belong to St. But Group I contributes only 1 + t

2 = 1 + 2k−2 to St if i = k − 1.
Combining these two groups, we get St = 1 + 2k−2 ≤ 2k−1, always.

When the weight of t is increased by 1, the counting complexity increases signif-
icantly.

Theorem 7. We have #St ≤ 2k−1
when t = 2i + 2j

, 0 ≤ i < j ≤ k − 1, k ≥ 4.

Proof. We consider three cases:
Case A: j ≤ k − 3.

In Group II (1 ≤ v ≤ 2k − 2j − 2i − 2), let

Σ = w(2i + 2j + v) + w(2k − 1− v) = w(2i + 2j + v) + k − w(v) ≤ 2 + k.
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Further,
Σ = 2 + k ⇔ w(2i + 2j + v) = 2 + w(v)⇔ vi = vj = 0.

Then, v = 0 and v = 2k − 2j − 2i − 1 are two solutions. When v > 2k − 2j − 2i − 1,
then vi = 1 or vj = 1. Hence, we get 2k−2 − 2 v (or a) such that Σ = 2 + k. (Note:
This result will be reused in Case C). Next,

Σ = 1 + k if and only if w(2i + 2j + v) = 1 + w(v),

if and only if
�

vi = 0 vj = 1 vj+1 = 0
or, vi = 1 vi+1 = 0 vj = 0 (j > i + 1)

by Lemma 4. Certainly, v = 0 is not a solution. If v ≥ 2k − 2j − 2i− 1, then v does
not satisfy any of the above conditions. In other words, all solutions are between 1

and 2k − 2j − 2i − 2. Hence, there are exactly
�

2k−2, j > i + 1
2k−3, j = i + 1 a’s such that

Σ = k + 1.
Further, Σ = k if and only if w(2i + 2j + v) = w(v). It is easy to check that

v = 0 is not a solution and any v ≥ 2k − 2j − 2i − 1 does not satisfy any condition
of Lemma 4 when r = 0. Hence, there are exactly N (i,j)

0 v such that Σ = k, where

N (i,j)
0 ≥

�
2k−3 j > i + 1
2k−3 + 2k−4 j = i + 1.

It follows that there are at most�
2k − 2j − 2i − 2− (2k−2 − 2)− 2k−2 − 2k−3, j > i + 1
2k − 2j − 2i − 2− (2k−2 − 2)− 2k−3 − (2k−3 + 2k−4), j = i + 1

=
�

2k−1 − 2j − 2i − 2k−3, j > i + 1
2k−1 − 2j − 2i − 2k−4, j = i + 1 a’s such that Σ ≤ k − 1 in Group II.

In Group I there are only t + 1 = 2j + 2i + 1 a’s. Thus,

#St ≤
�

2k−1 − 2k−3 + 1, j > i + 1
2k−1 − 2k−4 + 1, j = i + 1,

and so, #St ≤ 2k−1, and case A is shown.
Case B: j = k − 2.

In Group II, 1 ≤ v ≤ 2k − 2k−2 − 2i − 2. Let

Σ := w(2k−2 + 2i + v) + k − w(v) ≤ 2 + k.

First, if Σ = 2+k, then, as in Case A, we get exactly 2k−2−2 a’s such that Σ = 2+k.

Secondly, if Σ = 1 + k, as in Case A, we get exactly
�

2k−2 k − 2 > i + 1
2k−3 k − 2 = i + 1 a’s

such that Σ = 1 + k.
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If Σ = k, that is, w(2k−2 + 2i + v) = w(v), from Lemma 4 (m = k, r = 0), then
the number of solutions with 0 ≤ v ≤ 2k − 1 is






2k−2, i + 2 < j = k − 2
2k−3 + 2k−4, i + 2 = j = k − 2
2k−2, i + 1 = j = k − 2.

The integers v satisfying the first condition in Lemma 4 are greater than 2k−2k−2−
2i − 1. This means that there are 2k−3 many v (note that always vj+2 = vk = 0)
that should be excluded from the solutions of Σ = k. Hence, we get






2k−3, i + 2 < k − 2
2k−4, i + 2 = k − 2
2k−3, i + 1 = k − 2

a’s such that Σ = k.
In summary, the number of a’s with Σ ≥ k is






2k−2 − 2 + 2k−2 + 2k−3, i + 2 < k − 2
2k−2 − 2 + 2k−2 + 2k−4, i + 2 = k − 2
2k−2 − 2 + 2k−3 + 2k−3, i + 1 = k − 2

=






2k−1 − 2 + 2k−3, i + 2 < k − 2
2k−1 − 2 + 2k−4, i + 2 = k − 2
2k−1 − 2, i + 1 = k − 2.

So, the number of a’s in Group II with Σ ≤ k − 1 is





2k − 2j − 2i − 2− (2k−1 − 2 + 2k−3) = 2k−1 − 2j − 2i − 2k−3, i + 2 < k − 2
2k − 2j − 2i − 2− (2k−1 − 2 + 2k−4) = 2k−1 − 2j − 2i − 2k−4, i + 2 = k − 2
2k − 2j − 2i − 2− (2k−1 − 2) = 2k−1 − 2j − 2i, i + 1 = k − 2.

In Group I, there are only t + 1 = 2j + 2i + 1 a’s. When i + 1 = k − 2, and
a = 2k−3 + 1, we get w(a) + w(t − a) = k. Hence, combining all the a’s in the
Groups I and II, we get #St ≤ 2k−1, and Case B is shown.
Case C: j = k − 1.

In Group II, 1 ≤ v ≤ 2k−1− 2i− 2. Let Σ = w(2k−1 +2i + v)+k−w(v) ≤ 2+k.
If Σ = 2 + k, as in Case A, Group II, there are exactly 2k−2 − 2 a’s such that

Σ = 2 + k.
Next, Σ = 1 + k ⇔ w(2k−1 + 2i + v) = 1 + w(v). By Lemma 4, we must have

k − 1 > i + 1 (since vj = vk−1 = 1 is impossible due to v ≤ 2k − 2j − 2i − 2 < 2j)
and vi = 1, vi+1 = 0, vk−1 = 0 (if k− 1 > i + 1). Certainly, v = 0 is not a solution.
If v ≥ 2k − 2k−1 − 2i − 1 = (2k−1 − 1)− 2i, then v does not satisfy vi = 1,vi+1 = 0,
vk−1 = 0. So, there are exactly 2k−3 a’s such that Σ = 1 + k (only if k− 1 > i + 1).

Further, Σ = k ⇔ w(2k−1 +2i + v) = w(v), 1 ≤ v ≤ 2k−1− 2i− 2. By Lemma 4,
we infer that vi = 1, vi+1 = 1, vi+2 = 0, vk−1 = 0 (k− 1 > i+2). v ≥ 2k−1− 2i− 1
is impossible. So, there are exactly 2k−4 a’s such that Σ = k (only if k− 1 > i+2).
So, the number of a’s with Σ ≥ k is






2k−2 − 2 + 2k−3 + 2k−4, i + 2 < k − 1
2k−2 − 2 + 2k−3, i + 2 = k − 1
2k−2 − 2, i + 1 = k − 1.
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In Group II, the number of a’s that makes Σ ≤ k − 1 is





2k−1 − 2i − 2− (2k−2 − 2 + 2k−3 + 2k−4) = 2k−4 − 2i, i + 2 < k − 1
2k−1 − 2i − 2− (2k−2 − 2 + 2k−3) = 0, i + 2 = k − 1
2k−1 − 2i − 2− (2k−2 − 2) = 0, i + 1 = k − 1.

We now look at solutions from Group I. If i = 0 (call it, Case C1), then σ =
w(a) + w(2k−1 + 1− a) = w(a) + k − 1−w(a− 2) = k when a ≡ 2, 3 (mod 4). So,
there are at most 2k−2 + 2 a’s between 0 and t = 2k−1 + 1 such that σ ≤ k − 1.
Combining with the results in Group II, we get #St ≤ 2k−2 + 2 + 2k−4 − 20 =
2k−2 + 2k−4 + 1 ≤ 2k−1.

Now, we assume i ≥ 1. If i ≥ 1, j = k − 1 ≥ i + 2 (Case C2), then σ =
w(a) + w(2k−1 + 2i − a). When 0 ≤ a ≤ 2i, σ = w(a) + 1 + w(2i − a) = w(a) +
1 + i − w(a − 1) ≤ i + 2 ≤ k − 1. So, this contributes 2i + 1 a’s to St. When
2i + 1 ≤ a ≤ 2k−1 + 2i, then (let x = a− 2i − 1, 0 ≤ x ≤ 2k−1 − 1)

σ = w(a) + w(2k−1 − 1− (a− 2i − 1))
= w(a) + k − 1− w(a− 2i − 1)
= w(x + 2i + 1) + k − 1− w(x) ≤ 1 + k.

First, if σ = k + 1⇔ w(x + 2i + 1) = 2 + w(x), there are exactly 2k−1−2 = 2k−3

x’s (or a’s).
If σ = k ⇔ w(x + 2i + 1) = 1 + w(x), by Lemma 4 (m = k − 1), then

�
x0 = 0, xi = 1, xi+1 = 0
x0 = 1, x1 = 0, xi = 0 (i > 1).

The number of solutions x (or a) is
�

2k−3, 1 < i ≤ k − 3
2k−4, 1 = i ≤ k − 3 . Hence, the number

of a’s with σ ≤ k − 1 is

2k−1 − 2k−3 −
�

2k−3 1 < i ≤ k − 3
2k−4 1 = i ≤ k − 3 =

�
2k−2, 1 < i ≤ k − 3
2k−2 + 2k−4, 1 = i ≤ k − 3.

Putting all this together, in Group I, the number of a’s in St is
�

2k−2 + 2i + 1, 1 < i ≤ k − 3
2k−2 + 2k−4 + 2i + 1, 1 = i ≤ k − 3

≤
�

2k−2 + 2k−3 + 1, 1 < i ≤ k − 3
2k−2 + 2k−3 + 2k−4 + 1, 1 = i ≤ k − 3.

Combining these estimates with the ones from Group II, we get (in any case) #St ≤
2k−1.

Finally, we assume that j = k− 1 = i + 1, that is, j = k− 1 and i = k− 2 (Case
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C3). When 0 ≤ a ≤ 2k−2, then

σ = w(a) + w(2k−1 + 2k−2 − a)
= w(a) + 1 + w(2k−2 − a)
= w(a) + 1 + k − 2− w(a− 1)

=
�

k a ≡ 1 (mod 2)
≤ k − 1 a ≡ 0 (mod 2),

which contributes 1 + 2k−3 a’s to St.
When 2k−2 +1 ≤ a ≤ 2k−1 +2k−2, then (let x = a− 2k−2− 1, 0 ≤ x ≤ 2k−1− 1)

σ = w(a) + k − 1− w(a− 2k−2 − 1)
= w(x + 2k−2 + 1) + k − 1− w(x) ≤ 1 + k.

First, as before, when σ = k + 1, there are 2k−1−2 = 2k−3 x (or a).
Next, σ = k, that is, w(x+2k−2 +1) = 1+w(x), and as in Lemma 4 (m = k−1),

we have x0 = 0, xk−2 = 1; or, x0 = 1, x1 = 0, xk−2 = 0. Hence, the number of
solutions is 2k−3 + 2k−4, if 1 < i = k − 2. Therefore, the number of a’s in St is
2k−1 − 2k−3 − (2k−3 + 2k−4) = 2k−3 + 2k−4, 1 < i = k − 2. Group I contributes
1 + 2k−3 + 2k−3 + 2k−4 = 2k−2 + 2k−4 + 1 solutions to St.

Combining these estimates with the ones from Group II, we have

#St ≤ 2k−2 + 2k−4 + 1 + 2k−4 − 2i < 2k−1,

and this completes the proof of this theorem.

4. The Conjecture is True for t = 2
k − 2

i
and t = 2

k − 2
j − 2

i

When t = 2k − 2i, i must be at least 1.

Theorem 8. We have #St ≤ 2k−1
, t = 2k − 2i

, 1 ≤ i ≤ k − 1.

Proof. In Group II, 1 ≤ v ≤ 2i − 2.

Σ = w(2k − 2i + v) + k − w(v)
= 2k − w(2i − v − 1)− w(v) = 2k − i

≥ k + 1,

so, Group II makes no contributions to St.
We now look at Group I. If a is odd, then

σ = w(a) + w(2k − 2i − a) = w(a) + k − w(2i + a− 1)
≥ w(a) + k − (1 + w(a− 1)) = k.

Hence, there are at most 1
2 t+1 = 2k−1−2i−1+1 ≤ 2k−1 a’s with w(a)+w(b) ≤ k−1,

and so, #St ≤ 2k−1. The proof is done.
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Theorem 9. We have #St ≤ 2k−1
, t = 2k − 2j − 2i

, 0 ≤ i < j ≤ k − 1.

Proof. In Group II, 1 ≤ v ≤ 2j + 2i − 2.

Σ = w(2k − 2j − 2i + v) + k − w(v)
= 2k − w(2j + 2i − v − 1)− w(v).

If 1 ≤ v ≤ 2i − 1, then Σ = 2k − 1− w(2i − 1− v)− w(v) = 2k − 1− i ≥ k + 1. If
2i ≤ v ≤ 2j + 2i − 2, then Σ = 2k − w(2j − 1− (v − 2i))− w(v) = 2k − j + w(v −
2i)−w(v) ≥ 2k− j + w(v− 2i)− (w(v− 2i) + 1) = 2k− j − 1 ≥ k. Thus, Group II
has no contributions to St.

We now look at Group I, and consider several cases.
Case A: i = 0.

σ = w(a) + w(2k − 1− (a + 2j)) = w(a) + k − w(a + 2j) ≥ k − 1.

Next, if σ = k − 1 ⇔ w(a + 2j) = 1 + w(a), then there are at most 2k−1 such a’s.
Hence, #St ≤ 2k−1.
Case B: i = 1. So, t = 2k − 2j − 2 = 2k − 1− 2j − 1. Thus,

σ = w(a) + w(2k − 1− 2j − 1− a) = w(a) + k − w(2j + 1 + a) ≥ k − 2.

If σ = k − 2⇔ w(1 + 2j + a) = 2 + w(a), there are at most 2k−2 such a’s.
If σ = k − 1 ⇔ w(1 + 2j + a) = 1 + w(a), there are at most 2k−2 such a’s by

Lemma 4. Consequently, #St ≤ 2k−1.
Case C: i > 1 and j ≤ k − 2. Then

σ = w(a) + w(2k − 2j − 2i − a)
= w(a) + k − w(2j + 2i + a− 1)
≥ w(a) + k − 2− w(a− 1).

If a ≡ 1 (mod 2), then σ ≥ k − 1.
Next, σ = k − 1⇔ w(2j + 2i + a− 1) = 2 + w(a− 1)⇔ (a− 1)i = (a− 1)j = 0.

Since (a− 1)0 = 0, there are at most 2k−3 a’s that belong to St.
If a ≡ 2 (mod 4), then σ ≥ w(a) + k − 2− w(a− 1) = k − 2.
Next, σ = k − 2 ⇔ w(2j + 2i + a − 1) = 2 + w(a − 1), which is equivalent to

(a− 1)0 = 1, (a− 1)1 = 0, (a− 1)i = 0, (a− 1)j = 0. Thus, there are at most 2k−4

such a’s for a contribution to St.
Further, σ = k− 1⇔ w(2j + 2i + a− 1) = 1 + w(a− 1), and by Lemma 4, there

are at most 2k−4 such a’s (m = k, x = a− 1, (a− 1)0 = 1, (a− 1)1 = 0).
Consequently, there are at most 2k−2 a’s such that a ≡ 0 (mod 4), even if all of

them belong to St, and so, we obtain #St ≤ 2k−3 + 2k−4 + 2k−4 + 2k−2 = 2k−1.
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Case D: i > 1 and j = k − 1, and so, t = 2k−1 − 2i. Then

σ = w(a) + w(2k−1 − 2i − a)
= w(a) + k − 1− w(2i + a− 1)
≥ w(a) + k − 2− w(a− 1).

When a ≡ 1 (mod 2), σ ≥ k − 1, and σ = k − 1⇔ w(2i + a− 1) = 1 + w(a− 1)⇔
(a − 1)0 = (a − 1)i = 0. Therefore, there are at most 2k−1−2 = 2k−3 solutions to
contribute to St.

When a ≡ 2 (mod 4), σ ≥ k − 2, and
σ = k−2⇔ w(2i+a−1) = 1+w(a−1)⇔ (a−1)0 = 1, (a−1)1 = 0, (a−1)i = 1.

Therefore, there are at most 2k−1−3 = 2k−4 solutions.
Further, σ = k − 1 ⇔ w(2i + a − 1) = w(a − 1) ⇔ (a − 1)0 = 0, (a − 1)1 = 1,

(a−1)i = 1, (a−1)i+1 = 0. There are at most 2k−1−4 = 2k−5 solutions to contribute
to St.

Finally, there are at most 2k−2 a ≡ 0 (mod 4), even if all of them belong to St,
we still obtain #St ≤ 2k−3 + 2k−4 + 2k−5 + 2k−2 < 2k−1.

5. The Conjecture is True for t = 2
k−2

j−2
i−1 and t = 2

k−2
l−2

j−2
i−1

Since the proofs require many counting arguments we split our result into two
theorems.

Theorem 10. We have #St ≤ 2k−1
, if t = 2k − 2j − 2i − 1, 1 ≤ i < j ≤ k − 1.

Proof. As before, for Group II, when 1 ≤ v ≤ 2i, then

Σ = w(t + v) + k − w(v) = 2k − w(2j + 2i − v)− w(v)
= 2k − (1 + w(2i − v))− w(v)
= 2k − 1− (i− w(v − 1))− w(v)
= 2k − i− 1 + w(v − 1)− w(v)
≥ 2k − i− 1− 1 ≥ k.

When 2i + 1 ≤ v ≤ 2j + 2i − 1, then (with x = v − 2i − 1, 0 ≤ x ≤ 2j − 2)

Σ = 2k − w(2j + 2i − v)− w(v)
= 2k − w(2j − 1− (v − 2i − 1))− w(v)
= 2k − j + w(x)− w(x + 2i + 1)
≥ 2k − j − 2.

If j ≤ k − 2, then Σ ≥ k.
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If j = k − 1, then Σ ≥ k − 1, Σ = k − 1 if and only if w(x + 2i + 1) = 2 + w(x).
Thus, there are at most 2j−2 = 2k−3 many such x (v or a) contributing to St.

In Group I, 0 ≤ a ≤ 2k − 2j − 2i − 1, and

σ = w(a) + w(2k − 2j − 2i − 1− a) = w(a) + k − w(2j + 2i + a) ≥ k − 2.

Case A: j ≤ k− 2. Then σ = k− 2 if and only if w(2j + 2i + a) = 2 + w(a), and so,
there are at most 2k−2 a’s.

Next, σ = k − 1 if and only if w(2j + 2i + a) = 1 + w(a), and by Lemma 4, the
number of such a’s is at most 2k−2 and hence, #St ≤ 0 + ak−2 + 2k−2 = 2k−1.
Case B: j = k − 1. Then σ = k − 2, and there are at most 2k−2 such a’s.

Next, σ = k − 1 ⇔ w(2j + 2i + a) = 1 + w(a) ⇔ (as in Lemma 4) ai = 0,
aj = ak−1 = 1, aj+1 = 0 or ai = 1, ai+1 = 0, aj = 0, (j > i + 1). But j = k − 1,
t < 2k−1, hence aj = 0. It means that the first condition cannot be satisfied. So,
there are at most 2k−3 such a’s. Combining this estimate with the one from Group
II, we have #St ≤ 2k−3 + 2k−2 + 2k−3 = 2k−1, and the proof is done.

Theorem 11. We have #St ≤ 2k−1
, t = 2k−2l−2j−2i−1, 1 ≤ i < j < l ≤ k−1.

Proof. We consider several cases.
Case A: l ≤ k − 3 (k ≥ l + 3 ≥ j + 4 ≥ i + 5).
In Group II, 1 ≤ v ≤ 2l + 2j + 2i − 1, and

Σ = w(t + v) + w(2k − 1− v)
= w(2k − 1− (2l + 2j + 2i) + v) + k − w(v)
= 2k − w(2l + 2j + 2i − v)− w(v).

If 1 ≤ v ≤ 2i, then

Σ = 2k − (2 + w(2i − v))− w(v)
= 2k − 2− w((2i − 1)− (v − 1))− w(v)
= 2k − 2− i + w(v − 1)− w(v)
≥ 2k − 2− i− 1 ≥ k + 2.

If 2i + 1 ≤ v ≤ 2j , then

Σ = 2k − (1 + w(2j + 2i − v))− w(v)
= 2k − 1− w(2j − 1− (v − 2i − 1))− w(v)
= 2k − 1− j + w(v − 2i − 1)− w(v)
≥ 2k − 1− j − 2 ≥ k + 1.
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If 2j + 1 ≤ v ≤ 2j + 2i, then

Σ = 2k − (1 + w(2j + 2i − v))− w(v)
= 2k − 1− w(2i − 1− (v − 2j − 1))− w(v)
= 2k − 1− i + w(v − 2j − 1)− w(v)
≥ 2k − 1− i− 2 ≥ k + 2.

If 2j + 2i + 1 ≤ v ≤ 2l + 2j + 2i − 1, then

Σ = 2k − w(2l − 1− (v − 2j − 2i − 1))− w(v)
= 2k − l + w(v − 2j − 2i − 1)− w(v)
≥ 2k − l − 3 ≥ k.

Hence, Group II has no contributions to St.
In Group I, σ = w(a) + k − w(2l + 2j + 2i + a) ≥ k − 3.
First, if σ = k− 3⇔ w(2l + 2j + 2i + a) = 3 + w(a), there are at most 2k−3 such

a’s.
Next, if σ = k−2⇔ w(2l +2j +2i +a) = 2+w(a), there are at most 2k−3 +2k−4

such a’s by Lemma 5 (note that m = k and l ≤ k − 3, r = 2).
Finally, if σ = k−1⇔ w(2l+2j +2i+a) = 1+w(a), there are at most 2k−3+2k−4

such a’s by Lemma 5 (r = 1, l ≤ k − 3).
In summary, #St ≤ 2k−3 + 2k−3 + 2k−4 + 2k−3 + 2k−4 = 2k−1.

Case B: l = k − 2 (k = l + 2 ≥ j + 3 ≥ i + 4).
In Group II, by the proof of Case A, there are some a’s which will contribute to St

only if 2j + 2i + 1 ≤ v ≤ 2l + 2j + 2i − 1. Then

Σ = 2k − w(2l − 1− (v − 2j − 2i − 1))− w(v)
= 2k − l + w(v − 2j − 2i − 1)− w(v)
= 2k − l + w(x)− w(x + 2j + 2i + 1)
≥ 2k − l − 3 = k − 1,

where x = v−2j−2i−1, 0 ≤ x ≤ 2l−2. If Σ = k−1⇔ w(2l+2j+2i+x) = 3+w(x),
there are at most 2l−3 = 2k−5 such a’s.

In Group I, σ = w(a) + k − w(2l + 2j + 2i + a) ≥ k − 3.
If σ = k − 3, there are at most 2k−3 such a’s.
If σ = k − 2, there are at most 2k−3 + 2k−4 such a’s.
If σ = k − 1⇔ w(2l + 2j + 2l + a) = 1 + w(a), by Lemma 5, with r = 1, m = k,

l = k − 2, we get xi = 0, xj = 0, xl = 1, xl+1 = 1, xl+2 = 0 ⇔ xi = 0, xj = 0
xk−2 = 1, xk−1 = 1⇒ x ≥ 2k−1 +2k−2 > t, so, the number of solutions of σ = k−1
should not include this 2k−4 many. That is, there are at most 2k−3 + 2k−5 a’s such
that σ = k − 1 by Lemma 5.
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Combining Groups I and II, we get #St ≤ 2k−5 + 2k−3 + 2k−3 + 2k−4 + 2k−3 +
2k−5 = 2k−1.
Case C: l = k − 1 (k = l + 1 ≥ j + 2 ≥ i + 3).
In Group II, by the proof of Case A, there are some a’s which will make contributions
to St, only if 2i +1 ≤ v ≤ 2j or 2j +2i +1 ≤ v ≤ 2l +2j +2i−1. If 2i +1 ≤ v ≤ 2j ,

Σ = 2k − 1− j + w(v − 2i − 1)− w(v) ≥ 2k − 1− j − 2 ≥ k − 1.

First, Σ = k−1 implies that w(v−2i−1)−2 = w(v) and j = k−2. Let x = v−2i−1,
0 ≤ x ≤ 2j − 2i − 1. Then w(x + 2i + 1) = 2 + w(x) has at most 2j−2 = 2k−4

solutions, so Σ = k − 1 has at most 2k−4 solutions if j = k − 2.
If 2j + 2i + 1 ≤ v ≤ 2l + 2j + 2i − 1, then

Σ = 2k − l + w(v − 2j − 2i − 1)− w(v) ≥ k + 1− 3 = k − 2.

Let x = v − 2j − 2i − 1, 0 ≤ x ≤ 2l − 2 = 2k−1 − 2. If Σ = k − 2 we get exactly
2k−1−3 = 2k−4 solutions. If Σ = k − 1 then w(x + 2j + 2i + 1) = w(x) + 2, by
Lemma 5 (m = k−1), we get exactly N (0,i,j)

2 solutions since 2l−1 is not a solution.
Recall that

N (0,i,j)
2 =






2k−3, 2 < i + 1 < j = k − 2
2k−4 + 2k−5, 2 = i + 1 < j = k − 2
2k−4 + 2k−5, 2 < i + 1 = j = k − 2
2k−4, 2 = i + 1 = j = k − 2
2k−4 + 2k−5, 2 < i + 1 < j ≤ k − 3
2k−4, 2 = i + 1 < j ≤ k − 3
2k−4, 2 < i + 1 = j ≤ k − 3
2k−5, 2 = i + 1 = j ≤ k − 3.

In Group I,
σ = w(a) + k − w(2l + 2j + 2i + a) ≥ k − 3.

If σ = k − 3, there are at most (in fact, exactly) 2k−3 solutions.
If σ = k − 2, then w(2l + 2j + 2i + a) = w(a) + 2, and the first condition of

Lemma 5 is satisfied (r = 2), and we get ai = 0, aj = 0, al = 1, al+1 = 0 ⇔ ai = 0,
aj = 0, ak−1 = 1 ⇒ a ≥ 2k−1 > t. That means 2k−3 a’s should not be counted. So,
the number of solutions of σ = k − 2 is at most






2k−3, i + 2 < j + 1 < l = k − 1
2k−4, i + 2 = j + 1 < l = k − 1
2k−4, i + 2 < j + 1 = l = k − 1
0, i + 2 = j + 1 = l = k − 1.

If σ = k − 1, then w(2l + 2j + 2i + a) = w(a) + 1. By Lemma 5 (r = 1), we obtain
ai = 0, aj = 1, al = 1, al+1 = 0 (l = j + 1) ⇔ ai = 0, aj = 1, ak−1 = 1 ⇒
a > 2k−1 > t, so, there are 2k−3 a’s which should not be counted for l = j + 1.
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The sixth condition of Lemma 5 implies ai = 0, aj = 1, aj+1 = 0, ak−1 = 1
(l > j + 1) ⇒ a > t. There are 2k−4 a’s which should not be counted for l > j + 1.

The seventh condition of Lemma 5 implies ai = 1, ai+1 = 0, aj = 0, ak−1 = 1
(j > i + 1) ⇒ a > t. There are 2k−4 a’s which should not be counted for j > i + 1.
In summary, we get the number of solutions of σ = k − 1 is at most






2k−4 + 2k−5, i + 4 < j + 2 < l = k − 1
2k−4, i + 4 = j + 2 < l = k − 1
2k−4 + 2k−5, i + 3 = j + 2 < l = k − 1
2k−4, i + 4 < j + 2 = l = k − 1
2k−5, i + 4 = j + 2 = l = k − 1
2k−4, i + 3 = j + 2 = l = k − 1
2k−5, i + 3 < j + 1 = l = k − 1
0, i + 3 = j + 1 = l = k − 1
0, i + 2 = j + 1 = l = k − 1.

If j �= k − 2,that is, j ≤ k − 3, then

#St ≤ 2k−4 + 2k−4 + 2k−5 + 2k−3 + 2k−3 + 2k−4 + 2k−5 = 2k−1.

If j = k − 2, then

#St ≤ 2k−4 +2k−4 +2k−3 +2k−3 +2k−4 +2k−5 = 2k−2 +2k−3 +2k−4 +2k−5 < 2k−1.

This completes the proof of our theorem.

6. Further Remarks

We observe from our analysis that the counting heavily depends on the following
quantity

N (i1,i2,...,is)
r = #{x | 0 ≤ x ≤ 2k − 1, w(2i1 + 2i2 + · · · + 2is + x) = r + w(x)},

where 0 ≤ i1 < i2 < . . . < is ≤ k − 1. Obviously, we have N (i1,i2,...,is)
r = 0 if r > s.

We also have N (i1,i2,...,is)
r = 0 if r ≤ −k. A general formula may be hard to obtain,

but it could be interesting if a good upper and lower bound can be determined for
given s and r.
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