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Abstract
A method is given for constructing congruent numbers with three prime factors of
the form 8k +3. A family of such numbers is given for which the Mordell-Weil rank
of their associated elliptic curves equals 2, the maximal rank and expected rank for
a congruent number curve of this type.

1. Introduction

A positive integer n is a congruent number if it is equal to the area of a right triangle
with rational sides. Equivalently, the rank of the elliptic curve

y
2 = x(x2 − n

2) (1)

is positive. Otherwise n is non-congruent. We use the notation pi, qi, ri, . . . to
denote prime numbers of the form 8k + i. In certain cases, congruent numbers
or non-congruent numbers are characterized in terms of their prime factors. For
example, Monsky [5] showed that p5 and p7 are congruent numbers, while Gennochi
[3] and Tunnell [8] showed that p3 and p3q3 are non-congruent. Kida [4] noticed
that 1419 = 3 · 11 · 43 is the only congruent number less that 4500 of the form
p3q3r3 and that quite often a 2-descent shows that a number of the form p3q3r3 is



INTEGERS 11 (2011) 2

non-congruent. Other congruent numbers p3q3r3 less than 10, 000 include 4587 =
3·11·139, 4731 = 3·19·83, 6963 = 3·11·211, 7611 = 3·43·59 and 9339 = 3·11·283. Our
main purpose in this paper is to give a family of congruent numbers n = p3q3r3 for
which we can prove that the Mordell-Weil rank of (1) is equal to 2, the maximal rank
for a congruent number curve of this type. It is also the expected rank according
to parity conjectures on the rank as described by Dujella, Janfada and Salami in
the introduction of [2]. This family is obtained by specialization of a larger family
which we use to generate congruent numbers p3q3r3. Both of these families are
conjecturally infinite. We prove the following theorem.

Theorem 1. Suppose that the prime numbers q and r have the form

q = 3u4 + 3v4 − 2u2
v
2
,

r = 3u4 + 3v4 + 2u2
v
2
,

for nonzero integers u and v. Set n = 3qr. Then q ≡ r ≡ 3(mod 8), n is a congruent

number and the congruent number elliptic curve given by (1) has rank equal to 2.

In Section 2, we give our method of construction for congruent numbers p3q3r3,

and give the background material necessary for the proof of our theorem. In Section
3, we discuss the generation of p3q3r3 congruent numbers and give the proof of our
theorem.

2. Preliminary Results

Since the definition of a congruent integer can be immediately extended to rational
numbers we can give the following lemma.

Lemma 2. Let v be a rational number with v /∈ (−∞− 1] ∪ [0, 1]. Then

v(v − 1)(v + 1) (2)

is a congruent number.

Proof. The restriction on v ensures that it is positive. If v is an integer, the con-
gruent number v(v − 1)(v + 1) is a special case of a formula in [1]. It is sufficient
to note that if n = v(v− 1)(v + 1) is a rational number then the congruent number
curve (1) has the non-torsion point

(x, y) =
�

(1 + v
2)2

4
,
(v2 + 1)(v2 + 2v − 1)(v2 − 2v − 1)

8

�
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Lemma 3. Suppose that the prime numbers p3, q3, and r3 satisfy

q3 = p3a
2 − 16b2

,

r3 = p3a
2 + 16b2

,

for integers a and b. Then n = p3q3r3 is a congruent number.

Proof. Put v = p3a
2
/16b2 in (2) to give the congruent number

p3a
2
/16b2(p3a

2
/16b2 − 1)(p3a

2
/16b2 + 1). (3)

This number is positive if we impose the restrictions stated in Lemma 1. Since
congruent numbers scaled by squares are still congruent, we multiply by 212

b
6
/a

2

to obtain the stated congruent number p3q3r3.

Lemma 4. If

n = 3(3 + 3z4 − 2z2)(3 + 3z4 + 2z2) (4)

for a rational number z �= 0,±1 then the rank of the congruent number curve (1) is

at least 2 with at most finitely many exceptions.

Proof. This formula for n is obtained from the congruent number formula in Lemma
1 where we set

v =
3z4 − 2z2 + 3

4z2
,

noting that z �= 0,±1 implies that v > 1. Then we scale to remove squares. For this
value of n, the congruent number curve (1) over Q(z) possesses the two points

(x1, y1) =
�
−9(3 + 3z4 − 2z2

�
(z2 − 1)2, 36(3 + 3z4 − 2z2)2z(z2 − 1)) (5)

and
(x2, y2) =

�
3(3 + 3z4 + 2z2)2(3 + 3z4 − 2z2)

4z2
,

9(3 + 3z4 − 2z2)2(3 + 3z4 + 2z2)2(z2 + 1)
8z3

�
(6)

If z = 2, then our formula (4) yields the congruent number n = 7611 = 3 · 43 · 59
while (5) and (6) give two points on y

2 = x(x2 − 76112), namely

(x1, y1) = (−3483, 399384)

and
(x2, y2) =

�
449049

16
,
289636605

64

�
.

Magma confirms that these two non-torsion points are independent in the group of
rational points on y

2 = x(x2 − 76112). By Silverman’s specialization theorem [7],
the points (5) and (6) are independent over Q (z) and are therefore independent for
all rational values of z with at most finitely many exceptions.
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Remark 5. Under the further restriction that 3 + 3z4 − 2z2 = p3c
2 and 3 + 3z4 +

2z2 = q3d
2 for distinct primes p3 and q3 different from 3, and rational numbers,

z, c,and d, then a longer argument using a 2-descent would show that the points (5)
and (6) are always independent. This statement applies to our main theorem.

In order to bound the rank r(n) of the congruent curves in our theorem, we
need Monsky’s formula for s(n), the 2-Selmer rank [2], [5]. The quantity s(n) is an
upper bound for r(n). Let n be a squarefree positive integer with odd prime factors
P1, P2, . . . , Pt. We define diagonal t× t matrices Dl = (di) for l ∈ {−2,−1, 2}, and
the square t× t matrix A = (aij) by

di =





0, if

�
l

Pi

�
= 1,

1, if
�

l
Pi

�
= −1,

aij =





0, if

�
Pj

Pi

�
= 1, j �= i,

1, if
�

Pj

Pi

�
= −1, j �= i,

aii =
�

j:j �=i

aij .

Then
s(n) =

�
2t− rankF2(Mo), if n = P1P2 · · ·Pt,

2t− rankF2(Me), if n = 2P1P2 · · ·Pt,
(7)

where Mo and Me are the 2t× 2t matrices:

Mo =
�

A + D2 D2

D2 A + D−2

�
, Me =

�
D2 A + D2

A
T + D2 D−1

�
. (8)

Lemma 6. If n = p3q3r3 then s(n) ≤ 2.

Proof. We calculate s(n) using formulas (7) and (8) with P1 = p3, P2 = q3 and

P3 = r3 for all possible choices of values of the Legendre symbols
�

p3

q3

�
,

�
p3

r3

�

and
�

q3

r3

�
. For example if

�
p3

q3

�
= +1,

�
p3

r3

�
= −1 and

�
q3

r3

�
= +1

then Mo is given by 



0 1 0 1 0 0
0 0 1 0 1 0
1 0 0 0 0 1
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1




.
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Its rank over F2 is equal to 4 so that (7) gives s(n) = 2. We record the results for
all 8 cases in the following table.

Values of s(n)

�
p3

q3

� �
p3

r3

� �
q3

r3

�
s(n)

+1 +1 +1 0
+1 +1 −1 0
+1 −1 +1 2
+1 −1 −1 0
−1 +1 +1 0
−1 +1 −1 2
−1 −1 +1 0
−1 −1 −1 0

Remark 7. In the proof of Lemma 4, the six cases where s(n) = 0 are related by
permutation of the primes p3, q3 and r3. The cases where s(n) = 2 are similarly
related.

3. Generating Congruent Numbers p3q3r3 and Proof of Theorem

We recall Schinzel’s hypothesis H [6], which states if a finite product Q(x) =
m�

i=1

fi(x) of polynomials fi(x) ∈ Z [x] has no fixed divisors, then all of the fi(x)

will be simultaneously prime, for infinitely many integral values of x. From this
hypothesis we deduce that for any fixed prime p3 the two forms

p3a
2 − 16b2 and p3a

2 + 16b2 (9)

will assume prime values infinitely often. In order to obtain q3, r3 prime numbers
from these two forms, we must have a odd. By Lemma 2 the number n = p3q3r3

will be congruent. All of the examples of congruent numbers mentioned in the
introduction have p3 = 3, but we can generate examples for any fixed prime p3

using (9). For example if p3 = 43 then using (9) with a = 9 and b = 1 yields the
value

n = p3q3r3 = 43 · 3467 · 3499,

which by Lemma 2 is a congruent number. Now we give the proof of our theorem.
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Proof. If the formulas for q and r given in our theorem assume prime values, then
u and v must have opposite parity from which it follows that p ≡ q ≡ 3(mod 8).
From Lemma 3, the congruent number curve

y
2 = x(x2 − n

2)

with n = 3(3 + 3z4 − 2z2)(3 + 3z4 + 2z2) has rank at least 2 for all but finitely
many values of the rational number z. Hence, setting z = u/v and scaling by v

8

shows that n = 3qr is a congruent number. By the remark just after Lemma 3, the
curve (1) with n = 3qr has rank at least 2. However Lemma 4 shows that s(n) ≤ 2,
and since the rank is bounded above by s(n) the rank is at most 2. Thus the rank
equals 2 and the theorem is proved.

Example 8. A few smaller congruent numbers whose associated congruent number
curves have rank 2 and which are generated by the formulas in our theorem include
7611 = 3 · 43 · 59, 1021683291 = 3 · 13219 · 25763 and 2700420027 = 3 · 30203 · 29803.
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