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Abstract
Bhargava defined p-orderings of subsets of Dedekind domains and with them stud-
ied polynomials which take integer values on those subsets. In analogy with this
construction for subsets of Z,) and p-local integer-valued polynomials in one vari-
able, we define projective p-orderings of subsets of Z?p). With such a projective
p-ordering for Z%p) we construct a basis for the module of homogeneous, p-local
integer-valued polynomials in two variables.

1. Introduction

Let p be a fixed prime and denote by v, the p-adic valuation with respect to p,
i.e., vp(m) is the largest power of p dividing m. If S is a subset of Z or Z,)
then a p-ordering of S, as defined by Bhargava in [2] and [3], is a sequence
{a(i) : ¢ = 0,1,2,...} in S with the property that for each n > 0 the element
a(n) minimizes {v,([]'=) (s — a(i))) : s € S}. The most important property of
p-orderings is that the Lagrange interpolating polynomials based on them give a
Zpy-basis for the algebra Int(S,Z,)) = {f(z) € Qlz] : f(S) C Z)}, of p-local
integer-valued polynomials on S. In this paper we will extend this idea to give
p-orderings of certain subsets of Z? or Z2p in such a way as to give a construction
of a Zp)-basis for the module of p-local integer-valued homogeneous polynomials in
two variables.

One reason the algebra of homogeneous integer-valued polynomials is of interest
is because of its occurence in algebraic topology as described in [1]. Let CP*
denote infinite complex projective space. Computing the homotopy groups of this
space shows that it is an Eilenberg-Mac Lane space K(Z,2) and so is the classifying
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space, BT, of the circle group. It follows that (CP>)" is the classifying space
of the n-torus, BT™. It was shown in [6] that the complex K-theory, Ky(CP>),
is isomorphic to Int(Z,Z) from which it follows that Ko(BT") = Int(Z",Z) =
{f(x1,...,2n) € Q[x1,...,2y] : f(Z") C Z}. For any space X the complex K-
theory, Ko(X), has the structure of a comodule with respect to the Hopf algebroid
of stable cooperations for complex K-theory, KoK. In [1] it was shown that the
primitive elements in Ko(BT™) with respect to this coaction are the homogeneous
polynomials and this was used to give an upper bound on the K-theory Hurewicz
image of BU. Projective p-orderings give an alternative to the recursive construction
used in Theorem 1.11 of that paper.

The paper is organized as follows: In Section 2 we recall some of the basic
properties of p-orderings of subsets of Z,) which allow their computation in specific
cases. Section 3 contains the definition of projective p-orderings for subsets of Z%p)
and the construction of a specific p-ordering of Z%p) using the results of Section
2 and their extensions. Section 4 defines a sequence of homogeneous polynomials
associated to a projective p-ordering and shows that in the case of p-orderings of
Z%p) these polynomials are Z,)-valued when evaluated at points in Z%p). From these
a basis is constructed for the Z,)-module of homogeneous p-local integer-valued
polynomials in two variables of degree m for any nonnegative integer m.

2. p-Orderings in Z and Z,

As in the introduction we have the basic definitions:

Definition 1. [3] If p is a prime then a p-ordering of a subset S of Z ) is an ordered
sequence {a;,i = 0,1,2,... |S|} of elements of S with the property that for each

i > 0 the element a; minimizes v,([]._,(s — a;)) among all elements s of S.

j<il
and

Definition 2. [3] If {a;}§2, is a p-ordering of a set S C Z,) then the p-sequence of
S is the sequence of integers D = {d;}{2, with dy = 0 and d; = vp([];;(a; — a;)).
These objects have the following properties:

Proposition 3. (a) The p-sequence of a set S is independent of the p-ordering used
to compute it, i.e., any two p-orderings of S have the same p-sequence.

(b) The p-sequence of a set characterizes the p-orderings of S, i.e., if {d; : i =
0,1,2,...} is the p-sequence of S and {a; : i = 0,1,2,...} is a sequence in S with
the property that d; = vp(I]:.;(ai — aj)) for all i, then {a; : ¢ = 0,1,2,...} is a
p-ordering of S.

j<i(

(c) The increasing order on the non-negative integers is a p-ordering of Zy,) for any
prime p, and the p-sequence of Zy,) is given by {vp(i!) :i=0,1,2,...}.
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(d) The increasing order on the non-negative integers divisible by p is a p-ordering
of pZyy and the p-sequence of pZyy is given by {i+vp(i!) : i =0,1,2,...}.

(e) If the set S is the disjoint union S = SyUSy of sets Sy and Sy with the property
that if a € Sy and b € S then vy(a —b) = 0, then the p-sequence of S is equal to
the shuffle of those of Sy and Si, i.e., the disjoint union of the p-sequences of Sy
and S1 sorted into mondecreasing order. Furthermore, the same shuffle applied to
p-orderings of So and Sy will yield a p-ordering of S and any p-ordering of S occurs
in this way.

Proof. Statement (a) is Theorem 5 of citeB1. Statement(b) is Lemma 3.3(a) of [7].
Statement(c) follows from Proposition 6 of [2] and the observation that the minimum
of v([[;<;(s — a;)) for s € Z is equal to the minimum for s € Z,). Statement (d)
follows from Statement (c) by Lemma 3.3(c) of [7]. (e) is a generalization of Lemma
3.5 of [7] for which the same proof holds. O

In the next section, we define projective p-orderings for pairs in Z,) and show
that there are analogs to some of the properties of p-orderings given above. Specifi-
cally, part (e) in Proposition 3 generalizes to projective p-orderings and allows Z%p)
to be divided into disjoint subsets whose p-orderings are obtained from parts (c)
and (d) of Proposition 3. While there is no analog to part (a) in Proposition 3, we
show that any projective p-ordering of all of Z%p) (and some other specific subsets)
will produce the same p-sequence, and so the p-sequence of Z%p) is independent of
the projective p-ordering used to compute it.

3. Projective p-Orderings in Z?p)

Definition 4. A projective p-ordering of a subset S of Z%p) is a sequence {(a;, b;) :
i =0,1,2,...} in S with the property that for each ¢ > 0 the element (a;,b;)
minimizes v, ([];_;(sb; — ta;)) over (s,t) € S. The sequence {d; : i = 0,1,2,...}
with d; = vp([];;(aibj — bia;)) is the p-sequence of the p-ordering.

Lemma 5. a) If {(a;,b;) : 4 =0,1,2,...} is a p-ordering of Z%p), then for each i
either v,(a;) = 0 or vy(b;) = 0.

(b) If {(a;,b;) i = 0,1,2,...} is a p-ordering of Z?p), then there is another p-
ordering {(a},b;) : 1 =0,1,2,...} with the property that for each i either a, =1 and

plbl or b, =1 and {(al,b)) : i = 0,1,2,...} has the same p-sequence as {(a;,b;) :
i=0,1,2,...}.

Proof. (a) Since v,(psb; — pta;) = 1+ v,(sb; —ta;), the pair (s,t) would always be
chosen in place of the pair (ps,pt) in the construction of a p-ordering.
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(b) By part (a) either a; or b; is a unit in Z,) for every i. Let (aj, b;) = (1,b;/a;)

17 7

if a; is a unit and p|b;, and (a},b}) = (a;/b;, 1) if b; is a unit. In the first case we
have vp(a;b; — biaj) = vp(b; — bsa;/a;) = vp(ajb; — ba;) for all j and similarly
in the second case. Thus {(a},b;) : i = 0,1,2,...} is a p-ordering with the same

p-sequence as {(a;,b;) 11 =0,1,2,...}. O

Definition 6. Let S denote the subset of Z%p) consisting of pairs (a,b) with either
a=1landplborb=1,andlet So = {(a,1):a € Zg,)} and Sy = {(1,pb) : b € Z)}.

Lemma 7. The set S is the disjoint union of Sy and Sy, and if (a,b) € Sy and
(c,d) € S then vy(ad —be) = 0.

Proof. The first assertion is obvious and the second follows from the observation
that d is a multiple of p, and b = ¢ =1, so p does not divide ad — 1. O

Proposition 8. Any p-ordering of S is the shuffle of p-orderings of Sy and Sy
into nondecreasing order. The shuffle of any pair of p-sequences of Sy and Sy into
nondecreasing order gives a p-sequence of S and the corresponding shuffle of the
p-orderings of Sy and Sy that gave rise to these p-sequences gives a p-ordering of

S.

Proof. Let {(a;,b;) : i = 0,1,2,...} be a p-ordering of S and {(a,(;),bo@;)) : & =
0,1,2,...} the subsequence of elements which are in Sy. The previous lemma
implies that for any ¢, we have v, ([[; -, ;) (a0 (:)b; — @jb0(i))) = vp(I1;<i(a0()bo(s) —
ag()bo(i)))s 50 that {(as(,bs(i)) : i =0,1,2,...} is a p-ordering of Syp. A similar
argument shows that the subsequence of elements in S; gives a p-ordering of 5.
Since S is the disjoint union of Sy and S; it follows that {(a;,b;) : 4 =0,1,2,...}
is the shuffle of these two subsequences.

Conversely, suppose that {(a,b;) : ¢ = 0,1,2,...} is a p-ordering of Sy with
associated p-sequence {d} : i = 0,1,2,...} and that {(a;/,b”) :4=0,1,2,...} and
{d;l :1=0,1,2,...} are the corresponding objects for S7. Assume as the induction
hypothesis that the first n4+m + 2 terms in a p-sequence of S are the nondecreasing
shuffle of {d} : ¢ = 0,1,2,...,n} and {d;/ 24 =0,1,2,...,m} into nondecreas-
ing order and that the corresponding shuffle of {(a},b}) : ¢ = 0,1,2,...,n} and
{(a;/, b;/) :4=20,1,2,...,m} is the first n+m + 2 terms of a p-ordering of S. Since
(a1, by 1) minimizes v, ([, ., (b —ta})) over So and Vp(a’,L+1b;-/ —b’n+1a;—/) =0,
j<ntmia(8bj — taj)) over So. Similarly (a;;LH, b;;lﬂ) mini-
mizes this product over S;. Since S is the union of these two sets, the minimum
over S is realized by the one of these giving the smaller value. O

it also minimizes v, (]]

Lemma 9. (a) the map ¢ : Zqy — So given by ¢(x) = (x,1) gives a 1 to 1 corre-
spondence between p-orderings of Z and projective p-orderings of Sy and preserves
p-sequences.
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(b) The map ¢ : pZgyy — S given by (x) = (1,x) gives a one-to-one corre-
spondence between p-orderings of pZ and projective p-orderings of S1 and preserves
D-Sequences.

Proof. If (a,b) and (c,d) are in Sy then v,(ad — bc) = v,(a — ¢) since b = d = 1.
Thus the map ¢ is a bijection, which preserves the p-adic norm and so preserves
p-orderings and p-sequences. A similar argument applies to 1. O

Proposition 10. (a) A p-ordering of Z%p) s given by the periodic shuffle of the
sequences {(i,1) : i = 0,1,2,...} and {(1,pi) : i = 0,1,2,...} which takes one
element of the second sequence after each block of p elements of the first. The
corresponding p-sequence is {vy(|pi/(p+1)])! :1=0,1,2,... }.

(b) The p-sequence on%p) 1s independent of the choice of p-ordering used to compute
it.

Proof. p-orderings of Z,) and pZ,) are given in Proposition 3 and so, by Lemma 9,
give p-orderings of Sy and S; whose shuffle gives a p-ordering of S. The p-sequences
of these two p-orderings are {1, (i!) : ¢ =0,1,2,...} and {y,(pi!) : 4 =0,1,2,...},
for which the nondecreasing shuffle is periodic taking one element of the second
sequence after each p elements of the first. The result of this shuffle is the formula
given.

Since the p-sequences of Z(,) and pZ,) are independent of the choices of p-
orderings, those of Sy and S; are also. The p-sequence of S, being the shuffle of
these two, is unique and so is independent of the chosen p-orderings. Finally, by
Lemma 5 (b) any p-sequence of Z%p) is equal to one of S, hence it is independent of
the chosen p-ordering. O]

4. Homogeneous Integer-Valued Polynomials in Two Variables

A p-ordering of a subset of Z or Z,) gives rise to a sequence of polynomials that
are integer — or Z,) — valued on S. The analogous result for projective orderings
is:

Proposition 11. If {(a;,b;) : : = 0,1,2,...} is a projective p-ordering of Z%p) then

the polynomials
n—1

fu(z,y) = H

=0

xb; — ya;
(Lnbi — bnai

are homogeneous and Z,)-valued on Z?p).

Proof. The minimality condition used to define projective p-orderings implies that
for any (a,b) € Z%p), the p-adic value of H?;()l anb; — bnpa; is less than or equal to

that of [/~ ab; — ba. O
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For p-orderings of subsets of Z or Z,) we have the further result that the poly-
nomials produced in this way give a regular basis for the module of integer-valued
polynomials. To obtain an analogous result in the projective case we restrict our
attention to the particular projective p-ordering of Z2 | constructed in the previous

(p)
section and, for a fixed nonnegative integer m, make the following definition:

Definition 12. For 0 < n < m and {(a;,b;) : ¢ = 0,1,2,...}, the projective

p-ordering of Z?p) constructed in Proposition 10, let

n—1

men xb; — ya; .
_— f nybn) €S
- y H) anb; — bpa; ' (a ) € o
gn (xay) = %_—1
xb; — ya;

men TT 222Y% 5y b)) e S,y
x il;[anbi_bnai if  (a ) €S,

Lemma 13. The polynomials g (z,y) have the properties

m 0 if i<nm
9n<“i’bi):{1 z? i=n.

Proposition 14. The set of polynomials {gm(z,y) : n = 0,1,2,...,m} forms a
basis for the Z ) -module of homogeneous polynomials in Q[x,y| of degree m which
take values in Z,) when evaluated at points of Z?p).

Proof. First note that a homogeneous polynomial is Z,)-valued on Z(Qp) if and only
if it is Zp)-valued on S. To see this suppose that g(z,y) is homogeneous of degree
m and Z,)-valued on S and that (a,b) € Z%p). If (a,b) = (0,0) then g(a,b) = 0.
If (a,b) # (0,0) then (a,b) = pF(a’,t’) for some k with either a’ or & a unit in
Z(p). Since g(z,y) is homogeneous, g(a,b) = p*™g(a’,V’), and so if g(a’,b') € Z,
then g(a,b) € Z,y. If a’ is a unit in Z,) and p[b’ then (a’,b") = a’(1,0'/a’), and so
g(a’,b") = (a’')"g(1,b'/a’). Since g(x,y) is Z,)-valued on Sy we have g(1,b'/a’) €
Z(py, and so g(a',b’) € Z(,) since a’ is a unit. A similar argument applies if ¢’ is a
unit.

Since no two of the elements of the p-ordering {(a;,b;) : 4 =0,1,2,...} are ratio-
nal multiples of each other the previous lemma shows that the given set is rationally
linearly independent and forms a basis for the rational vector space of homogeneous
polynomials of degree m in Q[z,y]. Let M be the (m + 1) x (m + 1) matrix whose
(4,7)-th entry is ¢7"(a;,b;). If g(z,y) € Q[z,y] is homogeneous and of degree m,
then there exists a unique vector on A = (ao, ..., a,) € Q™! such that g(z,y) =
> aig(x,y). Let V be the vector V = (vo,...,vm) = (g(ao, bo), - -, g(am,bm)) so
that V. = AM. If g(x,y) is Z,)-valued then V' € Zg;l. By the previous lemma,
M is lower triangular with diagonal entries 1, and hence invertible over Z,). Thus

A€ Zg;“l also, i.e., the set {g,"(z,y) : n = 0,1,2,...,m} spans the Z,)-module
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of homogeneous, Z,)-valued polynomials of degree m and so forms a basis as re-
quired. O

Example 15. Let p = 2 and m = 3. By Proposition 10, the following is a projective
2-ordering of Z(QQ):

(071)7 (171)7 (170)a
(2,1), 3,1), (1,2),
(4,1), (5,1),

With this projective 2-ordering, we construct g3 (z,y) for n =0,1,2,3:

{yS,myQ,l’z(w - ), W} :

This set, by Proposition 14, forms a basis for the Z)-module of homogeneous
polynomials in Q[z,y] of degree 3 which take values in Z) when evaluated at
points of Zé).
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