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Abstract
Let P (n) stand for the largest prime factor of n ≥ 2 and set P (1) = 1. For
each integer n ≥ 2, let δ(n) be the distance to the nearest P (n)-smooth number,
that is, to the nearest integer whose largest prime factor is no larger than that of
n. We provide a heuristic argument showing that

�
n≤x 1/δ(n) = (4 log 2 − 2 +

o(1))x as x → ∞. Moreover, given an arbitrary real-valued arithmetic function
f , we study the behavior of the more general function δf (n) defined by δf (n) =
min1≤m�=n, f(m)≤f(n) |n − m| for n ≥ 2, and δf (1) = 1. In particular, given any
positive integers a < b, we show that

�
a≤n<b 1/δf (n) ≥ 2(b − a)/3 and that if

f(n) ≥ f(a) for all n ∈ [a, b[, then
�

a<n<b δf (n) ≤ (b− a) log(b− a)/(2 log 2).

1. Introduction

A smooth number (or a friable number) is a positive integer n whose largest prime
factor is “small” compared to n. Hence, given an integer B ≥ 2, we say that an
integer n is B-smooth if all its prime factors are ≤ B.

Let P (n) stand for the largest prime factor of n (with P (1) = 1).
For each integer n ≥ 2, let δ(n) be the distance to the nearest P (n)-smooth

number, that is, to the nearest integer whose largest prime factor is no larger than
that of n. In other words,

δ(n) := min
1≤m�=n

P (m)≤P (n)

|n−m|.
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Equivalently, if we let

Ψ(x, y) := #{n ≤ x : P (n) ≤ y},

then δ(n) is the smallest positive integer δ such that either one of the following two
equalities occur:

Ψ(n + δ, P (n))−Ψ(n, P (n)) = 1, Ψ(n, P (n))−Ψ(n− δ, P (n)) = 1.

For convenience, we set δ(1) = 1. In particular,

δ(2a) = 2a−1 for each integer a ≥ 1. (1)

The first 40 values of δ(n) are

1,1,1,2,1,2,1,4,1,1,1,3,1,1,1,8,1,2,1,2,1,1,1,3,1,1,3,1,1,2,1,16,1,1,1,4,1,1,1,4.

We call δ(n) the index of isolation of n and we say that an integer n is isolated
if δ(n) ≥ 2 and non-isolated if δ(n) = 1. Finally, an integer n is said to be very
isolated if δ(n) is “large”.

It follows from (1) that the most isolated number ≤ x is the largest power of 2
not exceeding x, which implies in particular that δ(n) ≤ n/2 for all n ≥ 2.

Remark. One might think, as a rule of thumb, that the smaller P (n) is, the larger
δ(n) will be, that is, that “smooth numbers have a large index of isolation”. But
this is not true for small values of n: for instance, n = 11 859 211 has a small P (n)
and nevertheless δ(n) = 1, since

n = 11 859 211 = 7 · 13 · 194,

n− 1 = 11 859 210 = 2 · 34 · 5 · 114.

However, for large values of n, one can say that smooth numbers do indeed have a
large index of isolation. Indeed, one can prove (see Lemma 3) that, given B ≥ 3
fixed, there exist a constant c = c(B) > 0 and a number n0 = n0(B) such that

δ(n) >
n

(log n)c
for all B-smooth integers n ≥ n0.
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2. Preliminary Observations and Results

It is clear that δ(p) = 1 for each prime p and also that if p is odd, then δ(p2) = 1.
Each of the following also holds:

δ(2p) = 1 for p ≥ 5,
δ(3p) = 1 for p ≥ 3,
δ(4p) ≤ 2 for p ≥ 5,
δ(5p) = 1 for p ≥ 2,
δ(6p) ≤ 2 for p ≥ 3,
δ(7p) ≤ 2 for p ≥ 2,
δ(8p) ≤ 3 for p ≥ 7,
δ(9p) ≤ 3 for p ≥ 2,

δ(10p) ≤ 2 for p ≥ 2.

The above are easily proven. For instance, to prove the second statement, observe
that if p ≡ 1 (mod 4), then 3p+1 ≡ 0 (mod 4), in which case P (3p+1) < p, while
if p ≡ 3 (mod 4), then 3p− 1 ≡ 0 (mod 4), in which case P (3p− 1) < p, so that in
both cases δ(3p) = 1.

Observe also that given any prime number p, if a is an integer such that P (a) ≤ p,
then δ(ap) ≤ a, because

P (ap− a) = P (a(p− 1)) ≤ max(P (a), P (p− 1)) ≤ p.

If follows from this simple observation that

δ(n) = δ(aP (n)) ≤ a =
n

P (n)
(n ≥ 2). (2)

Moreover, one can easily show that if P (n)2|n, then δ(n) ≤ n

P (n)2
.

Definition. For each integer n ≥ 1, let

∆(n) :=
�

d|n

δ(d).

Trivially we have ∆(n) ≥ τ(n).
Lemma 1. If n is a power of 2, then ∆(n) = n. On the other hand, for all n > 1
such that P (n) ≥ 3, we have

∆(n) < n. (3)
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Proof. The first assertion is obvious since for each integer α ≥ 1, we have ∆(2α) =�α
i=1 2i−1 = 2α.
Now consider the case when n is not a power of 2. First, it is easy to show that if

P (n) = 3, then (3) holds. Indeed, if n = 2α · 3β for some integers α ≥ 0 and β ≥ 1,
then in light of (2), we have

∆(n) ≤
�

d|n

d

P (d)
= 1 +

�

d|n
P (d)=2

d

P (d)
+

�

d|n
P (d)=3

d

P (d)

= 1 +
1
2

α�

i=1

2i +
1
3

�

d|n
3|d

d

= 1 + 2α − 1 +
1
3
(σ(n)− σ(2α))

= 2α +
1
3

�
(2α+1 − 1)

3β+1 − 1
2

− (2α+1 − 1)
�

= n− 3β

2
+

1
2
≤ n− 1 < n,

which proves that (3) holds if P (n) = 3.
Hence, from here on, we shall assume that P (n) ≥ 5. We shall use induction on

the number of distinct prime factors of n in order to prove that

�

d|n

d

P (d)
< n. (4)

First observe that the above inequality is true if ω(n) = 1. Indeed, in this case, we
have n = pb. It is clear that

�

d|n

d

P (d)
= 1 + 1 + p + p2 + . . . + pb−1 = 1 +

pb − 1
p− 1

< 1 + pb − 1 = pb = n,

which will clearly establish (3).
Let us now assume that the result holds for all n such that ω(n) = r − 1 and

prove that it does hold for n such that ω(n) = r. Take such an integer n with k
being the unique positive integer such that P (n)k�n. We then have
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�

d|n

d

P (d)
=

�

d|n/P (n)k

d

P (d)
+

k�

i=1

�

d|n/P (n)k

dP (n)i

P (dP (n)i)

=
�

d|n/P (n)k

d

P (d)
+

�

d|n/P (n)k

d + P (n)
�

d|n/P (n)k

d

+ . . . + P (n)k−1
�

d|n/P (n)k

d

=
�

d|n/P (n)k

d

P (d)
+ (1 + P (n) + . . . + P (n)k−1)σ(n/P (n)k). (5)

Using the identity σ

�
n

P (n)k

�
=

σ(n)
1 + P (n) + P (n)2 + . . . + P (n)k

and the induc-

tion argument, it follows from (5) that

�

d|n

d

P (d)
<

n

P (n)k
+

1 + P (n) + . . . + P (n)k−1

1 + P (n) + . . . + P (n)k
σ(n) <

n

P (n)
+

σ(n)
P (n)

. (6)

On the other hand, it is clear that for any integer n > 1 with P (n) ≥ 5 and ω(n) ≥ 2,

σ(n)
n

<
�

p|n

p

p− 1
<

3
4
P (n).

Using this in (6), we obtain, since P (n) ≥ 5, that
�

d|n
d

P (d) < n
5 + 3

4n < n, which
completes the proof of (4) and thus of (3).

Lemma 2. The following are true:

(i) #{n ≤ x : δ(n) = 1} ≥ x

2
for all x ≥ 2;

(ii)
x

2
≤

�

n≤x

1
δ(n)

< x for all x ≥ 4;

(iii) δ(n) = δ(m) = k =⇒ |n−m| ≥ k;

(iv) |m− n| ≥ min(δ(m), δ(n));

(v) ck(x) := #{n ≤ x : δ(n) = k} ≤ x

k
;

(vi) #{n ≤ x : δ(n) ≥ y} ≤ x

y
.
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Proof. Since it is clear that if δ(n) ≥ 2, then δ(n − 1) = δ(n + 1) = 1, (i) follows
immediately, along with (ii).

On the other hand, (iii) follows from the definition of δ(n).
From (iii), we easily deduce (iv) and (v).
To prove (vi), we proceed as follows. Fix 1 < y ≤ x and assume that k :=

#{n ≤ x : δ(n) ≥ y} > x/y. Let y ≤ n1 < n2 < . . . < nk be the integers
ni ≤ x such that δ(ni) ≥ y. By the Pigeonhole Principle, there exist nr and ns

with 1 ≤ r < s ≤ k such that ns − nr < y. Without any loss in generality, one
can assume that P (nr) ≤ P (ns), in which case we have δ(ns) ≤ ns − nr < y, a
contradiction.

Lemma 3. Let B ≥ 3 be a fixed integer. Then there exist a constant c = c(B) > 0
and a number n0 = n0(B) such that

δ(n) >
n

(log n)c
for all B-smooth integers n ≥ n0.

Proof. The result follows almost immediately from an estimate of Tijdeman [7] who
showed, using the theory of logarithmic forms of Baker (see Theorem 3.1 in the book
of Baker [1]), that if n1 < n2 < . . . represents the sequence of B-smooth numbers,
then there exist positive constants c1(B) and c2(B) such that

ni

(log ni)c1(B)
� ni+1 − ni �

ni

(log ni)c2(B)
,

where c2(B) ≤ π(B) ≤ c1(B). Observe that Langevin [6] later provided explicit
values for the constants c1(B) and c2(B).

3. Probabilistic Results

In 1978, Erdős and Pomerance [4] showed that the lower density of those integers
n for which P (n) < P (n + 1) (or P (n) > P (n + 1)) is positive. Most likely, this
density is 1

2 , but this fact remains an open problem. In 2001, Balog [2] showed that
the number of integers n ≤ x with

P (n− 1) > P (n) > P (n + 1) (7)

is �
√

x and observed that “undoubtedly” the density of those integers n such that
(7) holds is equal to 1

6 .
To establish our next result, we shall make the following reasonable assumption.
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Hypothesis A. Fix an arbitrary integer k ≥ 2 and let n be a large number. Let
a1, a2, . . . , ak be any permutation of the numbers 0, 1, 2, . . . , k − 1. Then,

Prob[P (n + a1) < P (n + a2) < . . . < P (n + ak)] =
1
k!

.

Theorem 4. Assuming Hypothesis A and given any integer k ≥ 1, the expected

proportion of integers n for which δ(n) = k is equal to
2

4k2 − 1
. In particular, the

proportion of non-isolated numbers is 2
3 .

Proof. Fix k. Let Ek be the expected proportion of integers n for which δ(n) = k.
Given a large integer n, the probability that δ(n) > k is equal to the probability
that

min(P (n ± 1), . . . , P (n ± k)) > P (n).

Under Hypothesis A, this probability is equal to
1

2k + 1
. This implies that

Ek = P (δ(n) > k − 1)− P (δ(n) > k) =
1

2k − 1
− 1

2k + 1
=

2
4k2 − 1

,

which completes the proof of the theorem.

Remark. Let Sk(x) := #{n ≤ x : δ(n) = k} and choose x = 106. Then, we obtain
the following numerical evidence.

k 1 2 3 4 5
a = Sk(x) 664 084 134 239 57 089 32 185 20 145

b = [x · 2/(4k2 − 1)] 666 666 133 333 57 142 31 746 20 202
a/b 0.996 1.006 0.999 1.013 0.997

Theorem 5. Assuming Hypothesis A,

lim
x→∞

1
x

�

n≤x

1
δ(n)

= 2(2 log 2− 1) ≈ 0.7725.

Proof. According to Theorem 4 (proved assuming Hypothesis A),

1
x

#{n ≤ x : δ(n) = k} = (1 + o(1))
2

4k2 − 1
(x→∞).
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Therefore, given a fixed large integer N , we have, as x→∞,

�

n≤x

1
δ(n)

=
N�

k=1

1
k

�

n≤x
δ(n)=k

1 +
[x/2]�

k=N+1

1
k

�

n≤x
δ(n)=k

1

=
N�

k=1

2x
k(4k2 − 1)

(1 + o(1)) + O

�
�

k>N

x

k2

�
(8)

= (1 + o(1))xT1(N) + O(xT2(N)),

say, where we used Lemma 2(v). First, one can show that

T1(N) =
N�

k=1

2
k(4k2 − 1)

= 2(2 log 2− 1) + O

�
1
N

�
(N →∞). (9)

To prove (9), we proceed as follows. Assume for now that N ≡ 3 (mod 4). Then,

using the estimate
N�

k=1

1
k

= log N + γ + O(1/N) as N → ∞ (where γ is Euler’s

constant), we have

1
2

T1(N) = −
N�

k=1

1
k

+
N�

k=1

1
2k − 1

+
N�

k=1

1
2k + 1

= −1
2

+
1
3
− . . . +

1
N

+2
�

1
N + 2

+
1

N + 4
+ . . . +

1
2N − 1

�
+

1
2N + 1

= log 2− 1 + O(1/N) + 2
N−1�

j=(N+1)/2

1
2j + 1

+
1

2N + 1

= log 2− 1 + O(1/N) + log 2 + O(1/N)
= 2 log 2− 1 + O(1/N),

which proves (9). A similar argument holds if N ≡ 0, 1 or 2 (mod 4), thus estab-
lishing (9).

On the other hand,
�

k>N

1
k2

<

� ∞

N

1
t2

dt =
1
N

,

so that
T2(N) <

1
N

. (10)
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Now let ε > 0 be arbitrarily small and let N = [1/ε] + 1. We then have, using
(9) and (10) in (8),

�

n≤x

1
δ(n)

= 2(2 log 2− 1)x + O(εx) + O(εx) (x→∞),

which completes the proof of the theorem.

Remark. Using a computer, one obtains that

1
109

�

n≤109

1
δ(n)

= 0.7719 . . .

4. The Isolation Index With Respect to a Given Function

The function δ can also be defined relatively to any real-valued arithmetic function
f as

δf (n) := min
1≤m�=n

f(m)≤f(n)

|n−m| (n ≥ 2)

with δf (1) = 1.

Examples

• Let f(n) be any monotonic function. Then, δf (n) = 1, ∀n ≥ 2.

• Let f(n) = ω(n) :=
�

p|n

1. Then, the first 40 values of δω(n) are:

1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,2,1,2,1,2,1,2,1,1,1,1,1,1,1,4,1,1,1.

• Let f(n) = Ω(n) :=
�

pα�n

α. Then, the first 40 values of δΩ(n) are:

1,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,4,1,1,1,1,1,2,1,2,1,1,1,1,1,4,1,1,1.

• Let f(n) = τ(n) :=
�

d|n

1. Then, the first 40 values of δτ (n) are:

1,1,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,1,1,1,4,1,2,1,1,1,2,1,2,1,1,1,1,1,4,1,1,1.

Remark 6. It turns out that Hypothesis A holds unconditionally when one replaces
the function P (n) by the function ω(n) or Ω(n) or τ(n), and therefore that the
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equivalent of Theorem 4 for either of these three functions is true without any
conditions, that is, that for any fixed positive integer k,

1
x

#{n ≤ x : δω(n) = k} =
2

4k2 − 1
+ o(1) (x→∞),

the same being true for Ω(n) or τ(n) in place of ω(n).

To prove our claim, we first need to prove the following two propositions.

Proposition 7. Let a1, a2, . . . , ak be any distinct integers and let z1, z2, . . . , zk be
arbitrary real numbers. Then,

lim
x→∞

1
x

#
�

n ≤ x :
ω(n + aj)− log log n√

log log n
< zj , 1 ≤ j ≤ k

�
=

�

1≤j≤k

Φ(zj), (11)

where Φ(z) =
1√
2π

� z

−∞
e−t2/2dt.

Proof. Given a real-valued vector (t1, t2, . . . , tk), consider the function

H(n) =
k�

j=1

tjω(n + aj).

We will now apply Proposition 2 and Theorem 1 of Granville and Soundararajan
[5], where instead of considering the function

fp(n) =
�

1− 1
p if p|n,

− 1
p otherwise,

we use the function

fp(n) =

�
tr − 1

p

�k
j=1 tj if p|n + ar,

− 1
p

�k
j=1 tj otherwise,

where it is clear that, except for a finite number of primes p, each prime p divides
n + ar for at most one ar.

Using this newly defined function fp(n) and following exactly the same steps as
in the proof of Proposition 2 of Granville and Soundararajan, we obtain that

lim
x→∞

1
x

#

�
n ≤ x :

H(n)−
�k

j=1 tj log log n
√

log log n
< z

�
= Φ



 z��k
j=1 t2j



 . (12)

In other words, H(n) has a Gaussian distribution with mean value
�k

j=1 tj log log n

and standard deviation
��k

j=1 t2j · log log n. Because of the moments of a Gaussian
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distribution, statement (12) is equivalent to

lim
x→∞

1
x

�

n≤x

�
H(n)−

�k
j=1 tj log log n

√
log log n

�m

= G(m)




k�

j=1

t2j




m/2

(m = 1, 2, . . .),

(13)
where, for each positive integer m,

G(m) =
� �

1≤j≤m/2(2j − 1) if m is odd,
0 if m is even.

By expanding the left-hand side of (13) using the multinomial theorem, we may
rewrite it (for each positive integer m) as

�

0≤ui≤m, i=1,...,k
u1+···+uk=m

lim
x→∞

1
x

�

n≤x

m!
u1! · · ·uk!

�

1≤j≤k

t
uj

j

�
ω(n + aj)− log log n√

log log n

�uj

. (14)

By considering (14) as a function of t1, t2, . . . , tk and comparing the coefficients with
those on the right-hand side of (13), we obtain, for each positive integer m,

m!
u1! · · ·uk!

lim
x→∞

1
x

�

n≤x

�

1≤j≤k

�
ω(n + aj)− log log n√

log log x

�uj

= G(m)
(m/2)!

(u1/2)! · · · (uk/2)!

or equivalently

lim
x→∞

1
x

�

n≤x

�

1≤j≤k

�
ω(n + aj)− log log n√

log log x

�uj

=
�

1≤j≤k

G(uj). (15)

Since the right-hand side of (15) corresponds to the centered moments of a mul-
tivariate independent Gaussian distribution, the validity of (11) follows, thereby
completing the proof.

Proposition 8. Let g stand for any of the functions ω, Ω or τ . Let a1, a2, . . . , ak

be any permutation of the integers 0, 1, . . . , k − 1. Then,

lim
x→∞

1
x

#{n ≤ x : g(n + aj) < g(n + aj+1), j = 1, . . . , k − 1} =
1
k!

.

Proof. In the case g = ω, the result follows from Proposition 7, namely by simple
integration of (11). As for g = Ω, observe that it is easy to show that

lim
K→∞

lim
x→∞

1
x

#{n ≤ x : Ω(n)− ω(n) > K} = 0. (16)

Hence, using (16) and integrating (11), Proposition 7 holds for g = Ω. Finally,
since Proposition 7 holds for g = ω and g = Ω, the inequality 2ω(n) ≤ τ(n) ≤ 2Ω(n)

implies that it also holds for g = τ , thus completing the proof.
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Theorem 9. Let f(n) = ω(n) or Ω(n) or τ(n). Then,

lim
x→∞

1
x

�

n≤x

1
δf (n)

= 2(2 log 2− 1).

Proof. In light of Remark 6 and of Proposition 8, the result is immediate.

Theorem 10. Let a < b be positive integers. For any real-valued arithmetic func-
tion f and any interval I = [a, b[ of length N = b− a,

�

n∈I

1
δf (n)

≥ 2
3
N − 2

3
.

Proof. We conduct the proof using induction on N . First observe that Theorem 10
holds for small values of N . For instance, if N = 1,

�

n∈I

1
δf (n)

=
1

δf (a)
> 0 =

2
3
− 2

3
.

If N = 2, then since at least one of δf (n) and δf (n + 1) must be 1, it follows that

�

n∈I

1
δf (n)

=
1

δf (a)
+

1
δf (a + 1)

> 1 >
2
3

=
2
3
· 2− 2

3
.

We will now assume that the result holds for every integer smaller than N and
prove that it must therefore hold for N . We shall do this by distinguishing three
possible cases:

(i) either δf (a) = 1 or δf (b− 1) = 1;

(ii) Case (i) is not satisfied and there exists a positive integer k ∈]a, b − 2[ such
that both δf (k) = 1 and δf (k + 1) = 1;

(iii) neither of the two previous cases holds.

In Case (i), we can assume without any loss of generality that δf (a) = 1, in which
case �

n∈I

1
δf (n)

= 1 +
�

a+1≤n<b

1
δf (n)

.

Using our induction hypothesis we get that

1 +
�

a+1≤n<b

1
δf (n)

≥ 1 +
2
3
(N − 1)− 2

3
=

2
3
N − 1

3
>

2
3
N − 2

3
,
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proving the theorem in Case (i).
Suppose now that Case (ii) is satisfied. Then, there exists an integer k ∈]a, b−2[

such that δf (k) = δf (k + 1) = 1, in which case

�

n∈I

1
δf (n)

=
�

a≤n<k

1
δf (n)

+ 2 +
�

k+2≤n<b

1
δf (n)

.

Again, using our induction hypothesis we have that the right-hand side is larger or
equal to

2
3
(k − a)− 2

3
+ 2 +

2
3
(b− k − 2)− 2

3
=

2
3
N − 2

3
,

proving the theorem in Case (ii).
We now consider Case (iii). In this situation, N has to be odd, since the sum

starts with the term 1/δf (a) < 1 and ends with the term 1/δf (b− 1) < 1, because
every second value of δf (n) must be 1. Assume that a is odd, in which case b − 1
is odd. The case a and b− 1 even can be treated in a similar way. Hence, is at odd
integers n that δf (n) > 1, in which case we must have both f(n − 1) > f(n) and
f(n + 1) > f(n). Now recall the definition δf (n) := min 1≤m�=n

f(m)≤f(n)
|m−n|; now since

the integer m at which this minimum occurs must be odd (since for the other m’s,
the even ones, we have δf (m) = 1), it follows that for an odd n = 2j + 1, we have

δf (2j + 1) = 2 min
1≤k �=j

f(2k+1)≤f(2j+1)

|k − j|,

so that we may write

�

n∈[a,b[
n odd

1
δf (n)

=
�

j∈[ a−1
2 , b

2 [

1
δf (2j + 1)

=
1
2

�

j∈[ a−1
2 , b

2 [

1
min 1≤k �=j

f(2k+1)≤f(2j+1)
|k − j|

=
1
2

�

j∈[ a−1
2 , b

2 [

1
min 1≤k �=j

g(k)≤g(j)
|k − j|

=
1
2

�

j∈[ a−1
2 , b

2 [

1
δg(j)

, (17)

where we have set g(j) := f(2j + 1). Now since the interval [a−1
2 , b

2 [ is of length
N + 1

2
< N , we can apply our induction hypothesis and write that the last expres-

sion in (17) is no larger than

1
2
· 2
3

�
N + 1

2
− 1

�
.
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It follows from this that
�

n∈I

1
δf (n)

≥ N − 1
2

+
1
2
· 2
3

�
N + 1

2
− 1

�
=

2
3
(N − 1),

as needed to be proved. This completes the proof of the theorem.

In the statement of Theorem 10, is there any hope that one could replace the
constant 2

3 by a larger one ? The answer is no, as the following result shows.

Theorem 11. Let α0,q(n),α1,q(n),α2,q(n), . . . ,αk,q(n) be the digits of n when writ-
ten in base q, that is,

n =
k�

j=0

αj,q(n)qj .

Then the function f = gq defined by

gq(n) =
k�

j=0

αj,q(n)qk−j (18)

has the following property:

lim
x→∞

1
x

�

n≤x

1
δf (n)

=
q

q + 1
. (19)

Remark. Observe that gq(n) is the number obtained by writing the basis q digits
of n in reverse order. In a sense, the result claims that the function g2 is the one that
provides the minimal value for the sum of the reciprocals of the index of isolation.

Remark 12. Let n be written in basis q ≥ 2, that is,

n :=
k�

j=0

αj,q(n)qj .

Let m be the smallest integer such that αm,q(n) is greater than zero. Then, under
the assumption that n is not a perfect power of q, it is easy to verify that

δgq(n) = qm.

On the other hand, if n is a perfect power of q, say n = qk, we have

δgq(n) = qk−1(q − 1).
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Proof of Theorem 11. We shall only consider the case q = 2, since the general case
can be treated similarly. We observe that δg2(n) = 1 if and only if n is odd. More
generally, in light of Remark 12, we have

δg2(n) = 2k if and only if
n

2k
is an odd integer (k ≥ 0).

We can therefore write

�

n≤x

1
δg2(n)

=
[log x/ log 2]�

k=0

1
2k

· #
�
n ≤ x :

n

2k
≡ 1 (mod 2)

�
.

It is easy to see that

#
�
n ≤ x :

n

2k
≡ 1 (mod 2)

�
=

x

2k+1
+ O(1),

so that
�

n≤x

1
δf (n)

=
[log x/ log 2]�

k=0

x

22k+1
+ O




�

k≥0

1
2k



 =
2
3
x + O(1),

which proves (19) in the case q = 2, thus completing the proof of the theorem. ✷

Theorem 13. For real numbers y,w such that 2
3 ≤ y ≤ w ≤ 1, there exists an

arithmetic function f such that

lim inf
x→∞

1
x

�

n≤x

1
δf (n)

= y and lim sup
x→∞

1
x

�

n≤x

1
δf (n)

= w. (20)

Proof. The function 1/δg2 has a mean value of 2
3 , while it is clear that the mean

value of the reciprocal of the index of isolation of any monotone function h is 1. We
shall construct a function that behaves piecewise like g2 and piecewise like h so that
the mean value of the reciprocal of its isolation index will be a pondered mean of 2

3

and 1. We first define real numbers s, t ∈ [0, 1] in such a way that s + (1− s)2
3 = y

and t + (1− t)2
3 = w. Now consider the intervals

Ij := [22j

, 22j+1
[ (j = 1, 2, 3, . . .).

For j even and for each integer m ∈ [1, 22j−j(22j − 1)], define the families of subin-
tervals Kj,m and Lj,m as follows:

Kj,m := [22j

+ (m− 1)2j , 22j

+ (m− 1 + s) · 2j [

and
Lj,m := [22j

+ (m− 1 + s)2j , 22j

+ m2j [,
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so that

Ij =
22j−j(22j

−1)�

m=1

(Kj,m ∪ Lj,m).

For j odd, we replace the number s by t in the definition of the subintervals Kj,m

and Lj,m. For simplicity, we define implicitly Aj,m, Bj,m, Cj,m,Dj,m as

Kj,m = [Aj,m, Bj,m[

and
Lj,m = [Cj,m,Dj,m[.

We are now ready to define a function f satisfying (20). We define f piecewise
in the following manner. If n ∈ Kj,m, then set

f(n) = n−Aj,m,

while if n ∈ Lj,m, set
f(n) = g2 (n− Cj,m) .

Assume first that j is even. Then,
�

n∈Ij

1
δf (n)

=
�

m

�

n∈Kj,m

1
δf (n)

+
�

m

�

n∈Lj,m

1
δf (n)

=
�

m

(Bj,m −Aj,m + O(1)) +
�

m

2
3

(Dj,m − Cj,m + O(1))

=
�

m

�
s2j + O(1)

�
+

�

m

�
2
3
(1− s)2j + O(1)

�

=
�

m

�
y2j + O(1)

�

= y
�
22j+1

− 22j
�

+ O

�
22j+1

2j

�
. (21)

If j is odd, we obtain in a similar fashion

�

n∈Ij

1
δf (n)

= w
�
22j+1

− 22j
�

+ O

�
22j+1

2j

�
. (22)

Let x be a large real number. Let j∗ be the largest integer such that 22j∗
< x and

let m∗ be the largest integer such that Dj∗,m∗ ≤ x. We then have
�

n≤x

1
δf (n)

=
�

n<22j∗−1

1
δf (n)

+
�

n∈Ij∗−1

1
δf (n)

+
�

22j∗≤n≤x

1
δf (n)

= Σ1 + Σ2 + Σ3, (23)
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say. On the one hand, we trivially have

Σ1 = O
�
22j∗−1

�
, (24)

while assuming j∗ − 1 even, we have, using (21),

Σ2 = y · 22j∗

+ O

�
22j∗

2j∗

�
. (25)

Finally,

Σ3 =
�

m≤m∗

�

n∈Lj∗,m

1
δf (n)

+
�

m≤m∗

�

n∈Kj∗,m

1
δf (n)

+ O
�
2j∗

�
,

which yields, in light of (22) (since j∗ is odd),

Σ3 = w
�
x− 22j∗

�
+ O

�
2j∗ + m∗

�
. (26)

Using (24), (25) and (26) in (23), we get

�

n≤x

1
δf (n)

= y22j∗

+ w
�
x− 22j∗

�
+ O

�
x

log x

�
,

which completes the proof of the theorem.

5. The Mean Value of the Index of Isolation

While the mean value of the reciprocal of the index of isolation gives information
on the local behavior of a function f , the mean value of the index of isolation itself
gives information on the very isolated numbers.

Theorem 14. Let f be a real-valued arithmetic function. Let a and b be two
positive integers such that b − a = N . Suppose furthermore that for all m ∈ [a, b[,
f(m) ≥ f(a). Then

�

n∈]a,b[

δf (n) ≤ N log N

2 log 2
. (27)

Proof. We prove Theorem 14 by using induction on N . The result holds for N = 1,
because the left-hand side of (27) is 0 (since the interval of summation contains no
integers), yielding the inequality 0 ≤ 0. It also holds for N = 2, because in this case
we have δf (a + 1) = 1, yielding the inequality 1 ≤ 1. So, let us assume that (27) is
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true for all intervals ]a, b[ with a − b = N for some integer N > 1. We shall prove
that under the hypothesis that b−a = N +1 and that for all m ∈]a, b[, f(m) ≥ f(a)
and f(m) ≥ f(b), we have

�

a+1≤n≤b−1

δf (n) ≤ N

2
log N

log 2
. (28)

We prove (28) by using induction on N . Clearly the result is true for N = 1 and
N = 2. Assume that it is true for N−1 and let us prove that it is true for N . Define
n∗ as an integer such that n∗ ∈]a, b[ and such that for all m ∈]a, b[, f(m) ≥ f(n∗).
We thus have

�

a+1≤n≤b−1

δf (n) ≤ min(n∗−a−1, b−n∗−1)+
�

a+1≤n≤n∗−1

δf (n)+
�

n∗+1≤n≤b−1

δf (n).

Using our induction hypothesis, we have
�

a+1≤n≤n∗−1

δf (n) ≤ n∗ − a

2
log(n∗ − a)

log 2

and �

n∗+1≤n≤b−1

δf (n) ≤ b− n∗

2
log(b− n∗)

log 2
.

Without any loss of generality, we can assume that n∗ ∈]a, a + (b− a)/2], so that
�

a+1≤n≤b−1

δf (n) ≤ n∗ − a− 1 +
n∗ − a

2
log(n∗ − a)

log 2
+

b− n∗

2
log(b− n∗)

log 2
. (29)

Assuming for now that n∗ is a real variable, and taking the derivative of the right-
hand side of (29) with respect to n∗, we obtain

1 +
log(n∗ − a)

2 log 2
− log(b− n∗)

2 log 2
.

Since the second derivative is positive, the right-hand side of (29) reaches its maxi-
mum value at the end points, that is, either when n∗ = a + 1 or n∗ = (b + a)/2. In
the first case, we get

�

a+1≤n≤b−1

δf (n) ≤ (N − 1) log(N − 1)
2 log 2

≤ N log N

2 log 2
.

In the second case, that is, when n∗ = (b + a)/2, we obtain
�

a+1≤n≤b−1

δf (n) ≤ N

2
− 1 +

N log(N/2)
2 log 2

=
N log N

2 log 2
− 1 ≤ N log N

2 log 2
,
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thus proving (28) in all cases.
We are now ready to complete the proof of Theorem 14, that is, to remove the

condition f(m) ≥ f(b). For this, we use induction.
Let n0 ∈]a, b[ be an integer such that for all m ∈]a, b[, f(m) ≥ f(n0). We can

write
�

a+1≤n≤b−1

δf (n) ≤
�

a+1≤n≤n0−1

δf (n) + n0 − a− 1 +
�

n0+1≤n≤b−1

δf (n).

Using our induction hypothesis, we obtain

�

a+1≤n≤n0−1

δf (n) ≤ (n0 − a) log(n0 − a)
2 log 2

and �

n0+1≤n≤b−1

δf (n) ≤ (b− n0) log(b− n0)
2 log 2

.

From the last three estimates, it follows that

�

a+1≤n≤b−1

δf (n) ≤ n0 − a− 1 +
(n0 − a) log(n0 − a)

2 log 2
+

(b− n0) log(b− n0)
2 log 2

. (30)

Proceeding as we did to estimate the right-hand side of (29), we obtain that the

right-hand side of (30) is less than
N log N

2 log 2
, which completes the proof of the

theorem.

Theorem 15. As x→∞,
�

n≤x

δω(n)� x log log x.

Proof. For each x ≥ 2,
�

n≤x

δω(n) =
�

d

�

n≤x
ω(n)=d

δω(n)

=
�

d≤10 log log x

�

n≤x
ω(n)=d

δω(n) +
�

d>10 log log x

�

n≤x
ω(n)=d

δω(n). (31)

Clearly, for any fixed d ≥ 1, �

n≤x
ω(n)=d

δω(n) ≤ 2x.
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Therefore, �

d≤10 log log x

�

n≤x
ω(n)=d

δω(n) ≤ 20x log log x. (32)

Let x be large and fixed, and consider the set S := {n ≤ x : ω(n) > 10 log log x}.
Write S as the union of disjoint intervals S = I1 ∪ I2 ∪ . . .∪ Ik, and let �j stand for
the length of the interval Ij . We have from Theorem 14 that

�

n∈Ij

δω(n) ≤ �j log �j

2 log 2
. (33)

On the other hand, one can show that

k�

j=1

�j = #S =
�

n≤x
ω(n)>10 log log x

1 = o

�
x

log x

�
(x→∞) (34)

(see, for instance, relation (18) in De Koninck, Doyon and Luca [3]).
It follows from (33) and (34) that

�

n∈S

δω(n) ≤
k�

j=1

�j log �j

2 log 2
≤ log x

2 log 2
· o

�
x

log x

�
= o(x) (x→∞). (35)

Substituting (32) and (35) in (31) completes the proof of the theorem.

Remark. Using a computer, one can observe that, for x = 109,

1
x log log x

�

n≤x

δω(n) ≈ 0.60.

Theorem 16. Let the function gq be defined as in (18). Then

�

1≤n≤N

δgq(n) =
(q − 1)N log N

q log q
+ O(N),

so that the function g2 is the function for which the sums of the index of isolation
is maximal.

Proof. Let n be written in base q ≥ 2, that is,

n :=
k�

j=0

αj,q(n)qj .
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In light of Remark 12, we get, letting k0 be the largest integer such that qk0 ≤ N ,
�

n≤N

δgq(n) =
�

n≤N

n�=qk

δgq(n) +
�

n≤N

n=qk

δgq(n)

=
�

m≤log N/ log q

qm · #{n ≤ N : δgq(n) = qm} +
�

qk≤N

qk−1(q − 1)

=
�

m≤log N/ log q

qm ·
�

q − 1
qm+1

N + O(1)
�

+ (q − 1)
�

qk≤N

qk−1

=
q − 1

q
N

log N

log q
+ O(N) + (q − 1)

qk0 − 1
q − 1

=
q − 1

q
N

log N

log q
+ O(N),

thus completing the proof of the theorem.

6. Computational Data and Open Problems

If n = nk stands for the smallest positive integer n such that

δ(n) = δ(n + 1) = . . . = δ(n + k − 1) = 1, (36)

then we have the following table:

k 1 2 3 4 5 6 7 8 9 10
nk 1 1 1 91 91 169 2737 26 536 67 311 535 591

k 11 12 13 14 15
nk 3 021 151 26 817 437 74 877 777 657 240 658 785 211 337

Some open problems concerning the sequence nk, k = 1, 2, 3, . . ., are the following:

1. Prove that nk exists for each integer k ≥ 16.

2. Estimate the size of nk as a function of k. Also, is it true that nk ≤ k! for
each integer k ≥ 5 ?

3. Prove that for any fixed k ≥ 3, there are infinitely many integers n such
that (36) is satisfied. The fact that the matter is settled for k = 2 follows
immediately from the Balog result stated at the beginning of Section 3.

Interesting questions also arise from the study of the function ∆(n) first men-
tioned in Section 2. For instance, let mk stand for the smallest number m for
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which
∆(m) = ∆(m + 1) = . . . = ∆(m + k − 1). (37)

Then

• m2 = 14, with ∆(14) = ∆(15) = 4;

• m3 = 33, with ∆(33) = ∆(34) = ∆(35) = 4;

• m4 = 2189 815, with ∆(m4 + i) = 12 for i = 0, 1, 2, 3;

• m5 = 7201 674, with ∆(m5 + i) = 14 for i = 0, 1, 2, 3, 4;

• if m6 exists, then m6 > 1 500 000 000.

Specific questions are the following:

1. Prove that mk exists for each integer k ≥ 6.

2. Estimate the size of mk as a function of k.

3. Prove that for any fixed k ≥ 3, there are infinitely many integers m such that
(37) is satisfied ?
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number theory, An introduction, NATO Sci. Ser. II Math. Phys. Chem. vol. 237 (2007), 15-27.

[6] M.Langevin, Quelques applications de nouveaux résultats de Van der Poorten, Séminaire
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