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Abstract
By means of Liouville’s theorem, we show that Euler’s pentagon number theorem
implies the Jacobi triple product identity.

1. The Result

For two complex numbers x and q, define the q-shifted factorial by

(x; q)0 = 1 and (x; q)n =
n−1�

i=0

(1− qix) for n ∈ N.

When |q| < 1, the following product of infinite order is well-defined:

(x; q)∞ =
∞�

i=0

(1− qix).

Then Euler’s pentagon number theorem(cf. Andrews, Askey and Roy [2, Section
10.4]) and the Jacobi triple product identity(cf. Jacobi [4]) can be stated, respec-
tively, as follows:

+∞�

k=−∞
(−1)kq

k
2 (3k+1) = (q; q)∞, (1)

+∞�

k=−∞
(−1)kq(

k
2)xk = (q; q)∞(x; q)∞(q/x; q)∞ where x �= 0. (2)
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It is well-known that (2) contains (1) as a special case. We shall prove that (1)
implies (2) by means of Liouville’s theorem: every bounded entire function must be

a constant. It is a surprise that our proof for (2), which will be displayed, does not
require expanding the expression (q; q)∞(x; q)∞(q/x; q)∞ as a power series in x.

For facilitating the use of Liouville’s theorem, Chu and Yan [1] gave the following
statement.

Lemma 1. Let f be a holomorphic function on C \ { 0} satisfying the functional

equation f(z) = f(qz) where 0 < |q| < 1. Then f is a constant.

Proof of the Jacobi triple product identity. Define F (x) = U(x)/V (x), where U(x)
and V (x) stand respectively for

U(x) =
+∞�

k=−∞
(−1)kq(

k
2)xk,

V (x) = (q; q)∞(x; q)∞(q/x; q)∞.

It is not difficult to check the two equations:

U(x) = −xU(qx) and V (x) = −xV (qx),

which lead consequently to the following relation: F (x) = F (qx) = F (q2x) = · · · .
Observe that the possible poles of F (x) are given by the zeros of V (x), which consist
of x = qn with n ∈ Z and are all simple. However, U(qn) = 0 for n ∈ Z, which is
justified as follows. Shifting the summation index k → k − n for U(qn), we obtain
the equation:

U(qn) =
+∞�

k=−∞
(−1)kq(

k
2)+nk =

+∞�

k=−∞
(−1)k−nq(

k−n
2 )+n(k−n)

= (−1)nq−(n
2)

+∞�

k=−∞
(−1)kq(

k
2).

Splitting the last sum into two parts and performing the replacement k → 1− k for
the second sum, we have

U(qn) = (−1)nq−(n
2)

�
+∞�
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k
2) +

0�

k=−∞
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2)

�
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2)

�
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= 0.
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Therefore, F (x) is a holomorphic function on C \ { 0} and must be a constant
thanks to Lemma 1. It remains to be shown that this constant is one. Denote by
ω = exp(2π/3) the cubic root of unity. Then we get the equation:

U(ω) =
+∞�

k=−∞
(−1)kq(

3k
2 ) − ω

+∞�

k=−∞
(−1)kq(

1+3k
2 ) + ω2

+∞�

k=−∞
(−1)kq(

2+3k
2 ).

According to Euler’s pentagon number theorem (1), we can check, without difficulty,
that

+∞�
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(−1)kq(

3k
2 ) =

+∞�

k=−∞
(−1)kq(

1+3k
2 ) = (q3; q3)∞.

Combining the last identity with the derivation
+∞�
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(−1)kq(

2+3k
2 ) =
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k=0
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2+3k

2 ) +
−1�
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=
+∞�
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2 ) −
+∞�

k=0
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2+3k

2 )

= 0,

we achieve the following relation: U(ω) = (1− w)(q3; q3)∞ = V (ω), which leads to

F (x) = F (ω) = U(ω)/V (ω) = 1.

This proves the Jacobi triple product identity (2). ✷

Remark: One can also show that Euler’s pentagon number theorem implies the
quintuple product identity(cf. Gasper and Rahman [3, Section 1.6]) in the same
method. The details will not be reproduced here.
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