# A REMARK ON A PAPER OF LUCA AND WALSH ${ }^{1}$ 

Zhao-Jun Li

Department of Mathematics, Anhui Normal University, Wuhu, China
Min Tang ${ }^{2}$
Department of Mathematics, Anhui Normal University, Wuhu, China
tmzzz2000@163.com

Received: 7/5/10, Revised: 3/27/11, Accepted: 5/12/11, Published: 6/8/11


#### Abstract

In 2002, F. Luca and P. G. Walsh studied the diophantine equations of the form $\left(a^{k}-1\right)\left(b^{k}-1\right)=x^{2}$, for all $(a, b)$ in the range $2 \leq b<a \leq 100$ with sixty-nine exceptions. In this paper, we solve two of the exceptions. In fact, we consider the equations of the form $\left(a^{k}-1\right)\left(b^{k}-1\right)=x^{2}$, with $(a, b)=(13,4),(28,13)$.


## 1. Introduction

In 2000, Szalay [5] determined that the diophantine equation $\left(2^{n}-1\right)\left(3^{n}-1\right)=x^{2}$ has no solutions in positive integers $n$ and $x,\left(2^{n}-1\right)\left(5^{n}-1\right)=x^{2}$ has only one solution $n=1, x=2$, and $\left(2^{n}-1\right)\left(\left(2^{k}\right)^{n}-1\right)=x^{2}$ has only one solution $k=2, n=3, x=21$. In 2000, Hajdu and Szalay [1] proved that the equation $\left(2^{n}-1\right)\left(6^{n}-1\right)=x^{2}$ has no solutions in positive integers $(n, x)$, while the only solutions to the equation $\left(a^{n}-1\right)\left(a^{k n}-1\right)=x^{2}$, with $a>1, k>1, k n>2$ are $(a, n, k, x)=(2,3,2,21),(3,1,5,22),(7,1,4,120)$.

In 2002, F. Luca and P. G. Walsh [4] proved that the Diophantine equation $\left(a^{k}-1\right)\left(b^{k}-1\right)=x^{n}$ has a finite number of solutions $(k, x, n)$ in positive integers, with $n>1$. Moreover, they showed how one can determine all integer solutions $(k, x, 2)$ of the above equation with $k>1$, for almost all pairs $(a, b)$ with $2 \leq b<$ $a \leq 100$. The sixty-nine exceptional pairs were concisely described:

Theorem A ([4] Theorem 3.1) Let $2 \leq b<a \leq 100$ be integers, and assume that $(a, b)$ is not in one of the following three sets:

[^0]1. $\{(22,2) ;(22,4)\}$;
2. $\{(a, b) ;(a-1)(b-1)$ is a square, $a \equiv b(\bmod 2)$, and $(a, b) \neq(9,3),(64,8)\}$;
3. $\{(a, b) ;(a-1)(b-1)$ is a square, $a+b \equiv 1(\bmod 2)$, and $a b \equiv 0(\bmod 4)\}$.

If $\left(a^{k}-1\right)\left(b^{k}-1\right)=x^{2}$, then $k=2$, except only for the pair $(a, b)=(4,2)$, in which case the only solution to the equation occurs at $k=3$.

For the other related problems, see [2], [3], [6] and [7].
In this paper, we consider two of the exceptions: $(a, b)=(13,4),(28,13)$ and obtain the following results:
Theorem 1. The equation

$$
\begin{equation*}
\left(4^{n}-1\right)\left(13^{n}-1\right)=x^{2} \tag{1}
\end{equation*}
$$

has only one solution $n=1, x=6$ in positive integers $n$ and $x$.
Theorem 2. The equation

$$
\begin{equation*}
\left(13^{n}-1\right)\left(28^{n}-1\right)=x^{2} \tag{2}
\end{equation*}
$$

has only one solution $n=1, x=18$ in positive integers $n$ and $x$.
For two relatively prime positive integers $a$ and $m$, the least positive integer $x$ with $a^{x} \equiv 1(\bmod m)$ is called the order of a modulo $m$. We denote the order of $a$ modulo $m$ by $\operatorname{ord}_{m}(a)$. For an odd prime $p$ and an integer $a$, let $\left(\frac{a}{p}\right)$ denote the Legendre symbol.

## 2. Proofs

Proof of Theorem 1. It is easy to verify that if $n \leq 3$ then Eq. (1) has only one solution $n=1, x=6$. Suppose that a pair $(n, x)$ with $n \geq 4$ is a solution of Eq. (1), we consider the following 10 cases.

Case 1. $n \equiv 0(\bmod 4)$. Then $n$ can uniquely be written in the form $n=4 \cdot 5^{k} l$, where $5 \nmid l, k \geq 0$. By induction on $k$, we have

$$
\begin{gather*}
4^{4 \cdot 5^{k} l} \equiv 1+5^{k+1} l \quad\left(\bmod 5^{k+2}\right)  \tag{3}\\
13^{4 \cdot 5^{k} l} \equiv 1+2 \cdot 5^{k+1} l \quad\left(\bmod 5^{k+2}\right) \tag{4}
\end{gather*}
$$

By the assumption and (3), (4) we have

$$
\frac{x^{2}}{5^{2 k+2}} \equiv 2 l^{2} \quad(\bmod 5)
$$

thus 2 is a quadratic residue modulo 5 , a contradiction.

Case 2. $n \equiv 2,3(\bmod 4)$. By $\operatorname{ord}_{16}(13)=4$, we have $x^{2} \equiv(-1)\left(13^{2}-1\right),(-1)\left(13^{3}-\right.$ $1) \equiv 8,12(\bmod 16)$. These are impossible.
Case 3. $n \equiv 5(\bmod 12)$. Then $x^{2} \equiv\left(4^{5}-1\right)\left(6^{5}-1\right) \equiv 5(\bmod 7)$, a contradiction. Case 4. $n \equiv 9(\bmod 12)$. Then $x^{2} \equiv\left(4^{9}-1\right)(-1) \equiv 2(\bmod 13)$, a contradiction. Case $5 . \quad n \equiv 1(\bmod 24)$. By $\operatorname{ord}_{32}(13)=8$, we have $x^{2} \equiv(-1)(13-1) \equiv 20$ $(\bmod 32)$. Hence $4 \mid x^{2}$. Let $x=2 x_{1}$ with $x_{1} \in \mathbb{Z}$. Then $x_{1}^{2} \equiv 5(\bmod 8)$. This is impossible.
Case 6. $n \equiv 13,109(\bmod 120)$. Then $n \equiv 3,9(\bmod 10)$ and $n \equiv 13,29(\bmod 40)$. $\operatorname{By} \operatorname{ord}_{41}(4)=10$ and $\operatorname{ord}_{41}(13)=40$, we have $x^{2} \equiv\left(4^{3}-1\right)\left(13^{13}-1\right),\left(4^{9}-1\right)\left(13^{29}-\right.$ $1) \equiv 15,6(\bmod 41)$. These contradict the fact that $\left(\frac{15}{41}\right)=\left(\frac{6}{41}\right)=-1$.
Case $7 . \quad n \equiv 37(\bmod 120)$. Then $n \equiv 7(\bmod 30)$ and $n \equiv 1(\bmod 3)$. By $\operatorname{ord}_{61}(4)=30$ and $\operatorname{ord}_{61}(13)=3$, we have $x^{2} \equiv\left(4^{7}-1\right)(13-1) \equiv 54(\bmod 61)$. This contradicts the fact that $\left(\frac{54}{61}\right)=-1$.
Case $8 . \quad n \equiv 301,325,541,565,661,685,781(\bmod 840)$. Then $n \equiv 21,10,16$, $5,31,20,11(\bmod 35)$ and $n \equiv 21,45,51,5,31,55,11(\bmod 70) . \quad B y \operatorname{ord}_{71}(4)=$ 35 and $\operatorname{ord}_{71}(13)=70$, we have $x^{2} \equiv\left(4^{21}-1\right)\left(13^{21}-1\right),\left(4^{10}-1\right)\left(13^{45}-1\right)$, $\left(4^{16}-1\right)\left(13^{51}-1\right),\left(4^{5}-1\right)\left(13^{5}-1\right),\left(4^{31}-1\right)\left(13^{31}-1\right),\left(4^{20}-1\right)\left(13^{55}-1\right)$, $\left(4^{11}-1\right)\left(13^{11}-1\right) \equiv 44,7,59,34,47,65,53(\bmod 71)$. These contradict the fact that $\left(\frac{44}{71}\right)=\left(\frac{59}{71}\right)=\left(\frac{47}{71}\right)=\left(\frac{53}{71}\right)=\left(\frac{7}{71}\right)=\left(\frac{34}{71}\right)=\left(\frac{65}{71}\right)=-1$.
Case 9. $n \equiv 61,85,181,421,805(\bmod 840)$. Then $n \equiv 5,1,13,7(\bmod 14)$ and $n \equiv 5,29,13,21(\bmod 56)$. By $\operatorname{ord}_{113}(4)=14$ and $\operatorname{ord}_{113}(13)=56$, we have $x^{2} \equiv$ $\left(4^{5}-1\right)\left(13^{5}-1\right),(4-1)\left(13^{29}-1\right),\left(4^{13}-1\right)\left(13^{13}-1\right),\left(4^{7}-1\right)\left(13^{21}-1\right) \equiv 70,71,39,79$ $(\bmod 113)$. These contradict the fact that $\left(\frac{70}{113}\right)=\left(\frac{39}{113}\right)=\left(\frac{71}{113}\right)=\left(\frac{79}{113}\right)=$ -1 .

Case 10. $n \equiv 205,445,1045,1285(\bmod 1680)$. Then $n \equiv 1(\bmod 12)$ and $n \equiv$ $85,205(\bmod 240)$. By $\operatorname{ord}_{241}(4)=12$ and $\operatorname{ord}_{241}(13)=240$, we have $x^{2} \equiv(4-$ 1) $\left(13^{85}-1\right),(4-1)\left(13^{205}-1\right) \equiv 124,111(\bmod 241)$. These contradict the fact that $\left(\frac{111}{241}\right)=\left(\frac{124}{241}\right)=-1$.

The above ten cases are exhaustive, thereby completing the proof.
Proof of Theorem 2. It is easy to verify that if $n \leq 3$ then Eq. (2) has only one solution: $n=1, x=18$. Suppose that a pair $(n, x)$ with $n \geq 4$ is the solution of Eq. (2), we consider the following 16 cases.

Case 1. $n \equiv 0(\bmod 4)$. Then $n$ can uniquely be written in the form $n=4 \cdot 5^{k} l$, where $k \geq 0,5 \nmid l$. By induction on $k$, we have

$$
\begin{gather*}
13^{4 \cdot 5^{k} l} \equiv 1+2 \cdot 5^{k+1} l \quad\left(\bmod 5^{k+2}\right)  \tag{5}\\
28^{4 \cdot 5^{k} l} \equiv 1+5^{k+1} l \quad\left(\bmod 5^{k+2}\right) \tag{6}
\end{gather*}
$$

By the assumption and (5), (6) we have

$$
\frac{x^{2}}{5^{2 k+2}} \equiv 2 l^{2} \quad(\bmod 5)
$$

thus, 2 is a quadratic residue modulo 5 , a contradiction.
Case 2. $n \equiv 2,3(\bmod 4)$. By ord ${ }_{16}(13)=4$, we have $x^{2} \equiv\left(13^{2}-1\right)(-1),\left(13^{3}-\right.$ $1)(-1) \equiv 8,12(\bmod 16)$. These are impossible.
Case 3. $n \equiv 1(\bmod 8)$. By $\operatorname{ord}_{32}(13)=8$, we have $x^{2} \equiv(13-1)(-1) \equiv 20$ $(\bmod 32)$. Hence $4 \mid x^{2}$. Let $x=2 x_{1}$ with $x_{1} \in \mathbb{Z}$. Then $x_{1}^{2} \equiv 5(\bmod 8)$. This is impossible.
Case 4. $n \equiv 5,21,29,61(\bmod 72)$. Then $n \equiv 5,21,29,25(\bmod 36)$ and $n \equiv$ $5,3,11,7(\bmod 18)$. By $\operatorname{ord}_{37}(13)=36$ and $\operatorname{ord}_{37}(28)=18$, we have $x^{2} \equiv\left(13^{5}-\right.$ 1) $\left(28^{5}-1\right),\left(13^{21}-1\right)\left(28^{3}-1\right),\left(13^{29}-1\right)\left(28^{11}-1\right),\left(13^{25}-1\right)\left(28^{7}-1\right) \equiv 31,35,17,6$ $(\bmod 37)$. These contradict the fact that $\left(\frac{31}{37}\right)=\left(\frac{35}{37}\right)=\left(\frac{17}{37}\right)=\left(\frac{6}{37}\right)=-1$.
Case $5 . \quad n \equiv 53,69(\bmod 72)$. By $\operatorname{ord}_{73}(13)=\operatorname{ord}_{73}(28)=72$, we have $x^{2} \equiv$ $\left(13^{53}-1\right)\left(28^{53}-1\right),\left(13^{69}-1\right)\left(28^{69}-1\right) \equiv 40,59(\bmod 73)$. These contradict the fact that $\left(\frac{40}{73}\right)=\left(\frac{59}{73}\right)=-1$.
Case 6. $n \equiv 13,253,333,109,189,229(\bmod 360)$. Then $n \equiv 13,29(\bmod 40)$. By $\operatorname{ord}_{41}(13)=\operatorname{ord}_{41}(28)=40$, we have $x^{2} \equiv\left(13^{13}-1\right)\left(28^{13}-1\right),\left(13^{29}-1\right)\left(28^{29}-1\right) \equiv$ $3,34(\bmod 41)$. These contradict the fact that $\left(\frac{3}{41}\right)=\left(\frac{34}{41}\right)=-1$.
Case 7. $n \equiv 37,157(\bmod 360)$. Then $n \equiv 1(\bmod 3)$ and $n \equiv 37(\bmod 60)$. By $\operatorname{ord}_{61}(13)=3$ and $\operatorname{ord}_{61}(28)=20$, we have $x^{2} \equiv(13-1)\left(28^{37}-1\right) \equiv 17(\bmod 61)$. This contradicts the fact that $\left(\frac{17}{61}\right)=-1$.
Case $8 . \quad n \equiv 261,301(\bmod 360)$. Then $n \equiv 36,31(\bmod 45)$ and $n \equiv 81,121$ $(\bmod 180)$. By $\operatorname{ord}_{181}(13)=45$ and $\operatorname{ord}_{181}(28)=180$, we have $x^{2} \equiv\left(13^{36}-\right.$ 1) $\left(28^{81}-1\right),\left(13^{31}-1\right)\left(28^{121}-1\right) \equiv 86,107(\bmod 181)$. These contradict the fact that $\left(\frac{86}{181}\right)=\left(\frac{107}{181}\right)=-1$.
Case 9. $n \equiv 85,181,1045,445,541,1405,477,765(\bmod 1440)$. Then $n \equiv 85,61,93$ $(\bmod 96)$ and $n \equiv 21,29(\bmod 32)$. By $\operatorname{ord}_{97}(13)=96$ and $\operatorname{ord}_{97}(28)=32$, we have $x^{2} \equiv\left(13^{85}-1\right)\left(28^{21}-1\right),\left(13^{61}-1\right)\left(28^{29}-1\right)\left(13^{93}-1\right)\left(28^{29}-1\right) \equiv 42,26,30$ $(\bmod 97)$. These contradict the fact that $\left(\frac{42}{97}\right)=\left(\frac{26}{97}\right)=\left(\frac{30}{97}\right)=-1$.

Case 10. $n \equiv 325,805,685,1165,45,117,837(\bmod 1440)$. Then $n \equiv 85,205$, $45,117(\bmod 240)$ and $n \equiv 5,45,37(\bmod 80)$. By $\operatorname{ord}_{241}(13)=240$ and $\operatorname{ord}_{241}(28)$ $=80$, we have $x^{2} \equiv\left(13^{85}-1\right)\left(28^{5}-1\right),\left(13^{205}-1\right)\left(28^{45}-1\right),\left(13^{45}-1\right)\left(28^{45}-1\right)$, $\left(13^{117}-1\right)\left(28^{37}-1\right) \equiv 208,43,139,197(\bmod 241)$. These contradict the fact that $\left(\frac{208}{241}\right)=\left(\frac{43}{241}\right)=\left(\frac{139}{241}\right)=\left(\frac{197}{241}\right)=-1$.

Case 11. $n \equiv 1261,4141,405,1845,4005,1197,2637(\bmod 4320)$. Then $n \equiv 181$, $37,189,117,45(\bmod 216)$ and $n \equiv 397,253,405,117,333,45(\bmod 432)$. By $\operatorname{ord}_{433}(13)=216$ and $\operatorname{ord}_{433}(28)=432$, we have $x^{2} \equiv\left(13^{181}-1\right)\left(28^{397}-1\right)$, $\left(13^{37}-1\right)\left(28^{253}-1\right),\left(13^{189}-1\right)\left(28^{405}-1\right),\left(13^{117}-1\right)\left(28^{117}-1\right),\left(13^{117}-1\right)\left(28^{333}-1\right)$, $\left(13^{45}-1\right)\left(28^{45}-1\right) \equiv 299,393,166,201,387,279(\bmod 433)$. These contradict the fact that $\left(\frac{299}{433}\right)=\left(\frac{393}{433}\right)=\left(\frac{166}{433}\right)=\left(\frac{201}{433}\right)=\left(\frac{387}{433}\right)=\left(\frac{279}{433}\right)=-1$.
Case 12. $n \equiv 1125,3285(\bmod 4320)$. Then $n \equiv 45(\bmod 540)$ and $n \equiv 18$ $(\bmod 27) . \operatorname{By~ord} \operatorname{orfl}_{54}(13)=540$ and $\operatorname{ord}_{541}(28)=27$, we have $x^{2} \equiv\left(13^{45}-1\right)\left(28^{18}-\right.$ $1) \equiv 295(\bmod 541)$. This contradicts the fact that $\left(\frac{295}{541}\right)=-1$.
Case 13. $n \equiv 2701(\bmod 8640)$. Then $n \equiv 13(\bmod 64)$ and $n \equiv 13(\bmod 48)$. By $\operatorname{ord}_{193}(13)=64$ and $\operatorname{ord}_{193}(28)=48$, we have $x^{2} \equiv\left(13^{13}-1\right)\left(28^{13}-1\right) \equiv 71$ $(\bmod 193)$. This contradicts the fact that $\left(\frac{71}{193}\right)=-1$.
Case 14. $n \equiv 2341,5221,8101,2565,6885(\bmod 8640)$. Then $n \equiv 37,261,549$ $(\bmod 576) . \quad$ By $\operatorname{ord}_{577}(13)=\operatorname{ord}_{577}(28)=576$, we have $x^{2} \equiv\left(13^{37}-1\right)\left(28^{37}-\right.$ 1), $\left(13^{261}-1\right)\left(28^{261}-1\right),\left(13^{549}-1\right)\left(28^{549}-1\right) \equiv 45,222,355(\bmod 577)$. These contradict the fact that $\left(\frac{45}{577}\right)=\left(\frac{222}{577}\right)=\left(\frac{355}{577}\right)-1$.
Case 15. $n \equiv 3781,7021,4077,8397(\bmod 8640)$. Then $n \equiv 1,27(\bmod 135)$ and $n \equiv 1621,541,1917(\bmod 2160) . \quad B y \operatorname{ord}_{2161}(13)=135$ and $\operatorname{ord}_{2161}(28)=2160$, we have $x^{2} \equiv(13-1)\left(28^{1621}-1\right),(13-1)\left(28^{541}-1\right),\left(13^{27}-1\right)\left(28^{1917}-1\right) \equiv$ $1838,299,2090(\bmod 2161)$. These contradict the fact that $\left(\frac{1838}{2161}\right)=\left(\frac{299}{2161}\right)=$ $\left(\frac{2090}{2161}\right)=-1$.
Case 16. $n \equiv 901,6661(\bmod 8640)$. Then $n \equiv 37,613(\bmod 864)$. Since $\operatorname{ord}_{8641}(13)=864$ and $\operatorname{ord}_{8641}(28)=8640$, we have $x^{2} \equiv\left(13^{37}-1\right)\left(28^{901}-1\right)$, $\left(13^{613}-1\right)\left(28^{6661}-1\right) \equiv 4110,1277(\bmod 8641)$. These contradict the fact that $\left(\frac{4110}{8641}\right)=\left(\frac{1277}{8641}\right)=-1$.

The above sixteen cases are exhaustive, thereby completing the proof.

Acknowledgement. We would like to thank the referee for his/her many helpful suggestions. We thank Professor Yong-Gao Chen and managing editor Bruce Landman for many helpful editing suggestions.

## References

[1] L. Hajdu, L. Szalay, On the Diophantine equations $\left(2^{n}-1\right)\left(6^{n}-1\right)=x^{2}$ and $\left(a^{n}-1\right)\left(a^{k n}-1\right)=$ $x^{2}$, Period. Math. Hungar. 40(2000), 141-145.
[2] Li Lan and L. Szalay, On the exponential diophantine $\left(a^{n}-1\right)\left(b^{n}-1\right)=x^{2}$, Publ. Math. Debrecen 77(2010), 1-6.
[3] M. H. Le, A note on the exponential Diophantine equation $\left(2^{n}-1\right)\left(b^{n}-1\right)=x^{2}$, Publ. Math. Debrecen 74(2009), 401-403.
[4] F. Luca, P. G. Walsh, The product of like-indexed terms in binary recurrences, J. Number Theory 96(2002), 152-173.
[5] L. Szalay, On the diophantine equations $\left(2^{n}-1\right)\left(3^{n}-1\right)=x^{2}$, Publ. Math. Debrecen $57(2000)$, 1-9.
[6] Min Tang, A note on the exponential diophantine equation $\left(a^{m}-1\right)\left(b^{n}-1\right)=x^{2}$, J. Math. Research and Exposition, to appear.
[7] P. G. Walsh, On Diophantine equations of the form $\left(x^{n}-1\right)\left(y^{m}-1\right)=z^{2}$, Tatra Mt. Math. Publ. 20(2000), 87-89.


[^0]:    ${ }^{1}$ This work was supported by the National Natural Science Foundation of China, Grant No 10901002 and the foundation for reserved candidates of 2010 Anhui Province academic and technical leaders
    ${ }^{2}$ Corresponding author.

