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Abstract
In 2002, F. Luca and P. G. Walsh studied the diophantine equations of the form

(ak − 1)(bk − 1) = x2
, for all (a, b) in the range 2 ≤ b < a ≤ 100 with sixty-nine

exceptions. In this paper, we solve two of the exceptions. In fact, we consider the

equations of the form (ak − 1)(bk − 1) = x2
, with (a, b) = (13, 4), (28, 13).

1. Introduction

In 2000, Szalay [5] determined that the diophantine equation (2
n− 1)(3

n− 1) = x2

has no solutions in positive integers n and x, (2
n − 1)(5

n − 1) = x2
has only

one solution n = 1, x = 2, and (2
n − 1)((2

k
)
n − 1) = x2

has only one solution

k = 2, n = 3, x = 21. In 2000, Hajdu and Szalay [1] proved that the equation

(2
n − 1)(6

n − 1) = x2
has no solutions in positive integers (n, x), while the only

solutions to the equation (an − 1)(akn − 1) = x2
, with a > 1, k > 1, kn > 2 are

(a, n, k, x) = (2, 3, 2, 21), (3, 1, 5, 22), (7, 1, 4, 120).

In 2002, F. Luca and P. G. Walsh [4] proved that the Diophantine equation

(ak − 1)(bk − 1) = xn
has a finite number of solutions (k, x, n) in positive integers,

with n > 1. Moreover, they showed how one can determine all integer solutions

(k, x, 2) of the above equation with k > 1, for almost all pairs (a, b) with 2 ≤ b <
a ≤ 100. The sixty-nine exceptional pairs were concisely described:

Theorem A ([4] Theorem 3.1) Let 2 ≤ b < a ≤ 100 be integers, and assume that
(a, b) is not in one of the following three sets:
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1. {(22, 2); (22, 4)};
2. {(a, b); (a− 1)(b− 1)is a square, a ≡ b (mod 2), and (a, b) �= (9, 3), (64, 8)};
3. {(a, b); (a− 1)(b− 1)is a square, a + b ≡ 1 (mod 2), and ab ≡ 0 (mod 4)}.

If (ak−1)(bk−1) = x2, then k = 2, except only for the pair (a, b) = (4, 2), in which
case the only solution to the equation occurs at k = 3.

For the other related problems, see [2], [3], [6] and [7].

In this paper, we consider two of the exceptions: (a, b) = (13, 4), (28, 13) and

obtain the following results:

Theorem 1. The equation

(4
n − 1)(13

n − 1) = x2
(1)

has only one solution n = 1, x = 6 in positive integers n and x.

Theorem 2. The equation

(13
n − 1)(28

n − 1) = x2
(2)

has only one solution n = 1, x = 18 in positive integers n and x.
For two relatively prime positive integers a and m, the least positive integer x

with ax ≡ 1 (mod m) is called the order of a modulo m. We denote the order of

a modulo m by ordm(a). For an odd prime p and an integer a, let (
a
p ) denote the

Legendre symbol.

2. Proofs

Proof of Theorem 1. It is easy to verify that if n ≤ 3 then Eq. (1) has only one

solution n = 1, x = 6. Suppose that a pair (n, x) with n ≥ 4 is a solution of Eq.

(1), we consider the following 10 cases.

Case 1. n ≡ 0 (mod 4). Then n can uniquely be written in the form n = 4 · 5
kl,

where 5 � l, k ≥ 0. By induction on k, we have

4
4·5kl ≡ 1 + 5

k+1l (mod 5
k+2

), (3)

13
4·5kl ≡ 1 + 2 · 5k+1l (mod 5

k+2
). (4)

By the assumption and (3), (4) we have

x2

52k+2
≡ 2l2 (mod 5),

thus 2 is a quadratic residue modulo 5, a contradiction.
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Case 2. n ≡ 2, 3 (mod 4). By ord16(13) = 4, we have x2 ≡ (−1)(13
2−1), (−1)(13

3−
1) ≡ 8, 12 (mod 16). These are impossible.

Case 3. n ≡ 5 (mod 12). Then x2 ≡ (4
5−1)(6

5−1) ≡ 5 (mod 7), a contradiction.

Case 4. n ≡ 9 (mod 12). Then x2 ≡ (4
9 − 1)(−1) ≡ 2 (mod 13), a contradiction.

Case 5. n ≡ 1 (mod 24). By ord32(13) = 8, we have x2 ≡ (−1)(13 − 1) ≡ 20

(mod 32). Hence 4|x2
. Let x = 2x1 with x1 ∈ Z. Then x2

1 ≡ 5 (mod 8). This is

impossible.

Case 6. n ≡ 13, 109 (mod 120). Then n ≡ 3, 9 (mod 10) and n ≡ 13, 29 (mod 40).

By ord41(4) = 10 and ord41(13) = 40, we have x2 ≡ (4
3−1)(13

13−1), (4
9−1)(13

29−
1) ≡ 15, 6 (mod 41). These contradict the fact that

�
15

41

�
=

�
6

41

�
= −1.

Case 7. n ≡ 37 (mod 120). Then n ≡ 7 (mod 30) and n ≡ 1 (mod 3). By

ord61(4) = 30 and ord61(13) = 3, we have x2 ≡ (4
7 − 1)(13 − 1) ≡ 54 (mod 61).

This contradicts the fact that

�
54

61

�
= −1.

Case 8. n ≡ 301, 325, 541, 565, 661, 685, 781 (mod 840). Then n ≡ 21, 10, 16,

5, 31, 20, 11 (mod 35) and n ≡ 21, 45, 51, 5, 31, 55, 11 (mod 70). By ord71(4) =

35 and ord71(13) = 70, we have x2 ≡ (4
21 − 1)(13

21 − 1), (4
10 − 1)(13

45 − 1),
(4

16 − 1)(13
51 − 1), (4

5 − 1)(13
5 − 1), (4

31 − 1)(13
31 − 1), (4

20 − 1)(13
55 − 1),

(4
11 − 1)(13

11 − 1) ≡ 44, 7, 59, 34, 47, 65, 53 (mod 71). These contradict the fact

that

�
44

71

�
=

�
59

71

�
=

�
47

71

�
=

�
53

71

�
=

�
7

71

�
=

�
34

71

�
=

�
65

71

�
= −1.

Case 9. n ≡ 61, 85, 181, 421, 805 (mod 840). Then n ≡ 5, 1, 13, 7 (mod 14) and

n ≡ 5, 29, 13, 21 (mod 56). By ord113(4) = 14 and ord113(13) = 56, we have x2 ≡
(4

5−1)(13
5−1), (4−1)(13

29−1), (4
13−1)(13

13−1), (4
7−1)(13

21−1) ≡ 70, 71, 39, 79

(mod 113). These contradict the fact that

�
70

113

�
=

�
39

113

�
=

�
71

113

�
=

�
79

113

�
=

−1.

Case 10. n ≡ 205, 445, 1045, 1285 (mod 1680). Then n ≡ 1 (mod 12) and n ≡
85, 205 (mod 240). By ord241(4) = 12 and ord241(13) = 240, we have x2 ≡ (4 −
1)(13

85−1), (4−1)(13
205−1) ≡ 124, 111 (mod 241). These contradict the fact that�

111

241

�
=

�
124

241

�
= −1.

The above ten cases are exhaustive, thereby completing the proof. ✷

Proof of Theorem 2. It is easy to verify that if n ≤ 3 then Eq. (2) has only one

solution: n = 1, x = 18. Suppose that a pair (n, x) with n ≥ 4 is the solution of Eq.

(2), we consider the following 16 cases.

Case 1. n ≡ 0 (mod 4). Then n can uniquely be written in the form n = 4 · 5
kl,

where k ≥ 0, 5 � l. By induction on k, we have

13
4·5kl ≡ 1 + 2 · 5k+1l (mod 5

k+2
), (5)

28
4·5kl ≡ 1 + 5

k+1l (mod 5
k+2

). (6)
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By the assumption and (5), (6) we have

x2

52k+2
≡ 2l2 (mod 5);

thus, 2 is a quadratic residue modulo 5, a contradiction.

Case 2. n ≡ 2, 3 (mod 4). By ord16(13) = 4, we have x2 ≡ (13
2 − 1)(−1), (13

3 −
1)(−1) ≡ 8, 12 (mod 16). These are impossible.

Case 3. n ≡ 1 (mod 8). By ord32(13) = 8, we have x2 ≡ (13 − 1)(−1) ≡ 20

(mod 32). Hence 4|x2
. Let x = 2x1 with x1 ∈ Z. Then x2

1 ≡ 5 (mod 8). This is

impossible.

Case 4. n ≡ 5, 21, 29, 61 (mod 72). Then n ≡ 5, 21, 29, 25 (mod 36) and n ≡
5, 3, 11, 7 (mod 18). By ord37(13) = 36 and ord37(28) = 18, we have x2 ≡ (13

5 −
1)(28

5−1), (13
21−1)(28

3−1), (13
29−1)(28

11−1), (13
25−1)(28

7−1) ≡ 31, 35, 17, 6

(mod 37). These contradict the fact that

�
31

37

�
=

�
35

37

�
=

�
17

37

�
=

�
6

37

�
= −1.

Case 5. n ≡ 53, 69 (mod 72). By ord73(13) = ord73(28) = 72, we have x2 ≡
(13

53 − 1)(28
53 − 1), (13

69 − 1)(28
69 − 1) ≡ 40, 59 (mod 73). These contradict the

fact that

�
40

73

�
=

�
59

73

�
= −1.

Case 6. n ≡ 13, 253, 333, 109, 189, 229 (mod 360). Then n ≡ 13, 29 (mod 40). By

ord41(13) = ord41(28) = 40, we have x2 ≡ (13
13−1)(28

13−1), (13
29−1)(28

29−1) ≡
3, 34 (mod 41). These contradict the fact that

�
3

41

�
=

�
34

41

�
= −1.

Case 7. n ≡ 37, 157 (mod 360). Then n ≡ 1 (mod 3) and n ≡ 37 (mod 60). By

ord61(13) = 3 and ord61(28) = 20, we have x2 ≡ (13− 1)(28
37 − 1) ≡ 17 (mod 61).

This contradicts the fact that

�
17

61

�
= −1.

Case 8. n ≡ 261, 301 (mod 360). Then n ≡ 36, 31 (mod 45) and n ≡ 81, 121

(mod 180). By ord181(13) = 45 and ord181(28) = 180, we have x2 ≡ (13
36 −

1)(28
81 − 1), (13

31 − 1)(28
121 − 1) ≡ 86, 107 (mod 181). These contradict the fact

that

�
86

181

�
=

�
107

181

�
= −1.

Case 9. n ≡ 85, 181, 1045, 445, 541, 1405, 477, 765 (mod 1440). Then n ≡ 85, 61, 93

(mod 96) and n ≡ 21, 29 (mod 32). By ord97(13) = 96 and ord97(28) = 32, we

have x2 ≡ (13
85− 1)(28

21− 1), (13
61− 1)(28

29− 1) (13
93− 1)(28

29− 1) ≡ 42, 26, 30

(mod 97). These contradict the fact that

�
42

97

�
=

�
26

97

�
=

�
30

97

�
= −1.

Case 10. n ≡ 325, 805, 685, 1165, 45, 117, 837 (mod 1440). Then n ≡ 85, 205,

45, 117 (mod 240) and n ≡ 5, 45, 37 (mod 80). By ord241(13) = 240 and ord241(28)

= 80, we have x2 ≡ (13
85 − 1)(28

5 − 1), (13
205 − 1)(28

45 − 1), (13
45 − 1)(28

45 − 1),

(13
117 − 1)(28

37 − 1) ≡ 208, 43, 139, 197 (mod 241). These contradict the fact that�
208

241

�
=

�
43

241

�
=

�
139

241

�
=

�
197

241

�
= −1.
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Case 11. n ≡ 1261, 4141, 405, 1845, 4005, 1197, 2637 (mod 4320). Then n ≡ 181,
37, 189, 117, 45 (mod 216) and n ≡ 397, 253, 405, 117, 333, 45 (mod 432). By

ord433(13) = 216 and ord433(28) = 432, we have x2 ≡ (13
181 − 1)(28

397 − 1),
(13

37−1)(28
253−1), (13

189−1)(28
405−1), (13

117−1)(28
117−1), (13

117−1)(28
333−1),

(13
45 − 1)(28

45 − 1) ≡ 299, 393, 166, 201, 387, 279 (mod 433). These contradict the

fact that

�
299

433

�
=

�
393

433

�
=

�
166

433

�
=

�
201

433

�
=

�
387

433

�
=

�
279

433

�
= −1.

Case 12. n ≡ 1125, 3285 (mod 4320). Then n ≡ 45 (mod 540) and n ≡ 18

(mod 27). By ord541(13) = 540 and ord541(28) = 27, we have x2 ≡ (13
45−1)(28

18−
1) ≡ 295 (mod 541). This contradicts the fact that

�
295

541

�
= −1.

Case 13. n ≡ 2701 (mod 8640). Then n ≡ 13 (mod 64) and n ≡ 13 (mod 48).

By ord193(13) = 64 and ord193(28) = 48, we have x2 ≡ (13
13 − 1)(28

13 − 1) ≡ 71

(mod 193). This contradicts the fact that

�
71

193

�
= −1.

Case 14. n ≡ 2341, 5221, 8101, 2565, 6885 (mod 8640). Then n ≡ 37, 261, 549

(mod 576). By ord577(13) = ord577(28) = 576, we have x2 ≡ (13
37 − 1)(28

37 −
1), (13

261 − 1)(28
261 − 1), (13

549 − 1)(28
549 − 1) ≡ 45, 222, 355 (mod 577). These

contradict the fact that

�
45

577

�
=

�
222

577

�
=

�
355

577

�
− 1.

Case 15. n ≡ 3781, 7021, 4077, 8397 (mod 8640). Then n ≡ 1, 27 (mod 135) and

n ≡ 1621, 541, 1917 (mod 2160). By ord2161(13) = 135 and ord2161(28) = 2160,

we have x2 ≡ (13 − 1)(28
1621 − 1), (13 − 1)(28

541 − 1), (13
27 − 1)(28

1917 − 1) ≡
1838, 299, 2090 (mod 2161). These contradict the fact that

�
1838

2161

�
=

�
299

2161

�
=

�
2090

2161

�
= −1.

Case 16. n ≡ 901, 6661 (mod 8640). Then n ≡ 37, 613 (mod 864). Since

ord8641(13) = 864 and ord8641(28) = 8640, we have x2 ≡ (13
37 − 1)(28

901 − 1),

(13
613 − 1)(28

6661 − 1) ≡ 4110, 1277 (mod 8641). These contradict the fact that�
4110

8641

�
=

�
1277

8641

�
= −1.

The above sixteen cases are exhaustive, thereby completing the proof. ✷
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