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Abstract
We answer a question on the conditioned binomial coefficients raised in and article of
Barlotti and Pannone, thus giving an alternative proof of an extension of Frobenius’
generalization of Sylow’s theorem.

1. Introduction

In [2], Barlotti and Pannone proved the following extension of Sylow’s theorem [6]:
Theorem 1. Let G be a finite group of order n, p a prime dividing n, H a subgroup
of G of order ph. Then for any positive integer k > h such that pk | n, the cardinality
of the set of all the p-subgroups of G of order pk containing H is congruent to one
modulo p.

In the special case h = 0, this result was first proved by Frobenius [3], and
rediscovered by Krull [4].

The proof in [2] is given by considering the collection of all the subsets of G
having cardinality pk and containing exactly pk−h right cosets of H.

It is worth pointing out that the above result was also proved independently by
Spiegel [5] using Möbius inversion methods developed in Weisner’s paper [7].

As suggested and finally raised as a question in [2], one should be able to show the
result by considering the family of the subsets of G having order pk and containing
at least one right coset of H.

This leads to the following:
Definition 2 ([2]). Let a, b, c be positive integers such that a ≥ b ≥ c and c | a.
Let A be a set of cardinality a partitioned into subsets all of cardinality c. The
conditioned binomial coefficient determined by a, b and c, denoted by


a
b
c



 ,

is defined to be the number of subsets of A of cardinality b containing at least one
component of the partition.
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The aim of this paper is to answer the question raised in [2], which asks to prove
the following:

Theorem 3.Let a, b, c be positive integers such that c | b and b | a. Then

(1)
a

b
divides




a
b
c



.

(2) If b is a power of a prime p, then




a
b
c



 /
a

b
≡ 1 (mod p).

Remark 4. If c = 1, the conditioned binomial coefficient determined by a, b and c
is just

(a
b

)
. Then Theorem 3 follows from Lemmas 5 and 6 in the next section.

Our method of proof of the main result is to express the conditioned binomial
coefficient explicitly as a combination of usual binomials and then consider the
divisibility and congruence of these binomials (see (1) below). The method we use
is very elementary.

We refer the reader to [1] (Chapters 2 and 6), or other standard algebra textbooks
for terminology and notations used in the paper.

2. Proof of the Main Result

We will need the following two results. The first one can be verified directly; the
second one is shown in [4], but we still give a proof here for the reader’s convenience.

Lemma 5. Let a, b be positive integers such that b divides a. Then
(a

b

)
= a

b

(a−1
b−1

)
.

Lemma 6. Let p be a prime, s a positive integer, and g a positive integer divisible
by ps. Then ( g−1

ps−1

)
≡ 1 (mod p).

Proof. We prove the result by induction on s, the exponent of p. For s = 1, since
p | g, we have g − i ≡ p− i (mod p) for 1 ≤ i < p, and hence (g − 1)(g − 2) · · · (g −
(p− 1)) ≡ (p− 1)(p− 2) · · · 1 (mod p). As (p− 1)(p− 2) · · · 1 is prime to p, we get(g−1
p−1

)
= (g−1)(g−2)···(g−(p−1))

(p−1)(p−2)···1 ≡ 1 (mod p).
Suppose that the result holds for exponents less than s. By straightforward

computation we obtain the equality

( g−1
ps−1

)
=

( g
p−1

ps−1−1

) ps−1−1∏
j=0

p−1∏
i=1

g−(jp+i)
ps−(jp+i) .

Then the result follows by the induction hypothesis and the above argument for the
case s = 1. !
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Proof of Theorem 3. Let A be a set of cardinality a partitioned into subsets all of
cardinality c. The number of subsets of A of cardinality b containing no component
of the partition is

∑

0≤ni<c

n1+n2+···+n a
c
=b

(
c

n1

)(
c

n2

)
· · ·

(
c

n a
c

)
,

which is the coefficient of the term xb in ((1 + x)c − xc) a
c . The coefficient equals

b
c∑

r=0

(a
c

r

)(
(a

c − r)c
b− rc

)
(−1)r.

Then



a
b
c



 =
(

a

b

)
−

b
c∑

r=0

(a
c

r

)(
(a

c − r)c
b− rc

)
(−1)r =

b
c∑

r=1

(−1)r−1Ar, (1)

where Ar =
( a

c
r

)(( a
c −r)c
b−rc

)
.

For 1 ≤ r ≤ b
c , by Lemma 5, we have Ar =

a
c
r

( a
c −1
r−1

)(( a
c −r)c
b−rc

)
, hence a

c | rAr. On
the other hand, by Lemma 5 again, we have

Ar =
( a

c
a
c − r

)(
(a

c − r)c
b− rc

)

=
a
c

a
c − r

( a
c − 1

a
c − r − 1

)
(a

c − r)c
b− rc

(
(a

c − r)c− 1
b− rc− 1

)

=
a
c

b
c − r

( a
c − 1

a
c − r − 1

)(
(a

c − r)c− 1
b− rc− 1

)
.

Thus, a
c | ( b

c − r)Ar. Therefore we have that
a
c

( b
c−r,r)

=
a
c

( b
c ,r)

divides Ar. A fortiori,
a
c
b
c

= a
b divides Ar.

So we obtain

a

b
|




a
b
c



.

This completes the proof of the first part of the theorem.
For the second part, in view of Remark 4, we may assume that a = mph, b =

pk, c = ph are positive integers, where p is a prime and k > h ≥ 1.
From (1), we have
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


mph

pk

ph



 =
(mph

pk

)
−

pk−h∑
r=0

(−1)rBr,

where Br =
(m

r

)((m−r)ph

pk−rph

)
, and for 1 ≤ r < pk−h, m

(pk−h,r) divides Br. Hence m
pk−h−1

divides Br, which implies that Br/
mph

pk ≡ 0 (mod p), for 1 ≤ r < pk−h.
By Lemmas 5 and 6,

(
mph

pk

)
=

mph

pk

(
mph − 1
pk − 1

)
,

hence,
(

mph

pk

)
/
mph

pk
≡ 1 (mod p).

By the same argument,
(

m

pk−h

)
/
mph

pk
≡ 1 (mod p).

Thus whether p is an odd prime or not, we have

B0 + Bpk−h(−1)pk−h

mph

pk

≡ 0 (mod p).

Putting the above facts together, we get



mph

pk

ph



 /
mph

pk
≡ 1 (mod p).

!

Remark. As mentioned at the beginning of the paper, we may prove Theorem 1 by
considering F ′

H(pk), the family of the subsets of G having order pk and containing
at least one right coset of H. Let SH(pk) be the set of all the p-subgroups of G of
order pk containing H. Consider the right-multiplication action of G on F ′

H(pk).
Then F ′

H(pk) is partitioned as a union of orbits:

F ′
H(pk) =

l⋃
i=1

OUi .

Note that |Stab(Ui)| divides |Ui| = pk, and |Stab(Ui)| = pk if and only if OUi

contains a (unique) subgroup K of order pk, and hence consists of right cosets of
K. Since K contains some right coset of H, actually K ⊃ H. Thus we have

|F ′
H(pk)| =

l∑
i=1

|G|
|Stab(Ui)| = |G|

pk (|SH(pk)| + multiple of p).
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Applying Theorem 3 to the case a = |G| = mph, b = pk, c = |H| = ph, we obtain

|F ′
H(pk)|/mph

pk =




mph

pk

ph



 /mph

pk ≡ 1 (mod p).

Thus

SH(pk) ≡ 1 (mod p)

as desired.
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