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Abstract
In this article, we present two infinite-dimensional matrices whose entries are recur-
sively defined, and show that the sequence of their principal minors form the Lucas
sequence; that is, (2, 1, 3, 4, 7, . . .). It is worth mentioning that to construct these
matrices we use nonhomogeneous recurrence relations.

1. Introduction

Given an arbitrary infinite matrix A, denote by dn the nth principal minor of A,
which is defined as the determinant of the submatrix consisting of the entries in
its first n rows and columns. Actually, we shall be interested in the sequence of
principal minors (d1, d2, d3, . . .), especially, in the case that it forms the sequence
including Lucas numbers. There are scattered results in the literature showing that
there exist certain infinite families of matrices of this kind, for instance, see [2], [4]
and [5].

Let α = (αi)i≥0 and β = (βi)i≥0 be two arbitrary sequences. The convolution
of sequences α and β, is the sequence γ = (γi)i≥0, where γi =

∑i
k=0 αkβi−k. The

convolution matrix of sequences α and β is the infinite matrix A = (Ai,j)i,j≥0 whose
first column, i.e., C0(A), is α and whose jth column (j = 1, 2, . . .) is the convolution
of sequences Cj−1(A) (the (j − 1)th column) and β. In [6], the authors show that
any sequence can be represented in terms of principal minors associated with an
infinite matrix. In fact, they proved the following theorem:
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Theorem 1. (see [6]) Let A(∞) be the following infinite matrix

A(∞) =

( [
Convolution sequence

of ((−1)iαi)i≥0 and (βi)i≥0

] [
Convolution matrix

of (βi)i≥0 and (ξi)i≥0

] )
,

where β0 = 1 and (ξi)i≥0 = (ξ0, 1, 0, 0, . . .). Then, we have detA(n) = αn−1, where
A(n) is the n× n upper left corner matrix of A(∞).

Let Ln be the nth Lucas number, defined by

L0 = 2, L1 = 1 with Ln = Ln−1 + Ln−2 if n ≥ 2.

As an immediate consequence of Theorem 1 we have the following corollary.

Corollary 2. With the notation of Theorem 1, if αi = Li, i = 0, 1, 2, . . ., then we
have detA(n) = Ln−1, (n = 1, 2, 3, . . .).

Let φ = (φi)i≥0 and ψ = (ψi)i≥0 be two sequences starting with a common first
term φ0 = ψ0(:= γ). Moreover, let P [a,b,c]

φ,ψ (∞) = [Pi,j ]i,j≥0 be an infinite matrix
with parameters a, b, c associated with sequences φ and ψ, whose entries satisfy:

P0,0 = γ, Pi,0 = φi and P0,j = ψi for i, j ≥ 1,

and
Pi,j = aPi,j−1 + bPi−1,j−1 + cPi−1,j for i, j ≥ 1. (1)

In special cases, when [a, b, c] = [1, 0, 1] or [a, b, c] = [0, 1, 1], the matrix P [a,b,c]
φ,ψ (∞)

is called a generalized Pascal triangle or a 7-matrix, respectively (see [1], [3] and
[7]).

In [5], we proved the following theorem:

Theorem 3. Let A1, A2, B1 and B2 be integers. Let α = (αi)i≥0 and β = (βi)i≥0

be two integer sequences satisfy α0 = β0(:= γ) and linear recurrences

αi = A1αi−1 + A2αi−2 and βi = B1βi−1 + B2βi−2 for all i ≥ 2.

Then we have:
(a) for any nonnegative integer n, detP [1,0,1]

α,β (n) = Ln if and only if γ, α1, β1,
A1, A2, B1 and B2 satisfy one of the following conditions.



INTEGERS: 11 (2011) 3

γ α1 β1 A1 A2 B1 B2 γ α1 β1 A1 A2 B1 B2

(L.1) 2 5 3 2 1 −3 8 (L.17) 2 3 5 −3 8 2 1

(L.2) 2 5 3 6 −9 −7 14 (L.18) 2 3 5 −7 14 6 −9

(L.3) 2 5 3 1 4 12 −17 (L.19) 2 3 5 12 −17 1 4

(L.4) 2 5 3 5 −6 8 −11 (L.20) 2 3 5 8 −11 5 −6

(L.5) 2 5 3 8 −15 −1 4 (L.21) 2 3 5 −1 4 8 −15

(L.6) 2 5 3 4 −5 3 −2 (L.22) 2 3 5 3 −2 4 −5

(L.7) 2 5 3 −1 10 6 −7 (L.23) 2 3 5 6 −7 −1 10

(L.8) 2 5 3 3 0 2 −1 (L.24) 2 3 5 2 −1 3 0

(L.9) 2 −1 1 0 −1 1 0 (L.25) 2 1 −1 1 0 0 −1

(L.10) 2 −1 1 −4 −3 5 −2 (L.26) 2 1 −1 5 −2 −4 −3

(L.11) 2 −1 1 2 1 7 −2 (L.27) 2 1 −1 7 −2 2 1

(L.12) 2 −1 1 −2 −1 11 −4 (L.28) 2 1 −1 11 −4 −2 −1

(L.13) 2 −1 1 3 2 −8 3 (L.29) 2 1 −1 −8 3 3 2

(L.14) 2 −1 1 −1 0 −4 1 (L.30) 2 1 −1 −4 1 −1 0

(L.15) 2 −1 1 5 4 −2 1 (L.31) 2 1 −1 −2 1 5 4

(L.16) 2 −1 1 1 2 2 −1 (L.32) 2 1 −1 2 −1 1 2

(b) For any nonnegative integer n, detP [0,1,1]
α,β (n) = Ln if and only if γ, α1, β1,

A1, A2, B1 and B2 satisfy one of the following conditions.

γ α1 β1 A1 A2 B1 B2 γ α1 β1 A1 A2 B1 B2

(L.1′) 2 5 1 2 1 −5 4 (L.17′) 2 3 3 −3 8 0 2

(L.2′) 2 5 1 6 −9 −9 6 (L.18′) 2 3 3 −7 14 4 −4

(L.3′) 2 5 1 1 4 10 −6 (L.19′) 2 3 3 12 −17 −1 4

(L.4′) 2 5 1 5 −6 6 −4 (L.20′) 2 3 3 8 −11 3 −2

(L.5′) 2 5 1 8 −15 −3 2 (L.21′) 2 3 3 −1 4 6 −8

(L.6′) 2 5 1 4 −5 1 0 (L.22′) 2 3 3 3 −2 2 −2

(L.7′) 2 5 1 −1 10 4 −2 (L.23′) 2 3 3 6 −7 −3 8

(L.8′) 2 5 1 3 0 0 0 (L.24′) 2 3 3 2 −1 1 2

(L.9′) 2 −1 −1 0 −1 −1 0 (L.25′) 2 1 −3 1 0 −2 −2

(L.10′) 2 −1 −1 −4 −3 3 2 (L.26′) 2 1 −3 5 −2 −6 −8

(L.11′) 2 −1 −1 2 1 5 4 (L.27′) 2 1 −3 7 −2 0 2

(L.12′) 2 −1 −1 −2 −1 9 6 (L.28′) 2 1 −3 11 −4 −4 −4

(L.13′) 2 −1 −1 3 2 −10 −6 (L.29′) 2 1 −3 −8 3 1 4

(L.14′) 2 −1 −1 −1 0 −6 −4 (L.30′) 2 1 −3 −4 1 −3 −2

(L.15′) 2 −1 −1 5 4 −4 −2 (L.31′) 2 1 −3 −2 1 3 8

(L.16′) 2 −1 −1 1 2 0 0 (L.32′) 2 1 −3 2 −1 −1 2



INTEGERS: 11 (2011) 4

Note that the recurrence relation (1) is homogeneous. Here, we will consider
a more general case. In fact, we will allow the recursion entries to depend on
nonhomogeneous recurrence relations:

Pi,j = aPi,j−1 + bPi−1,j−1 + cPi−1,j + f(i, j), i, j ≥ 1,

where f is a function on N× N.
In this article, we will consider the following two infinite-dimensional matrices

A(∞) = [Ai,j ]i,j≥0 =





2 3 4 5 · · ·

−3 −4 −6 −9 · · ·

−27 −37 −51 −70 · · ·

−125 −170 −231 −313 · · ·
...

...
...

... · · ·





,

and

B(∞) = [Bi,j ]i,j≥0 =





2 1 3 −1 · · ·

1 1 2 0 · · ·

−2 −2 −1 −2 · · ·

−1 −10 −9 −9 · · ·

...
...

...
...

. . .





.

As a matter of fact, these matrices are constructed as follows:
The Matrix A(∞). The first row and column is the sequence

(A0,j)j≥0 = (2, 3, 4, 5, , . . . , A0,j = j + 2, . . .),

and
(Ai,0)i≥0 = (2,−3,−27, . . . , Ai,0 = 4Ai−1,0 + i2 − 7i− 5, . . .),

respectively. The remaining entries Ai,j are obtained from the nonhomogeneous
recurrence relation:

Ai,j = Ai,j−1 + Ai−1,j − 2(i + j), i, j ≥ 1.

The Matrix B(∞). The first row and column is the sequence

(B0,j)j≥0 = (2, 1, 3,−1, 7,−9, 23,−41, . . . , B0,j = −B0,j−1 + 2B0,j−2, . . .),

and

(Bi,0)i≥0 = (2, 1,−2,−1, 42, . . . , Bi,0 = 3Bi−1,0 + 5(3i−1 − 2i− 1)/2, . . .),
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respectively. The remaining entries Bi,j are obtained from the nonhomogeneous
recurrence relation:

Bi,j = Bi−1,j−1 + Bi−1,j − 2i, i, j ≥ 1.

We denote by A(n) (resp. B(n)) the submatrix of A(∞) (resp. B(∞)) consisting
of the elements in its first n rows and columns. The main result of the paper is
essentially the following theorem:

Theorem 4. With the notation defined above, we have detA(n) = detB(n) =
Ln−1.

Our notation and terminology are standard. Given a matrix A, we denote by
Ri(A) and Cj(A) the row i and the column j of A, respectively. By AT we denote
the transpose of A. We also denote the elementary row and column operations of
type three by Oi,j(λ) and O′

i,j(λ), respectively, where i %= j and λ a scalar. So that

Rk(Oij(λ)A) =

{
Ri(A) + λRj(A) if k = i;

Rk(A) if k %= i,

and

Ci(AO′
i,j(λ)) =

{
Ci(A) + λCj(A) if k = i;

Ck(A) if k %= i.

We recall that a matrix T (∞) = [ti,j ]i,j≥0 is said to be Töeplitz if ti,j = tk,l

whenever i − j = k − l. In the case that φ = (φi)i≥0 and ψ = (ψi)i≥0 are two
sequences with a common first term φ0 = ψ0, we denote by Tφ,ψ(∞) = [ti,j ]i,j≥0

the Töeplitz matrix with C0(Tφ,ψ(∞))T = φ and R0(Tφ,ψ(∞)) = ψ. Moreover, we
denote by Tφ,ψ(n) the submatrix of Tφ,ψ(∞) consisting of the entries in its first n
rows and columns.

A lower Hessenberg matrix, H(n) = [hi,j ]0≤i,j≤n−1, is an n × n matrix where
hi,j = 0 whenever j > i + 1 and hi,i+1 %= 0 for some i, 0 ≤ i ≤ n− 2, so we have

H(n) =





h0,0 h0,1 0 . . . 0

h1,0 h1,1 h1,2
. . . 0

h2,0 h2,1 h2,2
. . . 0

...
...

. . . . . . hn−2,n−1

hn−1,0 hn−1,1 . . . hn−1,n−2 hn−1,n−1





.

2. Preliminaries

In order to prove the main results of this article, we need to state some technical
lemmas. We start with the following simple observation.
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Lemma 5. For all integers i ≥ 3, there holds

(a)
i∑

k=0
(−1)k

(i
k

)
(k2 − 5k − 11) = 0.

(b)
i−1∑
k=0

(−1)k
(i−1

k

)
(2k + 3) = 0.

Proof. We only prove (a), and (b) goes similarly. Define the function f as follows:

f(x) = (1− x)i =
i∑

k=0

(−1)k

(
i

k

)
xk.

Then

f ′(x) = −i(1− x)i−1 =
i∑

k=0

(−1)k

(
i

k

)
kxk−1.

Moreover, if we take g(x) := xf(x), then an easy calculation shows that

g′(x) = (1− x)i−2 · (∗) =
i∑

k=0

(−1)k

(
i

k

)
k2xk−1.

Putting x = 1, we conclude that
i∑

k=0

(−1)k

(
i

k

)
= 0,

i∑

k=0

(−1)k

(
i

k

)
k = 0 and

i∑

k=0

(−1)k

(
i

k

)
k2 = 0,

and the result follows. !

For an arbitrary sequence σ = (σi)i≥0, the binomial and inverse binomial trans-
form of σ are the sequences σ̂ = (σ̂i)i≥0 and σ̌ = (σ̌i)i≥0 defined by

σ̂i =
i∑

k=0

(−1)i+k

(
i

k

)
σk and σ̌i =

i∑

k=0

(
i

k

)
σk.

Clearly, we have the following inverse relations

σi =
i∑

k=0

(−1)i+k

(
i

k

)
σ̌k =

i∑

k=0

(
i

k

)
σ̂k. (2)

Let α = (αi)i≥0, λ = (λi)i≥0, µ = (µi)i≥0 and ν = (νi)i≥0 be three (non)homogeneous
recurrence relations satisfying

α0 = 2, α1 = −3, and αi = 4αi−1 + i2 − 7i− 5 (i ≥ 2)

λ0 = 2, λ1 = 1, and λi = 3λi−1 + 5(3i−1 − 2i− 1)/2 (i ≥ 2)

µ0 = 2, µ1 = 1, and µi = −µi−1 + 2µi−2 (i ≥ 2)

ν0 = −1, ν1 = −17, ν2 = −60, and νi = 2νi−1 − 50 · 2i−3 (i ≥ 3).
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Then, we have

α = (αi)i≥0 = (2,−3,−27,−125,−517,−2083, . . .)

λ = (λi)i≥0 = (2, 1,−2,−1, 42, 301, 1478, 6219, . . .),

µ = (µi)i≥0 = (2, 1, 3,−1, 7,−9, 23,−41, 87, . . .),

ν = (νi)i≥0 = (−1,−17,−60,−170,−440, . . .).

Solving these (non)homogeneous recurrence relations, we obtain

αi = (109 + 39i− 9i2 − 55 · 22i)/27, i ≥ 0,

λi = 5i(3i−1 + 1)/2− 3i+1 + 5, i ≥ 0,

µi = (5 + (−2)i)/3, i ≥ 0, and

νi = −5 · 2i−2(5i + 2), i ≥ 2.

On the other hand, the binomial transform of the sequences α, λ and µ are:

α̂ = (α̂i)i≥0 = (2,−5,−19,−55,−165, . . . ,
i∑

k=0

(−1)i+k

(
i

k

)
αk, . . .).

λ̂ = (λ̂i)i≥0 = (2,−1,−2, 6, 32, 104, . . . ,
i∑

k=0

(−1)i+k

(
i

k

)
λk, . . .).

µ̂ = (µ̂i)i≥0 = (2,−1, 3, −9, 27, −81, . . . ,
i∑

k=0

(−1)i+k

(
i

k

)
µk, . . .).

Throughout the rest of this article we fix the sequences α, λ, µ and ν.

Lemma 6. With the notation defined above, we have

(a) for all positive integers i ≥ 4, α̂i = 3α̂i−1.

(b) for all positive integers i ≥ 4, α̂i −
∑i−3

k=0 α̂i−k−1Lk + 7Li−2 + 2Li−1 + Li = 0.

(c) for all positive integer i ≥ 3, λ̂i − 2λ̂i−1 − 5 · 2i−2 = 0,

(d) for all positive integer i ≥ 1, µ̂i + (−3)i−1 = 0.
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Proof. (a) Easy computations show that

α̂i =
∑i

k=0(−1)i+k
(i
k

)
αk

=
∑i

k=0(−1)i+k
[(i−1

k−1

)
+

(i−1
k

)]
αk (by Pascal’s rule)

=
∑i

k=0(−1)i+k
(i−1
k−1

)
αk +

∑i
k=0(−1)i+k

(i−1
k

)
αk

=
∑i

k=0(−1)i+k
(i−1
k−1

)
αk −

∑i−1
k=0(−1)i+k−1

(i−1
k

)
αk

=
∑i

k=0(−1)i+k
(i−1
k−1

)(
4αk−1 + k2 − 7k − 5

)
− α̂i−1

= 4
∑i

k=0(−1)i+k
(i−1
k−1

)
αk−1 +

∑i
k=0(−1)i+k

(i−1
k−1

)
(k2 − 7k − 5)− α̂i−1

= 4
∑i−1

k=0(−1)i+k−1
(i−1

k

)
αk +

∑i−1
k=0(−1)i+k+1

(i−1
k

)
(k2 − 5k − 11)− α̂i−1

= 4α̂i−1 + (−1)i+1
∑i−1

k=0(−1)k
(i−1

k

)
(k2 − 5k − 11)− α̂i−1

= 3α̂i−1, (Since i ≥ 4, we can apply Lemma 5(a))

as desired.
(b) For the sake of brevity, throughout the proof we will set

Φi := α̂i −
i−3∑

k=0

α̂i−k−1Lk + 7Li−2 + 2Li−1

and we will show that Φi = −Li. First of all, it is easy to verify that

Φ4 = α̂4 −
∑1

k=0 α̂3−kLk + 7L2 + 2L3

= −165 + 55 · 2 + 19 · 1 + 7 · 3 + 2 · 4

= −7

= −L4,

and
Φ5 = α̂5 −

∑2
k=0 α̂3−kLk + 7L3 + 2L4

= −495 + 165 · 2 + 55 · 1 + 19 · 3 + 7 · 4 + 2 · 7

= −11

= −L5.

Next, to prove the result, it suffices to show that

Φi = Φi−1 + Φi−2, i ≥ 6.
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To do this, we see that

Φi−1 + Φi−2 = α̂i−1 −
∑i−4

k=0 α̂i−k−2Lk + 7Li−3 + 2Li−2

+α̂i−2 −
∑i−5

k=0 α̂i−k−3Lk + 7Li−4 + 2Li−3

= α̂i−1 − α̂i−2L0 −
∑i−4

k=1 α̂i−k−2Lk + 7Li−3 + 2Li−2

+α̂i−2 −
∑i−4

k=1 α̂i−k−2Lk−1 + 7Li−4 + 2Li−3

= α̂i−1 − α̂i−2 −
∑i−4

k=1 α̂i−k−2(Lk + Lk−1)

+7(Li−3 + Li−4) + 2(Li−3 + Li−2)

= α̂i−1 − α̂i−2 −
∑i−4

k=1 α̂i−k−2Lk+1 + 7Li−2 + 2Li−1

= α̂i−1 − α̂i−2 −
∑i−3

k=2 α̂i−k−1Lk + 7Li−2 + 2Li−1

= α̂i−1 −
∑i−3

k=1 α̂i−k−1Lk + 7Li−2 + 2Li−1

= 3α̂i−1 −
∑i−3

k=0 α̂i−k−1Lk + 7Li−2 + 2Li−1

= α̂i −
∑i−3

k=0 α̂i−k−1Lk + 7Li−2 + 2Li−1 (by part (a))

= Φi,

as required.
(c) Again, by easy computations we observe that

λ̂i =
∑i

k=0(−1)i+k
(i
k

)
λk

= (−1)iλ0 +
i∑

k=1
(−1)i+k

[(i−1
k−1

)
+

(i−1
k

)]
λk (by Pascal’s rule)

= (−1)iλ0 +
i∑

k=1
(−1)i+k

(i−1
k−1

)
λk +

i∑
k=1

(−1)i+k
(i−1

k

)
λk

= (−1)i+1λ1 +
i∑

k=2
(−1)i+k

(i−1
k−1

) (
3λk−1 + 5(3k−1 − 2k − 1)/2)

)

−
i∑

k=0
(−1)i+k−1

(i−1
k

)
λk

= (−1)i+1λ1 + 3
i∑

k=2
(−1)i+k

(i−1
k−1

)
λk−1 + 5

2

i∑
k=2

(−1)i+k
(i−1
k−1

)
3k−1

−5
2

i∑
k=2

(−1)i+k
(i−1
k−1

)
(2k + 1)− λ̂i−1
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= (−1)i+1λ1 + 3
i−1∑
k=1

(−1)i+k+1
(i−1

k

)
λk + 5

2

i−1∑
k=1

(−1)i+k+1
(i−1

k

)
3k

−5
2

i−1∑
k=1

(−1)i+k+1
(i−1

k

)
(2k + 3)− λ̂i−1

= (−1)i+1λ1 − 3(−1)i+1λ0 + 3
i−1∑
k=0

(−1)i+k+1
(i−1

k

)
λk

−5
2 (−1)i+1 + 5

2

i−1∑
k=0

(−1)i+k+1
(i−1

k

)
3k

+15
2 (−1)i+1 − 5

2 (−1)i+1
i−1∑
k=0

(−1)k
(i−1

k

)
(2k + 3)− λ̂i−1

= 3λ̂i−1 + 5
2 (−1)i+1

i−1∑
k=0

(i−1
k

)
(−3)k − λ̂i−1

(
since i ≥ 3 we can apply Lemma 5(b)

)

= 2λ̂i−1 + 5
2 (−1)i+1(−2)i−1 = 2λ̂i−1 + 5 · 2i−2,

which proves part (c).
(d) Finally, simple computations show that

µ̂i =
∑i

k=0(−1)i+k
(i
k

)
µk

=
∑i

k=0(−1)i+k
(i
k

)
(5 + (−2)k)/3

= 5
3

∑i
k=0(−1)i+k

(i
k

)
+ 1

3

∑i
k=0(−1)i+k

(i
k

)
(−2)k

= 1
3 (−1)i

∑i
k=0

(i
k

)
2k

= (−1)i3i−1,

as desired. !

Next, we prove the following identity

Lemma 7. For all positive integer i ≥ 5, the following identity holds:

Li − 17 · Li−3 + 5
i−5∑

k=0

(−2)k(5k + 12)Li−(k+4) − (−2)i−3 · 5 = 0.

Proof. For convenience, we put

Ψi := 17 · Li−3 − 5
i−5∑

k=0

(−2)k(5k + 12)Li−(k+4) + (−2)i−3 · 5.

First, we assume that i = 5 or 6. In these cases, using easy computations we obtain

Ψ5 = 17 · L2 − 5(12 · L1) + (−2)2 · 5 = 51− 60 + 20 = 11 = L5,
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and

Ψ6 = 17 · L3 − 5(12 · L2 − 2 · 17 · L1) + (−2)3 · 5 = 68− 10− 40 = 18 = L6.

Now, to prove the Ψi = Li (i ≥ 7), it is enough to show that:

Ψi = Ψi−1 + Ψi−2, (i ≥ 7).

To do this, we see that:

Ψi−1 + Ψi−2 = 17 · Li−4 − 5
i−6∑
k=0

(−2)k(5k + 12)Li−(k+5) + (−2)i−4 · 5

+17 · Li−5 − 5
i−7∑
k=0

(−2)k(5k + 12)Li−(k+6) + (−2)i−5 · 5

= 17(Li−4 + Li−5)− 5
i−6∑
k=0

(−2)k(5k + 12)
(
Li−(k+5) + Li−(k+6)

)

+5 · (−2)i−6
(
5(i− 6) + 12

)
L0 + (−2)i−5 · (−5)

= 17 · Li−3 − 5
i−6∑
k=0

(−2)k(5k + 12)Li−(k+4)

−5 · (−2)i−5(5i− 18) + (−2)i−5 · (−5)

= 17 · Li−3 − 5
i−5∑
k=0

(−2)k(5k + 12)Li−(k+4)

+5(−2)i−5(5i− 13)− 5(−2)i−5(5i− 18) + (−2)i−5 · (−5)

= 17 · Li−3 − 5
i−5∑
k=0

(−2)k(5k + 12)Li−(k+4) + (−2)i−3 · 5 = Ψi,

as required. !

3. Principal Minors of the Matrix A(∞)

In this section, we first introduce the following lower Hessenberg matrix

H(n) = [hi,j ]0≤i,j≤n−1 =





α̂0 1 0 0 · · · 0
α̂1

α̂2
... T (n− 1)

α̂n−1





n×n

,

where
T (n− 1) = T(−2,−7,α̂2,α̂3,α̂4,...),(−2,−1,0,0,0,...)(n− 1).
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The matrix H(6), for instance, is hence given by

H(6) = [hi,j ]0≤i,j≤5 =





2 1 0 0 0 0
−5 −2 −1 0 0 0
−19 −7 −2 −1 0 0
−55 −19 −7 −2 −1 0
−165 −55 −19 −7 −2 −1
−495 −165 −55 −19 −7 −2





6×6

.

Lemma 8. With the notation defined above, we have detH(n) = Ln−1.

Proof. First, we apply the following row operations:

H1(n) =
(∏n−1

i=1 Oi,0(−hi,1)
)
H(n),

H2(n) =
(∏n−1

i=2 Oi,1(hi,2)
)
H1(n),

H3(n) =
(∏n−1

i=3 Oi,2(hi,3)
)
H2(n),

...
Hn−1(n) =

(∏n−1
i=n−1 Oi,n−2(hi,n−1)

)
Hn−2(n).

As a matter of fact, step by step, the columns are “emptied” until finally the
following matrix is obtained:

Hn−1(n) =





h̃0,0 1 0 0 0 · · · 0
h̃1,0 0 −1 0 0 · · · 0
h̃2,0 0 0 −1 0 · · · 0
h̃3,0 0 0 0 −1 · · · 0
...

...
...

...
...

. . .
...

h̃n−2,0 0 0 0 0 · · · −1
h̃n−1,0 0 0 0 0 · · · 0





n×n

.

Evidently h̃0,0 = α̂0 = 2 = L0. Now, we claim that

h̃i,0 = −Li, 1 ≤ i ≤ n− 1. (3)
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We proceed by induction on i. The cases i = 1, 2, and 3 are trivial:

h̃1,0 = h1,0 − h1,1 · 2

= −5− (−2) · 2 = −1 = −L1,

h̃2,0 = h2,0 − h2,1 · 2 + h2,2 · (−1)

= −19− (−7) · 2 + (−2) · (−1) = −3 = −L2,

h̃3,0 = h3,0 − h3,1 · 2 + h3,2 · (−1) + h3,3 · (−3)

= −55− (−19) · 2 + (−7) · (−1) + (−2) · (−3) = −4 = −L3.

Assume now that i ≥ 4 and Eq. (3) is true for 1, 2, . . . , i − 1, that is, h̃k,0 =
−Lk, 1 ≤ k ≤ i − 1. We now prove that Eq. (3) is also true for i. In fact, by the
applied row operations and induction hypothesis, we have

h̃i,0 = hi,0 − hi,1 · 2 +
∑i−3

k=1

{
hi,i−k−1 · (−Lk)

}

+(−7) · (−Li−2) + (−2) · (−Li−1)

= hi,0 −
∑i−3

k=0{hi,i−k−1Lk} + 7Li−2 + 2Li−1

= α̂i −
∑i−3

k=0{α̂i−k−1Lk} + 7Li−2 + 2Li−1.

Now, using Lemma 6(b), we conclude that h̃i,0 = −Li, as claimed.
Evidently, detH(n) = detHn−1(n). The lemma follows now immediately, by

expanding the determinant along the last row of Hn−1(n). !

We are now in a position to prove the following proposition which is the first
main result of this article.

Proposition 9. Let [ai,j ]i,j≥0 be the sequence given by the recurrence

ai,j = ai,j−1 + ai−1,j − 2(i + j), i, j ≥ 1 (4)

and the initial conditions ai,0 = αi and a0,i = i + 2, i ≥ 0. Then, we have

det
0≤i,j≤n−1

[ai,j ] = Ln−1. (5)

Proof. Let A(n) denote the matrix [ai,j ]0≤i,j≤n−1. First, we claim that

A(n) = L(n) · H(n) · U(n), (6)

where L(n) = [Li,j ]0≤i,j<n with

Li,j =
{

0 if i < j(i
j

)
if i ≥ j,
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(which is called the unipotent lower triangular matrix of order n), U(n) = L(n)T

and

H(n) =





α̂0 1 0 0 · · · 0
α̂1

α̂2
... T (n− 1)

α̂n−1





n×n

,

where
T (n− 1) = T(−2,−7,α̂2,α̂3,α̂4,··· ),(−2,−1,0,0,0,··· )(n− 1).

Evidently, the claimed factorization of A(n) immediately implies that

detA(n) = detH(n),

and we obtain Eq. (5) from Lemma 8.
Note that the entries of L(n) satisfying in the following recurrence

Li,j = Li−1,j−1 + Li−1,j , 1 ≤ i, j < n. (7)

Similarly, we have

Ui,j = Ui−1,j−1 + Ui,j−1, 1 ≤ i, j < n. (8)

In what follows, for convenience, we will let A = A(n), L = L(n), H = H(n)
and U = U(n). Now, for the proof of the claimed factorization we compute the
(i, j)-entry of L · H · U , that is,

(L · H · U)i,j =
n−1∑

r=0

n−1∑

s=0

Li,rHr,sUs,j . (9)

In fact, so as to prove the theorem, we should establish

R0(L · H · U) = R0(A) = (2, 3, . . . , n + 1),

C0(L · H · U) = C0(A) = (α0,α1, . . . ,αn−1),

and
(L · H · U)i,j = (L · H · U)i−1,j−1 + (L · H · U)i−1,j − 2(i + j), (10)

for 1 ≤ i, j ≤ n− 1.
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Let us do the required calculations. First, suppose that i = 0. Then, we have

(L · H · U)0,j =
n−1∑
r=0

n−1∑
s=0

L0,rHr,sUs,j

=
n−1∑
s=0

H0,sUs,j

= H0,0U0,j + H0,1U1,j

= 2 · 1 + 1 · j

= j + 2,

and so R0(L · H · U) = R0(A) = (2, 3, . . . , n + 1).
Next, assume that j = 0. In this case, we obtain

(L · H · U)i,0 =
n−1∑
r=0

n−1∑
s=0

Li,rHr,sUs,0

=
n−1∑
r=0

Li,rHr,0

=
n−1∑
r=0

(i
r

)
α̂r

= αi, (by Eq. (2))

and hence we have C0(L · H · U) = C0(A) = (α0,α1, . . . ,αn−1).
Finally, we must establish Eq. (10). Now, let us assume that 1 ≤ i, j ≤ n − 1.

In this case we have

(L · H · U)i,j =
n−1∑
r=0

n−1∑
s=0

Li,rHr,sUs,j

=
n−1∑
r=0

Li,rHr,0U0,j +
n−1∑
r=0

n−1∑
s=1

Li,rHr,sUs,j .

(11)

Let Ω(i, j) :=
n−1∑
r=0

n−1∑
s=1

Li,rHr,sUs,j . Then, using Eq. (8), we obtain

Ω(i, j) =
n−1∑
r=0

n−1∑
s=1

Li,rHr,s

(
Us−1,j−1 + Us,j−1

)

=
n−1∑
r=0

n−1∑
s=1

Li,rHr,sUs−1,j−1 +
n−1∑
r=0

n−1∑
s=1

Li,rHr,sUs,j−1

=
n−1∑
r=1

n−1∑
s=1

Li,rHr,sUs−1,j−1 + (L · H · U)i,j−1

+
n−1∑
s=1

Li,0H0,sUs−1,j−1 −
n−1∑
r=0

Li,rHr,0U0,j−1.

(12)
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Again, let Θ(i, j) :=
n−1∑
r=1

n−1∑
s=1

Li,rHr,sUs−1,j−1. Now, using Eq. (7), we have

Θ(i, j) =
n−1∑
r=1

n−1∑
s=1

(
Li−1,r−1 + Li−1,r

)
Hr,sUs−1,j−1

=
n−1∑
r=1

n−1∑
s=1

Li−1,r−1Hr,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=1

Li−1,rHr,sUs−1,j−1

=
n−1∑
r=2

n−1∑
s=2

Li−1,r−1Hr,sUs−1,j−1 +
n−1∑
r=1

Li−1,r−1Hr,1U0,j−1

+
n−1∑
s=2

Li−1,0H1,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=1

Li−1,rHr,sUs−1,j−1

=
n−1∑
r=2

n−1∑
s=2

Li−1,r−1Hr,sUs−1,j−1 +
n−1∑
r=1

Li−1,r−1Hr,1U0,j−1

+
n−1∑
s=2

Li−1,0H1,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=1

Li−1,rHr,s

(
Us,j − Us,j−1

)

(
by Eq. (8)

)

=
n−1∑
r=2

n−1∑
s=2

Li−1,r−1Hr−1,s−1Us−1,j−1 +
n−1∑
r=1

Li−1,r−1Hr,1U0,j−1

+
n−1∑
s=2

Li−1,0H1,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=1

Li−1,rHr,sUs,j

−
n−1∑
r=1

n−1∑
s=1

Li−1,rHr,sUs,j−1

(
by the structure of H

)

=
n−1∑
r=1

n−1∑
s=1

Li−1,rHr,sUs,j−1 +
n−1∑
r=1

Li−1,r−1Hr,1U0,j−1 +
n−1∑
s=2

Li−1,0H1,sUs−1,j−1

+
n−1∑
r=1

n−1∑
s=0

Li−1,rHr,sUs,j −
n−1∑
r=1

Li−1,rHr,0U0,j −
n−1∑
r=1

n−1∑
s=1

Li−1,rHr,sUs,j−1

(
note that Li−1,n−1 = Un−1,j−1 = 0

)

=
n−1∑
r=1

Li−1,r−1Hr,1U0,j−1 +
n−1∑
s=2

Li−1,0H1,sUs−1,j−1 +
n−1∑
r=0

n−1∑
s=0

Li−1,rHr,sUs,j

−
n−1∑
s=0

Li−1,0H0,sUs,j −
n−1∑
r=1

Li−1,rHr,0U0,j

=
n−1∑
r=1

Li−1,r−1Hr,1U0,j−1 +
n−1∑
s=2

Li−1,0H1,sUs−1,j−1 + (L · H · U)i−1,j

−
n−1∑
s=0

Li−1,0H0,sUs,j −
n−1∑
r=1

Li−1,rHr,0U0,j

(
by Eq. (9)

)
.
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After having substituted this in Eq. (12), we obtain

Ω(i, j) = (L · H · U)i,j−1 + (L · H · U)i−1,j

+
n−1∑
r=1

Li−1,r−1Hr,1U0,j−1 +
n−1∑
s=2

Li−1,0H1,sUs−1,j−1

−
n−1∑
s=0

Li−1,0H0,sUs,j −
n−1∑
r=1

Li−1,rHr,0U0,j

+
n−1∑
s=1

Li,0H0,sUs−1,j−1 −
n−1∑
r=0

Li,rHr,0U0,j−1.

Finally, if this is substituted in Eq. (11) and the sums are put together, then we
obtain

(L · H · U)i,j = (L · T · U)i−1,j + (L · T · U)i,j−1 + Ψ(i, j),

where

Ψ(i, j) =
n−1∑
r=0

Li,rHr,0U0,j +
n−1∑
r=1

Li−1,r−1Hr,1U0,j−1 +
n−1∑
s=2

Li−1,0H1,sUs−1,j−1

−
n−1∑
s=0

Li−1,0H0,sUs,j −
n−1∑
r=1

Li−1,rHr,0U0,j +
n−1∑
s=1

Li,0H0,sUs−1,j−1

−
n−1∑
r=0

Li,rHr,0U0,j−1.

But by an easy calculation one can show that

n−1∑
r=0

Li,rHr,0U0,j −
n−1∑
r=0

Li,rHr,0U0,j−1 = 0

n−1∑
r=1

Li−1,r−1Hr,1U0,j−1 −
n−1∑
r=1

Li−1,rHr,0U0,j = −2i

n−1∑
s=2

Li−1,0H1,sUs−1,j−1 = 1− j

n−1∑
s=0

Li−1,0H0,sUs,j = 2 + j

n−1∑
s=1

Li,0H0,sUs−1,j−1 = 1

and so
Ψ(i, j) = −2(i + j),

which completes the proof of proposition. !
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4. Principal Minors of the Matrix B(∞)

In this section, we consider the following Hessenberg matrix:

H(n) = [hi,j ]0≤i,j<n =





λ̂0 −1 0 0 · · · 0
λ̂1 1 1 0 · · · 0
λ̂2 −1
λ̂3 λ̂2 − λ̂3
... T (n− 2)

λ̂n−1 λ̂n−2 − λ̂n−1





n×n

,

where
T (n− 2) = T(ν0,ν1,ν2,...),(−1,1,0,0,0,...)(n− 2).

The matrix H(6), for instance, is hence given by

H(6) = [hi,j ]0≤i,j≤5 =





2 −1 0 0 0 0
−1 1 1 0 0 0
−2 −1 −1 1 0 0

6 −8 −17 −1 1 0
32 −26 −60 −17 −1 1

104 −72 −170 −60 −17 −1





6×6

.

Lemma 10. With the notation defined above, we have detH(n) = Ln−1.

Proof. First, we apply the following row operations:

H1(n) =
(∏n−1

i=1 Oi,0(hi,1)
)
H(n),

H2(n) =
(∏n−1

i=2 Oi,1(−hi,2)
)
H1(n),

H3(n) =
(∏n−1

i=3 Oi,2(−hi,3)
)
H2(n),

...
Hn−1(n) =

(∏n−1
i=n−1 Oi,n−2(−hi,n−1)

)
Hn−2(n).

In fact, step by step, the columns are “emptied” until finally the following matrix

Hn−1(n) =





h̃0,0 −1 0 0 0 · · · 0
h̃1,0 0 1 0 0 · · · 0
h̃2,0 0 0 1 0 · · · 0
h̃3,0 0 0 0 1 · · · 0
...

...
...

...
...

. . .
...

h̃n−2,0 0 0 0 0 · · · 1
h̃n−1,0 0 0 0 0 · · · 0





n×n
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is obtained. Evidently h̃0,0 = λ̂0 = 2 = L0. Now, we claim that

h̃i,0 = (−1)i−1Li, 1 ≤ i ≤ n− 1. (13)

We proceed by strong induction on i. The cases i = 1, 2 and 3 are trivial:

h̃1,0 = h1,0 + h1,1 · 2

= −1 + 1 · 2 = 1 = L1,

h̃2,0 = h2,0 + h2,1 · 2− h2,2 · (1)

= −2 + (−1) · 2 + (−1) · (1) = −3 = −L2,

h̃3,0 = h3,0 + h3,1 · 2− h3,2 · 1− h3,3 · (−3)

= 6 + (−8) · 2− (−17) · (1)− (−1) · (−3) = 4 = L3,

h̃4,0 = h4,0 + h4,1 · 2− h4,2 · 1 + h4,3 · (−3)− h4,4 · 4

= 32 + (−26) · 2− (−60) · 1− (−17) · (−3)− (−1) · 4 = −7 = −L4.

Assume now that i ≥ 5 and Eq. (13) is true for 1, 2, . . . , i−1, that is, h̃k,0 = −Lk,
1 ≤ k ≤ i− 1. We now prove that Eq. (13) is also true for i. In fact, by the applied
row operations and induction hypothesis, we have

h̃i,0 = −hi,i(−1)i−2Li−1 − hi,i−1(−1)i−3Li−2 −
i−2∑
k=2

hi,i−k(−1)i−k−2Li−(k+1)

hi,1 · 2 + hi,0

= (−ν0)(−1)i−2Li−1 − ν1(−1)i−3Li−2 −
i−2∑
k=2

νk(−1)i−k−2Li−(k+1)

+(λ̂i−1 − λ̂i) · 2 + λ̂i

= (−1)i−2Li−1 + 17(−1)i−3Li−2 + (−1)i−2
i−2∑
k=2

5 · 2k−2(5k + 2)(−1)kLi−(k+1)

2 · λ̂i−1 − λ̂i ( by definition of νk)

= (−1)i−2Li−1 + 17(−1)i−3Li−2 + 5(−1)i−2
i−2∑
k=2

2k−2(5k + 2)(−1)kLi−(k+1)

−5 · 2i−2 (by Lemma 6(c))

= (−1)i−2{Li−1 − 17Li−2 + 5
i−4∑
k=0

(−2)k(5k + 12)Li−(k+3) − 5 · (−2)i−2}

= (−1)i−2
(
Li−1 − Li+1

)
(by Lemma 7)

= (−1)i−1Li.
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as claimed.
Evidently, detH(n) = detHn−1(n). The lemma follows now immediately, by

expanding the determinant along the last row of Hn−1(n). !

We can now prove the following proposition which is the second main result of
this article.

Proposition 11. Let [ai,j ]i,j≥0 be the sequence given by the recurrence

ai,j = ai−1,j−1 + ai−1,j − 2i, i, j ≥ 1 (14)

and the initial conditions ai,0 = λi and a0,i = µi, i ≥ 0. Then, we have

det
0≤i,j<n

[ai,j ] = Ln−1. (15)

Proof. Let A(n) denote the matrix [ai,j ]0≤i,j<n. First, we claim that

A(n) = L(n) · B(n) · U(n), (16)

where L(n) = [Li,j ]0≤i,j<n with

Li,j =
{

0 if i < j(i
j

)
if i ≥ j,

U(n) = L(n)T and B(n) = [Bi,j ]0≤i,j<n with Bi,0 = λ̂i, B0,j = µ̂j , B1,1 = 1,
B2,1 = −1 and

Bi,j = Bi−1,j−1 −Bi,j−1, 1 ≤ i, j < n, (i, j) %= (1, 1), (2, 1). (17)

The matrix B(6), for instance, is given by

B(6) = [Bi,j ]0≤i,j<6 =





λ̂0 = µ̂0 µ̂1 µ̂2 µ̂3 µ̂4

λ̂1 1 −2 5 −14
λ̂2 −1 2 −4 9
λ̂3 −8 7 −5 1
λ̂4 −26 18 −11 6
λ̂5 −72 46 −28 17





.

In what follows, for convenience, we will let A = A(n), L = L(n), B = B(n)
and U = U(n). Now, for the proof of the claimed factorization we compute the
(i, j)-entry of L · B · U , that is,

(L · B · U)i,j =
n−1∑

r=0

n−1∑

s=0

Li,rBr,sUs,j . (18)
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In fact, so as to prove the theorem, we should establish

R0(L · B · U) = R0(A) = (µ0, µ1, . . . , µn−1),

C0(L · B · U) = C0(A) = (λ0,λ1, . . . ,λn−1),

and
(L · B · U)i,j = (L · B · U)i−1,j−1 + (L · B · U)i−1,j − 2i, (19)

for 1 ≤ i, j < n.
Let us do the required calculations. First, suppose that i = 0. Then, we have

(L·B·U)0,j =
n−1∑

r=0

n−1∑

s=0

L0,rBr,sUs,j =
n−1∑

s=0

B0,sUs,j =
n−1∑

s=0

(
j

s

)
µ̂s = µj , (by Eq. (2))

and so R0(L · B · U) = R0(A) = (µ0, µ1, . . . , µn−1).
Next, assume that j = 0. In this case, we obtain

(L·B ·U)i,0 =
n−1∑

r=0

n−1∑

s=0

Li,rBr,sUs,0 =
n−1∑

r=0

Li,rBr,0 =
n−1∑

r=0

(
i

r

)
λ̂r = λi, (by Eq. (2))

and hence we have C0(L · B · U) = C0(A) = (λ0,λ1, . . . ,λn−1).
Finally, we must establish Eq. (19). Now, let us assume that 1 ≤ i, j ≤ n − 1.

In this case we have

(L · B · U)i,j =
n−1∑

r=0

n−1∑

s=0

Li,rBr,sUs,j =
n−1∑

r=0

Li,rBr,0 +
n−1∑

r=0

n−1∑

s=1

Li,rBr,sUs,j . (20)

Let Ω(i, j) :=
n−1∑
r=0

n−1∑
s=1

Li,rBr,sUs,j . Then, using Eqs. (8) and (18), we obtain

Ω(i, j) =
n−1∑
r=0

n−1∑
s=1

Li,rBr,s

(
Us−1,j−1 + Us,j−1

)

=
n−1∑
r=0

n−1∑
s=1

Li,rBr,sUs−1,j−1 +
n−1∑
r=0

n−1∑
s=1

Li,rBr,sUs,j−1

=
n−1∑
r=1

n−1∑
s=1

Li,rBr,sUs−1,j−1 +
n−1∑
s=1

B0,sUs−1,j−1

+(L · B · U)i,j−1 −
n−1∑
r=0

Li,rBr,0.

(21)
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Again, let Θ(i, j) :=
n−1∑
r=1

n−1∑
s=1

Li,rBr,sUs−1,j−1. Now, using Eq. (7), we have

Θ(i, j) =
n−1∑
r=1

n−1∑
s=1

(
Li−1,r−1 + Li−1,r

)
Br,sUs−1,j−1

=
n−1∑
r=1

n−1∑
s=1

Li−1,r−1Br,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=1

Li−1,rBr,sUs−1,j−1

=
n−1∑
r=2

n−1∑
s=2

Li−1,r−1Br,sUs−1,j−1 +
n−1∑
r=1

Li−1,r−1Br,1

+
n−1∑
s=2

B1,sUs−1,j−1 +
n−1∑
r=1

n−1∑
s=1

Li−1,rBr,s

(
Us,j − Us,j−1

) (
by Eq. (8)

)

=
n−1∑
r=2

n−1∑
s=2

Li−1,r−1 (Br−1,s−1 −Br,s−1)Us−1,j−1

+
n−1∑
r=1

Li−1,r−1Br,1 +
n−1∑
s=2

B1,sUs−1,j−1

+
n−1∑
r=1

n−1∑
s=1

Li−1,rBr,sUs,j −
n−1∑
r=1

n−1∑
s=1

Li−1,rBr,sUs,j−1 (by Eq. (17))

=
n−1∑
r=2

n−1∑
s=2

Li−1,r−1Br−1,s−1Us−1,j−1 −
n−1∑
r=2

n−1∑
s=2

Li−1,r−1Br,s−1Us−1,j−1

+
n−1∑
r=1

Li−1,r−1Br,1 +
n−1∑
s=2

B1,sUs−1,j−1

+
n−1∑
r=1

n−1∑
s=1

Li−1,rBr,sUs,j −
n−1∑
r=1

n−1∑
s=1

Li−1,rBr,sUs,j−1

=
n−1∑
r=1

n−1∑
s=1

Li−1,rBr,sUs,j−1 −
n−1∑
r=2

n−1∑
s=1

Li−1,r−1Br,sUs,j−1

+
n−1∑
r=1

Li−1,r−1Br,1 +
n−1∑
s=2

B1,sUs−1,j−1

+
n−1∑
r=1

n−1∑
s=1

Li−1,rBr,sUs,j −
n−1∑
r=1

n−1∑
s=1

Li−1,rBr,sUs,j−1

(
note that Li−1,n−1 = Un−1,j−1 = 0

)

= −
n−1∑
r=2

n−1∑
s=1

Li−1,r−1Br,sUs,j−1 +
n−1∑
r=1

Li−1,r−1Br,1 +
n−1∑
s=2

B1,sUs−1,j−1

+
n−1∑
r=0

n−1∑
s=0

Li−1,rBr,sUs,j −
n−1∑
s=0

B0,sUs,j −
n−1∑
r=1

Li−1,rBr,0

= −
n−1∑
r=2

n−1∑
s=1

Li−1,r−1Br,sUs,j−1 +
n−1∑
r=1

Li−1,r−1Br,1 +
n−1∑
s=2

B1,sUs−1,j−1

+(L · B · U)i−1,j −
n−1∑
s=0

B0,sUs,j −
n−1∑
r=1

Li−1,rBr,0

(
by Eq. (18)

)
.
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Now, for convenience, we put

Γ(i, j) =
n−1∑

r=2

n−1∑

s=1

Li−1,r−1Br,sUs,j−1.

But then

Γ(i, j) =
n−1∑
r=2

n−1∑
s=1

(Li,r − Li−1,r)Br,sUs,j−1 (by Eq. (7))

=
n−1∑
r=2

n−1∑
s=1

Li,rBr,sUs,j−1 −
n−1∑
r=2

n−1∑
s=1

Li−1,rBr,sUs,j−1

=
n−1∑
r=0

n−1∑
s=0

Li,rBr,sUs,j−1 −
1∑

r=0

n−1∑
s=0

Li,rBr,sUs,j−1 −
n−1∑
r=2

Li,rBr,0

−
n−1∑
r=0

n−1∑
s=0

Li−1,rBr,sUs,j−1 +
1∑

r=0

n−1∑
s=0

Li−1,rBr,sUs,j−1 +
n−1∑
r=2

Li−1,rBr,0

= (L · B · U)i,j−1 −
n−1∑
s=0

Li,1B1,sUs,j−1 −
n−1∑
r=2

Li,rBr,0 − (L · B · U)i−1,j−1

+
n−1∑
s=0

Li−1,1B1,sUs,j−1 +
n−1∑
r=2

Li−1,rBr,0

(
by Eq. (18)

)
.

Therefore, we have

Θ(i, j) = −(L · B · U)i,j−1 +
n−1∑
s=0

Li,1B1,sUs,j−1 +
n−1∑
r=2

Li,rBr,0 + (L · B · U)i−1,j−1

−
n−1∑
s=0

Li−1,1B1,sUs,j−1 −
n−1∑
r=2

Li−1,rBr,0 +
n−1∑
r=1

Li−1,r−1Br,1

+
n−1∑
s=2

B1,sUs−1,j−1 + (L · B · U)i−1,j −
n−1∑
s=0

B0,sUs,j −
n−1∑
r=1

Li−1,rBr,0

After having substituted this in Eq. (21) and the sums are put together, then
we obtain

Ω(i, j) = (L · B · U)i−1,j−1 + (L · B · U)i−1,j + Ψ(i, j)

where

tΨ(i, j) =
n−1∑
s=0

Li,1B1,sUs,j−1 +
n−1∑
r=2

Li,rBr,0 −
n−1∑
s=0

Li−1,1B1,sUs,j−1 −
n−1∑
r=2

Li−1,rBr,0

+
n−1∑
r=1

Li−1,r−1Br,1 +
n−1∑
s=2

B1,sUs−1,j−1 −
n−1∑
s=0

B0,sUs,j −
n−1∑
r=1

Li−1,rBr,0

+
n−1∑
s=1

B0,sUs−1,j−1 −
n−1∑
r=0

Li,rBr,0.

Finally, if this is substituted in Eq. (20), then we obtain

(L · B · U)i,j =
n−1∑
r=0

Li,rBr,0 + (L · B · U)i−1,j−1 + (L · B · U)i−1,j + Ψ(i, j),
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In the sequel, we will show that
n−1∑

r=0

Li,rBr,0 + Ψ(i, j) = −2i.

In fact, by easy calculations one can show that

n−1∑
r=2

Li,rBr,0 −
n−1∑
r=2

Li−1,rBr,0 +
n−1∑
r=1

Li−1,r−1Br,1 −
n−1∑
r=1

Li−1,rBr,0

=
n−1∑
r=2

{Li,r − Li−1,r}Br,0 +
n−1∑
r=1

Li−1,r−1Br,1 −
n−1∑
r=2

Li−1,r−1Br−1,0

=
n−1∑
r=2

Li−1,r−1Br,0 + Li−1,0B1,1 +
n−1∑
r=2

Li−1,r−1{Br,1 −Br−1,0}

(by Eq. (7))

= Li−1,1B2,0 +
n−1∑
r=3

Li−1,r−1Br,0 + 1 + Li−1,1{B2,1 −B1,0}

−
n−1∑
r=3

Li−1,r−1Br,0 ( by Eq. (17))

= −2(i− 1) + 1 + (i− 1){−1− (−1)} = −2i + 3.

And also
n−1∑
s=0

Li,1B1,sUs,j−1 −
n−1∑
s=0

Li−1,1B1,sUs,j−1 +
n−1∑
s=2

B1,sUs−1,j−1

−
n−1∑
s=0

B0,sUs,j +
n−1∑
s=1

B0,sUs−1,j−1

=
n−1∑
s=0

{Li,1 − Li−1,1}B1,sUs,j−1 +
n−1∑
s=1

B1,s+1Us,j−1 −B0,0U0,j

+
n−1∑
s=1

B0,s{Us−1,j−1 − Us,j}

=
n−1∑
s=0

B1,sUs,j−1 +
n−1∑
s=1

B1,s+1Us,j−1 − (2)(1)−
n−1∑
s=1

B0,sUs,j−1

(by Eqs. (7) and (8))

= B1,0U0,j−1 +
n−1∑
s=1

{B1,s + B1,s+1}Us,j−1 − 2−
n−1∑
s=1

B0,sUs,j−1

= (−1)(1) +
n−1∑
s=1

B0,sUs,j−1 − 2−
n−1∑
s=1

B0,sUs,j−1 = −3.

Hence, we conclude that
n−1∑

r=0

Li,rBr,0 + Ψ(i, j) =
n−1∑

r=0

Li,rBr,0 + (−2i + 3)− 3−
n−1∑

r=0

Li,rBr,0 = −2i,
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as desired.
Evidently, the claimed factorization of A(n) immediately implies that

detA(n) = detB(n).

Finally, we apply the following column operations:

B1(n) = B(n)
∏n−2

i=1 O′
n−i,n−i−1(3),

B2(n) = B1(n)
∏n−3

i=1 O′
n−i,n−i−1(1),

B3(n) = B2(n)
∏n−4

i=1 O′
n−i,n−i−1(1),

...
Bn−2(n) = Bn−3(n)

∏1
i=1 O′

n−i,n−i−1(1).

Now, it is easy to see that Bn−2(n) = H(n), which has already been introduced.
Moreover, since

detB(n) = detB1(n) = . . . = detBn−2(n) = detH(n),

by Lemma 10 we conclude that detB(n) = Ln−1, which proves the proposition. !

Proof of Theorem 4. It is proved by Proposition 9 and Proposition 11. !

5. Conclusion

In this paper we have found two infinite-dimensional matrices whose entries are
recursively defined and the sequence of their principal minors form the Lucas se-
quence. These matrices are generated by nonhomogeneous recurrence relations. It
is not difficult to find other examples of matrices with the same property. The
following question, however, is not so obvious.

Problem. Is there an infinite family of infinite-dimensional matrices whose entries
are recursively defined and the sequence of their principal minors form the Lucas
sequence?
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