A COMBINATORIAL PROOF OF GUO'S MULTI-GENERALIZATION OF MUNARINI'S IDENTITY

Dan-Mei Yang ${ }^{1}$
Department of Mathematics, East China Normal University, Shanghai 200062, People's Republic of China
plain_dan2004@126.com

Received: 11/29/10, Revised: 4/18/11, Accepted: 6/12/11, Published: 8/7/11

Abstract

We give a combinatorial proof of Guo's multi-generalization of Munarini's identity, answering a question of Guo.

1. Introduction

Simons [7] proved a binomial coefficient identity which is equivalent to

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k}(1+x)^{k}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} x^{k} \tag{1}
\end{equation*}
$$

Several different proofs of (1) were given in $[1,5,8]$. Using Cauchy's integral formula as in [5], Munarini [4] obtained the following generalization:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{\beta-\alpha+n}{n-k}\binom{\beta+k}{k}(-1)^{n-k}(x+y)^{k} y^{n-k}=\sum_{k=0}^{n}\binom{\alpha}{n-k}\binom{\beta+k}{k} x^{k} y^{n-k} \tag{2}
\end{equation*}
$$

where α, β, x and y are indeterminates. It is clear that (2) reduces to (1) when $\alpha=\beta=n$ and $y=1$. Shattuck [6] and Chen and Pang [2] provided two interesting combinatorial proofs of (2).

Recently, Guo [3] obtained the following multinomial coefficient generalization of

[^0](2):
\[

$$
\begin{align*}
& \sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}(-1)^{|\mathbf{n}|-|\mathbf{k}|}\binom{\beta-\alpha+|\mathbf{n}|}{\mathbf{n}-\mathbf{k}}\binom{\beta+|\mathbf{k}|}{\mathbf{k}}(\mathbf{x}+\mathbf{y})^{\mathbf{k}} \mathbf{y}^{\mathbf{n}-\mathbf{k}} \\
&=\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}\binom{\alpha}{\mathbf{n}-\mathbf{k}}\binom{\beta+|\mathbf{k}|}{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \mathbf{y}^{\mathbf{n}-\mathbf{k}} \tag{3}
\end{align*}
$$
\]

where $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}^{m},|\mathbf{n}|=n_{1}+\cdots+n_{m}$, the multinomial coefficient $\binom{x}{\mathbf{n}}$ is defined by

$$
\binom{x}{\mathbf{n}}= \begin{cases}\frac{x(x-1) \cdots(x-|\mathbf{n}|+1)}{n_{1}!\cdots n_{m}!}, & \text { if } \mathbf{n} \in \mathbb{N}^{m} \\ 0, & \text { otherwise }\end{cases}
$$

and $\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{m}+y_{m}\right), \mathbf{x}^{\mathbf{a}}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{m}^{a_{m}}$ for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right.$, $\left.x_{m}\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbb{C}^{m}$ and $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in \mathbb{N}^{m}$.

In this paper we shall give an involutive proof of (3), answering a question of Guo [3]. Our proof is motivated by Shattuck's work [6].

2. The Involutive Proof

Notice that both sides of (3) are polynomials in $\alpha, \beta, x_{1}, \ldots, x_{m}$ and y_{1}, \ldots, y_{m}. We may consider only the case of positive integers with $\beta \geq \alpha$. We first understand the unsigned quantity in the sum of the left-hand side of (3). Let $\Gamma=\left\{a, b_{1}, \ldots, b_{m}\right\}$ be an alphabet. We construct the weighted words $w=w_{1} \cdots w_{\beta+|\mathbf{n}|}$ on Γ as follows:
i) Choose $\mathbf{k}=\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{N}^{m}$ with $0 \leq k_{i} \leq n_{i}$ for $i=1,2, \ldots, m$;
ii) Let a subword of $w_{1} \cdots w_{\beta-\alpha+|\mathbf{n}|}$ be a permutation of the multiset $\left\{b_{1}^{n_{1}-k_{1}}, \ldots, b_{m}^{n_{m}-k_{m}}\right\}$, with each b_{i} weighted y_{i} and also circled;
iii) Let all the other w_{i} 's be a permutation of the multiset $\left\{a^{\beta}, b_{1}^{k_{1}}, \ldots, b_{m}^{k_{m}}\right\}$, with each b_{i} weighted x_{i} or y_{i} and each a weighted 1 .

We call such a weighted word w a configuration, and define its weight as the product of the weights of all the w_{i} 's. Here is an example for $\beta=4, \alpha=2, \mathbf{n}=(2,2)$ and $\mathbf{k}=(2,1)$ (the configuration has weight $\left.x_{1} x_{2} y_{1} y_{2}\right)$:

$$
\begin{array}{cccccccc}
a & b_{2} & a & b_{1} & b_{2} & a & b_{1} & a \\
1 & x_{2} & 1 & y_{1} & y_{2} & 1 & x_{1} & 1
\end{array} .
$$

Notice that the circled letters can occur only in the first $\beta-\alpha+|\mathbf{n}|$ positions, but not in the last α positions. It is not hard to see that the sum of the weights of the configurations defined above is equal to $\binom{\beta-\alpha+|\mathbf{n}|}{\mathbf{n}-\mathbf{k}}\binom{\beta+|\mathbf{k}|}{\mathbf{k}}(\mathbf{x}+\mathbf{y})^{\mathbf{k}} \mathbf{y}^{\mathbf{n}-\mathbf{k}}$ for any $\mathbf{k} \in \mathbb{N}^{m}$.

Let S be the set of all configurations just defined and let $\varphi: S \rightarrow S$ be the involution defined as follows. If the configuration $w \in S$ contains at least one letter w_{j} with weight y_{i} in the first $\beta-\alpha+|\mathbf{n}|$ positions, then let $\varphi(w)$ be the configuration obtained from w by choosing the first letter w_{j} with weight y_{i} and circling it (if it is not circled) or uncirling it (if it is circled). If the configuration $w \in S$ does not contain letters w_{j} with weight y_{i} in the first $\beta-\alpha+|\mathbf{n}|$ positions, then let $\varphi(w)=w$. For the above example, we have

a	b_{2}	a	b_{1}	b_{2}	a	b_{1}	a	$\stackrel{\varphi}{\longleftrightarrow}$	a	b_{2}	a	b_{1}	b_{2}	a	b_{1}	a	
1	x_{2}	1	y_{1}	y_{2}	1	x_{1}	1		1	x_{2}	1	y_{1}	y_{2}	1	x_{1}	1	

Let $\operatorname{Fix}(\varphi):=\{w \mid \varphi(w)=w, w \in S\}$. For each $w \in \operatorname{Fix}(\varphi)$, notice that every letter w_{j} with weight y_{i} is in the right α positions. The total weight of the configurations in $\operatorname{Fix}(\varphi)$ is equal to the right-hand side of (3). This is because if the subwords with elements weighted y_{i} in $w_{\beta-\alpha+|\mathbf{n}|+1} \cdots w_{\beta+|\mathbf{n}|}$ is a permutation of the multiset $\left\{b_{1}^{n_{1}-k_{1}}, \ldots, b_{m}^{n_{m}-k_{m}}\right\}$, then there $\operatorname{are}\binom{\beta+|\mathbf{k}|}{\mathbf{k}}$ possible ways to choose the remaining subwords of w, where each b_{i} is weighted x_{i}. This proves (3).

Acknowledgements. The author would like to thank the referee for many helpful comments on a previous version of this paper.

References

[1] R. Chapman, A curious identity revised, Math. Gazette 87 (2003), 139-141.
[2] W. Y. C. Chen and S. X. M. Pang, On the combinatorics of the Pfaff identity, Discrete Math. 309 (2009), 2190-2196.
[3] V. J. W. Guo, Simple proofs of Jensen's, Chu's, Mohanty-Handa's, and Graham-Knuth-Patashnik's identities, preprint, arXiv:1005.2745.
[4] E. Munarini, Generalization of a binomial identity of Simons, Integers 5 (2005), \#A15.
[5] H. Prodinger, A curious identity proved by Cauchy's integral formula, Math. Gazette 89 (2005), 266-267.
[6] M. Shattuck, Combinatorial proofs of some Simons-type binomial coefficient identities, Integers 7 (2007), \#A27.
[7] S. Simons, A curious identity, Math. Gazette 85 (2001), 296-298.
[8] X. Wang and Y. Sun, A new proof of a curious identity, Math. Gazette 91 (2007), 105-106.

[^0]: ${ }^{1}$ This work was partially supported by Shanghai Rising-Star Program (\#09QA1401700) and the National Science Foundation of China (\#10801054).

