A REMARK ON THE BOROS-MOLL SEQUENCE

J.-P. Allouche
CNRS, Institut de Math., Équipe Combinatoire et Optimisation
Université Pierre et Marie Curie, Paris, France
allouche@math.jussieu.fr

Received: 2/28/11, Accepted: 7/26/11, Published: 8/8/11

Abstract

We generalize a result of Prodinger in a recent issue of Integers about the oscillatory behavior of a double summation related to the 2 -adic valuation of the Boros-Moll sequence.

1. Introduction

In order to evaluate the quartic integral

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}
$$

Boros and Moll introduced in [7] the sequence

$$
d_{l, m}:=2^{-2 m} \sum_{1 \leq k \leq m} 2^{k}\binom{2 M-2 k}{m-k}\binom{m+k}{m}\binom{k}{l}
$$

defined for integers l, m with $0 \leq l \leq m$. These numbers were seen to be the quotients of positive integers divided by powers of 2 .

Several papers were then devoted to the combinatorial and arithmetic properties of (a variation of) this sequence and of its 2 -adic valuation (e.g., $[8,13,9,5,14,15]$). The purpose of this note is to generalize the result given in the recent paper [15], which appeared in Integers. In that paper the author studies, for the values $l=3$ and $l=5$, the oscillatory behavior of the double sum $\sum_{1 \leq n<N} \sum_{1 \leq m \leq n} f_{l}(m)=$ $\sum_{1 \leq k<n} f_{l}(k)(n-k)$, where $f_{l}(m)$ is the 2 -adic valuation of a certain subsequence of the sequence $\left(l!m!2^{m+l} d_{l, m}\right)$. We extend the result to any odd value of $l \geq 3$. We also prove that the oscillatory term that involves a continuous periodic function is closely related to a function studied by Delange in [11] and in particular is nowhere differentiable.

2. Notation and a Basic Property

Definition 1. The sequences $d_{l, m}$ and $A_{l, m}$ are defined for integers l, m satisfying $0 \leq l \leq m$ by

$$
d_{l, m}:=2^{-2 m} \sum_{1 \leq k \leq m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{l}
$$

and

$$
A_{l, m}:=l!m!2^{m+l} d_{l, m}=l!m!2^{-(m-l)} \sum_{1 \leq k \leq m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{l}
$$

Remark 2. As proven in [9], the numbers $A_{l, m}$ are integers.
Definition 3. The sequence $f_{l}(m)$ is defined for positive integers l, m by

$$
f_{l}(m):=\nu_{2}\left(A_{l, l+(m-1) .2^{1+\nu_{2}}(l)}\right)
$$

where $\nu_{2}(k)$ is the 2 -adic valuation of the integer k, i.e., the largest exponent j such that 2^{j} divides k.

Remark 4. This definition is given in [17]. The study of $f_{l}(m)$ is simpler than, but equivalent to, the study of $\nu_{2}\left(A_{l, m}\right)$.

It happens that $\nu_{2}\left(A_{l, m}\right)$ and thus $f_{l}(m)$ have a simple expression in terms of the sequence $j \rightarrow s_{2}(j)$, the sum of the binary digits of the integer j, as proven in a somewhat hidden place.

Theorem 5. (see Corollary 1.3 of [6]) The 2-adic valuation of $A_{l, m}$, for $l>0$ is given by

$$
\nu_{2}\left(A_{l, m}\right)=3 l-s_{2}(m+l)+s_{2}(m-l)
$$

Corollary 6. We have the relation

$$
f_{l}(m)=3 l-s_{2}\left(l+2^{\nu_{2}(l)}(m-1)\right)+s_{2}(m-1)
$$

In particular, for each odd integer l,

$$
f_{l}(m)=3 l+s_{2}(m-1)-s_{2}(l+m-1) .
$$

Proof. It suffices to use Theorem 5, Definition 3 above, and to note that for any integer x we have $s_{2}(2 x)=s_{2}(x)$.

3. A Summatory Function

The author of the paper [15] proves an asymptotic expansion of the double summatory function of the sequences $f_{3}(m)$ and $f_{5}(m)$, that shows a remarkable oscillatory behavior.

Theorem 7. (Theorems 1 and 2 of [15]) There exist two periodic continuous functions ϕ and ψ such that

$$
\sum_{1 \leq k<n} f_{3}(k)(n-k)=\frac{9 n^{2}}{2}-\frac{3 n}{2} \log _{2} n-\frac{3 n}{2} \log _{2} \pi-\frac{7 n}{4}+\frac{3 n}{2 \log 2}+n \phi\left(\log _{2} n\right)+O\left(n^{3 / 4}\right)
$$

and

$$
\sum_{1 \leq k<n} f_{5}(k)(n-k)=\frac{15 n^{2}}{2}-\frac{5 n}{2} \log _{2} n-\frac{5 n}{2} \log _{2} \pi-\frac{5 n}{4}+\frac{5 n}{2 \log 2}+n \psi\left(\log _{2} n\right)+O\left(n^{3 / 4}\right)
$$

Remark 8. Actually the expansions given in [15] are not correct. The expansions above are taken from the corrected version [16]. Also note that the Fourier series of ϕ (resp. ψ) is explicitly (resp. implicitly) given in [15].

The author of [15] indicates that the same method, i.e., the general principles described in [12] and applied to the Dirichlet series $\sum \frac{f_{l}(n)}{n^{s}}$, would work for any odd $l \geq 3$, but that the Dirichlet series for $l \geq 7$ become more cumbersome. We will see here that, for this Theorem 7, the seminal 1975 paper of Delange [11] suffices, and that it even gives more. (Note that the paper of Delange uses only "elementary" methods.) Let us first recall the theorem of Delange in [11].

Theorem 9. (Delange, [11]) Let $q \geq 2$ be an integer. Let $s_{q}(n)$ denote the sum of the base q digits of the integer n. Then, there exists a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$, periodic with period 1 and nowhere differentiable, such that

$$
\sum_{0 \leq n<m} s_{q}(n)=\frac{q-1}{2} m \log _{q} m+m F\left(\log _{q} m\right)
$$

Furthermore the Fourier series of F is given by

$$
F \sim \sum_{k \in \mathbb{Z}} c_{k} e^{2 i k \pi x}
$$

with

$$
c_{0}=\frac{q-1}{2 \log q}(\log 2 \pi-1)-\frac{q+1}{4}
$$

and for $k \neq 0$

$$
c_{k}=i \frac{q-1}{2 k \pi}\left(1+\frac{2 i k \pi}{\log q}\right)^{-1} \zeta\left(\frac{2 i k \pi}{\log q}\right)
$$

We will prove the following result, which extends the main result in [15].
Theorem 10. We have the following asymptotic expansion for $l \geq 3$ odd:

$$
\sum_{1 \leq n<N} \sum_{1 \leq m \leq n} f_{l}(m)=\frac{3 l N^{2}}{2}-\frac{l N \log N}{2 \log 2}+d_{0} N+l N F\left(\frac{\log N}{\log 2}\right)+O(\log N)
$$

where F is Delange's function. In particular, F is continuous, periodic with period 1, and nowhere differentiable. Its Fourier series is given by

$$
G(x) \sim \sum_{k \in \mathbb{Z} \backslash\{0\}} c_{k}^{\prime} e^{2 i k \pi x}
$$

with

$$
c_{k}^{\prime}=\frac{1}{2 i k \pi}\left(1+\frac{2 i k \pi}{\log 2}\right)^{-1} \zeta\left(\frac{2 i k \pi}{\log 2}\right)
$$

and

$$
d_{0}:=\sum_{1 \leq m \leq l-1} s_{2}(m)-\frac{5 l}{4}-\frac{l \log \pi}{2 \log 2}+\frac{l}{2 \log 2} .
$$

Proof. We note that the double summation for f_{l} is given by

$$
\sum_{1 \leq n<N} \sum_{1 \leq m \leq n} f_{l}(m)=\sum_{1 \leq m<N} f_{l}(m) \sum_{m \leq n<N} 1=\sum_{1 \leq k<n} f_{l}(k)(n-k) .
$$

Using Corollary 6 we have

$$
\begin{aligned}
\sum_{1 \leq n<N} \sum_{1 \leq m \leq n} f_{l}(m) & =\sum_{\substack{1 \leq n<N}} \sum_{1 \leq m \leq n}\left(3 l+s_{2}(m-1)-s_{2}(l+m-1)\right) \\
& =\frac{3 l N(N-1)}{2}+\sum_{1 \leq n<N} W_{n}
\end{aligned}
$$

where
$W_{n}:=\sum_{1 \leq m \leq n} s_{2}(m-1)-\sum_{1 \leq m \leq n} s_{2}(l+m-1)=\sum_{1 \leq m \leq n-1} s_{2}(m)-\sum_{1 \leq m \leq n} s_{2}(l+m-1)$.
Now, if $l<n$, we have

$$
\begin{aligned}
W_{n} & =\left\{\begin{array}{l}
\sum_{1 \leq m \leq l-1} s_{2}(m)+\sum_{l \leq m \leq n-1} s_{2}(m) \\
-\sum_{1 \leq m \leq n-l} s_{2}(l+m-1)-\sum_{n-l+1 \leq m \leq n} s_{2}(l+m-1) \\
\end{array}=\sum_{1 \leq m \leq l-1} s_{2}(m)-\sum_{1 \leq m \leq l-1} s_{2}(l+m-1)\right. \\
& =\sum_{0 \leq k \leq l-1}^{n-l+1 \leq m \leq n} s_{2}(n+k) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{1 \leq n<N} W_{n} & =\sum_{l<n<N} W_{n}+O(1) \\
& =\sum_{l<n<N} \sum_{1 \leq m \leq l-1} s_{2}(m)-\sum_{l<n<N} \sum_{0 \leq k \leq l-1} s_{2}(n+k)+O(1) \\
& =\sum_{1 \leq n<N} \sum_{1 \leq m \leq l-1} s_{2}(m)-\sum_{0 \leq k \leq l-1} s_{l<n<N}(n+k)+O(1) \\
& =N \sum_{1 \leq m \leq l-1} s_{2}(m)-\sum_{0 \leq k \leq l-1} \sum_{l<n<N} s_{2}(n+k)+O(1)
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{0 \leq k \leq l-1} \sum_{l<n<N} s_{2}(n+k) & =\sum_{0 \leq k \leq l-1} \sum_{1 \leq n<N} s_{2}(n+k)+O(1) \\
& =\sum_{0 \leq k \leq l-1} \sum_{k+1 \leq n<N+k} s_{2}(j)+O(1) \\
= & \sum_{0 \leq k \leq l-1} s_{2}(j)+O(1) \\
= & \sum_{1 \leq n<N+k}\left(\sum_{1 \leq j<N} s_{2}(j)+\sum_{N \leq j<N+k} s_{2}(j)\right)+O(1) \\
= & l \sum_{1 \leq j<N-1} s_{2}(j)+O(\log N) \\
& \left(\text { since for any } m \geq 1, s_{2}(m) \leq 1+\log m / \log 2\right)
\end{aligned}
$$

So, finally,

$$
\sum_{n<N} W_{n}=N \sum_{1 \leq m \leq l-1} s_{2}(m)-l \sum_{1 \leq j<N} s_{2}(j)+O(\log N)
$$

and

$$
\sum_{1 \leq n<N} \sum_{1 \leq m \leq n} f_{l}(m)=\frac{3 l N(N-1)}{2}+N \sum_{1 \leq m \leq l-1} s_{2}(m)-l \sum_{1 \leq j<N} s_{2}(j)+O(\log N)
$$

Using Theorem 9 we get

$$
\begin{aligned}
\sum_{1 \leq n<N} \sum_{1 \leq m \leq n} f_{l}(m)=\frac{3 l N(N-1)}{2}+N & \sum_{1 \leq m \leq l-1} s_{2}(m) \\
& -\frac{l}{2 \log 2} N \log N-l N F\left(\frac{\log N}{\log 2}\right)+O(\log N) .
\end{aligned}
$$

The result holds by using the Fourier expansion of Delange's function F.
Remark 11. It is worth noting that, while the term $O(\log N)$ depends on l, the function F (Delange's function) does not depend on l.

4. Conclusion

The method used in [15] to study the asymptotics of the double summatory function $\sum_{1 \leq n<N} \sum_{1 \leq m \leq n} f_{l}(m)=\sum_{1 \leq k<n} f_{l}(k)(n-k)$ is based on the philosophy of [12] and involves the study of the Dirichlet series $\sum \frac{f_{l}(n)}{n^{s}}$. It happens that these Dirichlet series can be computed as infinite linear combinations of shifts of the zeta function.

It is worth noting that the series $\sum \frac{f_{l}(n)}{n^{s}}$ belong to a class of Dirichlet series that have the following properties: they satisfy infinite functional equations, being equal to infinite linear combinations of their shifts; they can be continued to meromorphic functions on the whole plane; their poles (if any) are located on a finite number of left half-lattices (see [1, Theorem 3 and Remark 4]). Namely the sequence $\left(f_{l}(n)\right)_{n \geq 1}$ is 2-regular (see $[2,3,4]$ for a definition), which is an immediate consequence of the 2-regularity of the sequence $\left(s_{2}(n)\right)_{n}$ and of the stability properties of 2-regular sequences.

It is also worth noting that the method of [12], although giving asymptotic expansions of summatory functions of fairly general "digit-related sequences", does not give the (non-)differentiability properties of the oscillatory term. We have mentioned the result of Delange [11]. Several other examples can be found in the literature: a list of references and a unified treatment can be found in [10] and in [18].

References

[1] J.-P. Allouche, M. Mendès France, J. Peyrière, Automatic Dirichlet series, J. Number Theory 81 (2000) 359-373.
[2] J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992) 163-197.
[3] J.-P. Allouche, J. Shallit, The ring of k-regular sequences, II, Theoret. Comput. Sci. 307 (2003) 3-29.
[4] J.-P. Allouche, J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, 2003, Cambridge University Press.
[5] T. Amdeberham, D. Manna, V. H. Moll, The 2-adic valuation of a sequence arising from a rational integral, J. Comb. Theory, Ser. A 115 (2008) 1474-1486.
[6] T. Amdeberham, D. Manna, V. H. Moll, The 2-adic valuation of Stirling numbers, Experiment. Math. 17 (2008) 69-82.
[7] G. Boros, V. H. Moll, An integral hidden in Gradshteyn and Ryzhik, Jour. Comp. Appl. Math. 106 (1999) 361-368.
[8] G. Boros, V. H. Moll, A criterion for unimodality, Electron. J. Combin. 6 (1999) 1-6.
[9] G. Boros, V. H. Moll, J. Shallit, The 2-adic valuation of the coefficients of a polynomial, Scientia, Ser. A 7 (2001) 37-50.
[10] E. Cateland, Suites digitales et suites k-régulières, 1992, Thèse, Université Bordeaux I.
[11] H. Delange, Sur la fonction sommatoire de la fonction "somme des chiffres", L'Ens. Math. 21 (1975) 31-47.
[12] P. Flajolet, P. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, Mellin transforms and asymptotics: Digital sums, Theoret. Comput. Sci. 123 (1994) 291-314.
[13] M. Kauers, P. Paule, A computer proof of Moll's log-concavity conjecture, Proc. Amer. Math. Soc. 135 (2007) 3837-3846.
[14] V. H. Moll, Combinatorial sequences arising from a rational integral, Onl. J. Anal. Comb. 2 (2007) \#4.
[15] H. Prodinger, The intrinsic periodic behaviour of sequences related to a rational integral, Integers 11 (2011) \#A14.
[16] H. Prodinger, The intrinsic periodic behaviour of sequences related to a rational integral, available at http://math.sun.ac.za/~hproding/pdffiles/Moll-Dirichlet.pdf
[17] X.-y. Sun, V. H. Moll, A binary tree representation for the 2-adic valuation of a sequence arising from a rational integral, Integers 10 (2010) \#A16.
[18] G. Tenenbaum, Sur la non-dérivabilité de fonctions périodiques associées à certaines formules sommatoires, in The Mathematics of Paul Erdös, R. L. Graham and J. Nešetřil eds., 1997, Springer Verlag, pp. 117-128.

