

ON BASES WITH A T-ORDER

Quan-Hui Yang¹

School of Mathematical Sciences, Nanjing Normal University, Nanjing, China yangquanhui01@163.com

Feng-Juan Chen

School of Mathematical Sciences, Nanjing Normal University, Nanjing, China and Department of Mathematics, Suzhou University, Suzhou, China cfjsz@126.com

Abstract

For any set $T = \{t_1, t_2, \ldots, t_n\} \subseteq \mathbb{N}$, a basis A is said to have a T-order s if every sufficiently large integer is the sum of $s - t_1$ or $s - t_2$ or \ldots or $s - t_n$ elements taken from A (allowing repetitions), where s is the least integer with this property. We write $\operatorname{ord}^{(T)}(A) = s$. In this paper, we characterize those bases A which have a T-order.

1. Introduction

A set A of nonnegative integers is said to be an asymptotic basis of order r if every sufficiently large integer can be expressed as a sum of at most r elements taken from A (allowing repetitions) and r is the least integer with this property. We write $\operatorname{ord}(A) = r$. A basis A is said to have an exact order r' if every sufficiently large integer is the sum of exactly r' elements taken from A (again, allowing repetitions) and r' is the least integer with this property. In this case we write $\operatorname{ord}^*(A) = r'$. In [6], Erdős and Graham characterized those bases A which have an exact order. They proved the following result: a basis $A = \{a_1, a_2, \ldots\}$ has an exact order if and only if $\gcd\{a_{k+1} - a_k : k = 1, 2, \ldots\} = 1$. For related research, one may refer to [1-5].

In this note, we introduce the concept of T-order as follows and generalize the result by Erdős and Graham[6].

Definition 1. For any set $T = \{t_1, t_2, \ldots, t_n\} \subseteq \mathbb{N}$, a basis A is said to have a T-order if there exists an integer s such that every sufficiently large integer is the sum of $s - t_1$ or $s - t_2$ or \ldots or $s - t_n$ integers taken from A (allowing repetitions). We indicate the least such s by $\operatorname{ord}^{(T)}(A) = s$.

¹Corresponding author

Definition 2. For any set $T = \{t_1, t_2, \ldots, t_n\} \subseteq \mathbb{N}$, a basis A is said to have an exact T-order if A has a T-order, and A does not have a T'-order for any set $T' \subsetneq T$.

By the definition, it's obvious that $\operatorname{ord}^*(A) = \operatorname{ord}^{(T)}(A)$ when $T = \{0\}$. It is easy to find examples of bases A which do not have a T-order. For example, if $A = \{x > 0 : x \equiv 1 \pmod{3}\}$ and $T = \{0, 1\}$, then A doesn't have a T-order. By the definition, we know that a basis A has a T-order for any set T when it has an exact order. Meanwhile, if $0 \in T$, then $\operatorname{ord}(A) \leq \operatorname{ord}^{(T)}(A) \leq \operatorname{ord}^*(A)$. It is clear that if $0 \in T$, $0 \in A$ and $\operatorname{ord}(A) = r$, then $\operatorname{ord}^{(T)}(A) = \operatorname{ord}^*(A) = r$. However, it is not difficult to construct examples of bases A such that

$$\operatorname{ord}^{(T)}(A) > \operatorname{ord}(A) \text{ or } \operatorname{ord}^*(A) > \operatorname{ord}^{(T)}(A).$$

For example, if

$$T = \{0, 1\}$$

and

$$A_1 = \bigcup_{k=0}^{\infty} \{ x : 3^{2k} + 1 \le x \le 3^{2k+1} \},\$$

then

$$\operatorname{ord}(A_1) = 3$$
 and $\operatorname{ord}^{(T)}(A_1) = 4$.

If

$$T = \{0, 1\}$$
 and $A_2 = \{x > 0 : x \equiv 2 \pmod{6} \text{ or } x \equiv 3 \pmod{6} \}$

then

$$\operatorname{ord}^{(T)}(A_2) = 3$$
 and $\operatorname{ord}^*(A_2) = 5$.

In this paper, we characterize those bases A which have a T-order.

2. Bases with a *T*-order

For $A = \{a_1, a_2, \ldots\}$, let $D(A) = \gcd\{a_{k+1} - a_k : k = 1, 2, \ldots\}$. It is easy to see that D(A) does not depend on the order of A.

Lemma 3. If $A = \{a_1, a_2, \ldots\}$ is a basis, then $(a_k, D(A)) = 1$ for all positive integers k.

Proof. If there exists k_0 such that $(a_{k_0}, D(A)) = d > 1$, then $d|a_k$ for all k. Therefore any sum of elements taken from A is a multiple of d, which contradicts the condition that A is a basis. This completes the proof of Lemma 3.

For $A = \{a_1, a_2, ...\}$ and a positive integer h, define hA as the h-fold sum set of A:

$$hA = \{a_{i_1} + a_{i_2} + \dots + a_{i_h} : i_1 \le \dots \le i_h\}.$$

Lemma 4. If $A = \{a_1, a_2, \ldots\}$ is a basis, then there exists a positive integer n such that $nA \cap (n + D(A))A \neq \emptyset$.

Proof. Since $D(A) = \text{gcd}\{a_{k+1} - a_k : k = 1, 2, ...\}$, there is a positive integer t such that

$$gcd\{a_{k+1} - a_k : 1 \leq k \leq t\} = D(A).$$

Thus, there exist integers c_1, c_2, \ldots, c_t such that

$$\sum_{k=1}^{t} c_k (a_{k+1} - a_k) = D(A).$$
(1)

We define p_k and q_k by

$$p_k = \begin{cases} a_{k+1} & \text{if } c_k \ge 0, \\ a_k & \text{if } c_k < 0, \end{cases} \quad q_k = \begin{cases} a_k & \text{if } c_k \ge 0, \\ a_{k+1} & \text{if } c_k < 0. \end{cases}$$

Then (1) can be rewritten as

$$\sum_{k=1}^{t} |c_k| (p_k - q_k) = D(A),$$

i.e.,

$$\sum_{k=1}^{t} |c_k| p_k = D(A) + \sum_{k=1}^{t} |c_k| q_k.$$

Let

$$K = \sum_{k=1}^{t} |c_k| p_k q_k.$$

Since

$$K = \sum_{k=1}^{t} \sum_{i=1}^{|c_k|p_k} q_k \in (\sum_{k=1}^{t} |c_k|p_k) A$$

and

$$K = \sum_{k=1}^{t} \sum_{j=1}^{|c_k|q_k} p_k \in (\sum_{k=1}^{t} |c_k|q_k)A,$$

we have $K \in nA \cap (n + D(A))A$, where $n = \sum_{k=1}^{t} |c_k|q_k$. This completes the proof of Lemma 4.

Theorem 5. For any set $T = \{t_1, t_2, \ldots, t_n\} \subseteq \mathbb{N}$, a basis $A = \{a_1, a_2, \ldots\}$ has a *T*-order if and only if t_1, t_2, \ldots, t_n contains a complete system of incongruent residues modulo D(A).

Proof. (Necessity). Suppose that $\operatorname{ord}^{(T)}(A) = s$. Since $D(A) = \operatorname{gcd}\{a_{k+1} - a_k : k = 1, 2, \ldots\}$, we have $a_{k+1} \equiv a_k \pmod{D(A)}$ for all k. Therefore, any sum of $s - t_i$ elements of A is congruent to $(s - t_i)a_1 \mod D(A)$ for $i = 1, 2, \cdots, n$. If t_1, t_2, \ldots, t_n does not contain a complete system of incongruent residues modulo D(A), then $(s - t_1)a_1, (s - t_2)a_1, \ldots, (s - t_n)a_1$ does not contain a complete system of incongruent residues modulo D(A) either. It contradicts $\operatorname{ord}^{(T)}(A) = s$.

(Sufficiency). Suppose that $\operatorname{ord}(A) = r$. By Lemma 4, there exist two positive integers K and n such that

$$K \in nA \cap (n + D(A))A.$$

Then, for any integer $w \ge 1$ we have

$$wK \in \bigcap_{k=0}^{w} (wn + kD(A))A.$$
 (2)

Let $s = (([r/D(A)]-1)n+[r/D(A)]D(A))+t_n$. Now we prove that every sufficiently large integer x can be represented as the sum of $s - t_1$ or \cdots or $s - t_n$ elements taken from A. Let $x_1 = x - ([r/D(A)] - 1)K$.

Case 1: $D(A) \mid x_1$. By Lemma 3, we have $(a_k, D(A)) = 1$ and $a_k \equiv a_1 \pmod{D(A)}$ for any integer $k \ge 1$. Thus

$$x_1 \in \bigcup_{D(A)|i, \ i \leqslant r} iA.$$

Setting w = [r/D(A)] - 1 in (2), we obtain

$$x = x_1 + ([r/D(A)] - 1)K \in (([r/D(A)] - 1)n + [r/D(A)]D(A))A = (s - t_n)A.$$

Case 2: $D(A) \nmid x_1$. By Lemma 3, we have $(a_1, D(A)) = 1$. Since t_1, t_2, \ldots, t_n contains a complete system of incongruent residues modulo D(A), we have that $(t_n - t_n)a_1, (t_n - t_{n-1})a_1, \ldots, (t_n - t_1)a_1$ also contains a complete system of incongruent residues modulo D(A). Thus, there exists an integer i such that $1 \leq i \leq n$ and

$$(t_n - t_i)a_1 \equiv x_1 \pmod{D(A)}.$$

By Case 1, we have

$$x_1 - (t_n - t_i)a_1 + ([r/D(A)] - 1)K \in (([r/D(A)] - 1)n + [r/D(A)]D(A))A.$$

Hence for any sufficiently large integer x, there exists an integer $i \ (1 \le i \le n)$ such that

$$x = x_1 + ([r/D(A)] - 1)K \in (([r/D(A)] - 1)n + [r/D(A)]D(A) + (t_n - t_i))A = (s - t_i)A.$$

This completes the proof of Theorem 5.

INTEGERS: 11 (2011)

Remark. By the proof Theorem 5, we have

$$\operatorname{ord}^{(T)}A \leq (([r/D(A)] - 1)n + [r/D(A)]D(A)) + t_n.$$

Corollary 6. For any set $T = \{t_1, t_2, \ldots, t_n\} \subseteq \mathbb{N}$, a basis $A = \{a_1, a_2, \ldots\}$ has an exact *T*-order if and only if D(A) = n and t_1, t_2, \ldots, t_n is a complete system of incongruent residues modulo D(A).

Proof. A has an exact T-order if and only if A has a T-order and A does not have a T'-order for any set $T' \subsetneq T$. By Theorem 5, T contains a complete system of incongruent residues modulo D(A) and T' does not contain a complete system of incongruent residues modulo D(A). Namely D(A) = n and t_1, t_2, \ldots, t_n is a complete system of incongruent residues modulo D(A). \Box

Remark. Let $T = \{0\}$, by Corollary 6, we can get the result by Erdős and Graham.

Acknowledgments We sincerely thank our supervisor Professor Yong-Gao Chen for his valuable suggestions and useful discussions.

References

[1]H. Halberstam, K. F. Roth, Sequences, Clarendon Press, Oxford 1966.

[2]Janczak Miroslawa, Schoen Tomasz, Dense minimal asymptotic bases of order two, J. Number Theory 130(3)(2010), 580-585.

[3] Schmitt, Christoph, Uniformly thin bases of order two, Acta Arith. 124(1)(2006), 17-26.

[4]S. Chen, W. Z. Gu , $Exact\ order\ of\ subsets\ of\ asymptotic\ bases,$ J. Number Theory 41(1)(1992), 15-21.

[5]X. D. Jia, Exact order of subsets of asymptotic bases in additive number theory, J. Number Theory 28(2)(1988), 205-218.

[6] P. Erdős, R. L. Graham, On bases with an exact order, Acta Arith. 37(1980), 201-207.