A RELATION BETWEEN TRIANGULAR NUMBERS AND PRIME NUMBERS

Rigoberto Flórez
Division of Mathematics, Science and Engineering, University of South Carolina Sumter, Sumter, SC, U.S.A.
florezr@uscsumter.edu
Leandro Junes
Division of Mathematics, Science and Engineering, University of South Carolina Sumter, Sumter, SC, U.S.A.
junesl@uscsumter.edu

Received: 3/26/11, Revised: 5/30/11, Accepted: 8/4/11, Published: 8/8/11

Abstract

We study a relation between factorials and their additive analog, the triangular numbers. We show that there is a positive integer k such that $n!=2^{k} T$ where T is a product of triangular numbers. We discuss the primality of $T \pm 1$ and the primality of $|T-p|$ where p is either the smallest prime greater than T or the greatest prime less than T.

1. Introduction

There is a natural relation between triangular numbers and factorials. Triangular numbers are the additive analogs of factorials. We show that there is a positive integer k such that $n!=2^{k} T$ where T is a product of triangular numbers. The number of factors of T depends on the parity of n.

There are many open questions about the relationship between prime numbers and factorials. For example, are there infinitely many primes of the form $n!\pm 1$? Erdös [4] asked if there are infinitely many primes p for which $p-k$! is composite for each k such that $1 \leq k!\leq p$. Fortune's conjecture [5] asks whether the product of the first n consecutive prime numbers plus or minus one is a prime. Since T is a product of triangular numbers, it is natural to ask whether $T \pm 1$ is a prime. It is also natural to ask whether $|T-p|$ is a prime number, where p is either the smallest prime greater than T or the greatest prime less than T.

In this paper we prove that there are infinitely many cases for which $T \pm 1$ is not a prime. We also give both numerical and theoretical evidence for the primality of
$|T-p|$ where $p \neq T \pm 1$.
We now formally state the question. We denote by t_{n} the $n^{\text {th }}$ triangular number where $n \geq 0$ with $t_{0}=0$ and $t_{n}=t_{n-1}+n$. We define $T(k)=\prod_{i=1}^{k} t_{2 i-1}$ and $T^{\prime}(k)=t_{5} \prod_{i=3}^{k} t_{2 i}$ for $k>2$ an integer. If there is no ambiguity, we use T to mean either $T(k)$ or $T^{\prime}(k)$.
Question 1. If T is either $T(k)$ or $T^{\prime}(k)$, and p is either the smallest prime greater than $T+1$ or the greatest prime less than $T-1$, then
(1) are there infinitely many primes of the form $T \pm 1$?
(2) Is $|T-p|$ a prime number?

2. Preliminaries

In this section we introduce some notation. Throughout the paper we use k to represent a positive integer. We prove that $n!=2^{k} \prod_{i=0}^{k-1}\left(t_{k}-t_{i}\right)$ if $n=2 k$ and $n!=2^{k} \prod_{i=0}^{k-1}\left(t_{k+1}-t_{i}\right)$ if $n=2 k+1$. Proposition 2, part (2) is in [2, 3]. Proposition 2, part (1) is a natural relation. Therefore, we believe that it is known, but unfortunately we have not found this property in the mathematics literature.

Proposition 2. If n is a positive integer, then
(1) $n!= \begin{cases}2^{k} T(k) & \text { if } n=2 k \\ 2^{k+1} T^{\prime}(k) & \text { if } n=2 k+1 .\end{cases}$
(2) $T(k)=\prod_{i=0}^{k-1}\left(t_{k}-t_{i}\right)$.
(3) $2 T^{\prime}(k)=\prod_{i=0}^{k-1}\left(t_{k+1}-t_{i}\right)$.

Proof. We prove part (1) for $n=2 k$, the other case is similar.

$$
\begin{aligned}
2^{k} T(k) & =2^{k} \cdot t_{1} \cdot t_{3} \ldots t_{2 k-1} \\
& =2^{k} \cdot \frac{1 \cdot 2}{2} \cdot \frac{3 \cdot 4}{2} \ldots \frac{(2 k-1) \cdot 2 k}{2} \\
& =(2 k)!=n!.
\end{aligned}
$$

We now prove part (2). We suppose that $n=2 k$. From part (1) we know that $n!=2^{k} T(k)$. So,

$$
\begin{aligned}
2^{k} T(k) & =1 \cdot 2 \cdot 3 \cdot 4 \ldots k \cdot(k+1) \ldots(2 k-3) \cdot(2 k-2) \cdot(2 k-1) \cdot 2 k \\
& =[1 \cdot 2 k] \cdot[2 \cdot(2 k-1)] \cdot[3 \cdot(2 k-2)] \ldots[k \cdot(k+1)] \\
& =[k \cdot(k+1)] \ldots[3 \cdot(2 k-2)] \cdot[2 \cdot(2 k-1)] \cdot[1 \cdot(2 k)] \\
& =\prod_{i=0}^{k-1}(k-i) \cdot(k+i+1)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{i=0}^{k-1}\left(k^{2}+k-i^{2}-i\right) \\
& =\prod_{i=0}^{k-1}(k(k+1)-i(i+1))
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
T(k) & =\frac{1}{2^{k}} \prod_{i=0}^{k-1}(k(k+1)-i(i+1)) \\
& =\prod_{i=0}^{k-1}\left(\frac{k(k+1)}{2}-\frac{i(i+1)}{2}\right) \\
& =\prod_{i=0}^{k-1}\left(t_{k}-t_{i}\right)
\end{aligned}
$$

We prove part (3). We suppose that $n=2 k+1$. It is easy to see that $2 T^{\prime}(k)=\frac{T(k+1)}{(k+1)}$. Thus,

$$
2 T^{\prime}(k)=\frac{T(k+1)}{k+1}=\frac{1}{k+1} \prod_{i=0}^{k}\left(t_{k+1}-t_{i}\right)=\prod_{i=0}^{k-1}\left(t_{k+1}-t_{i}\right)
$$

Notice that $2 T^{\prime}(k)=\prod_{i=1}^{k} t_{2 i}$. Therefore, we can ask Question 1 replacing $T^{\prime}(k)$ by $2 T^{\prime}(k)$. Numerical calculations show that Question 1, part (2) is true for $2 T^{\prime}(k)$ with $k \leq 1000$. We have found that there are only 9 prime numbers of the form $2 T^{\prime}(k)-1$ for $k \leq 1000$ and 12 prime numbers of the form $2 T^{\prime}(k)+1$ for $k \leq 1000$.

Since $t_{k}=\binom{k+1}{2}$, Proposition 2, part (1) can be restated as

$$
n!=2^{k} \prod_{i=1}^{k}\binom{2 i}{2}=2^{k} \prod_{i=0}^{k-1}\left(\binom{k+1}{2}-\binom{i+1}{2}\right) \text { if } n=2 k
$$

and

$$
n!=2^{k} \prod_{i=1}^{k}\binom{2 i+1}{2}=2^{k} \prod_{i=0}^{k-1}\left(\binom{k+2}{2}-\binom{i+1}{2}\right) \text { if } n=2 k+1
$$

We use Theorem 3 to prove Propositions 6 and 7 . These propositions give upper bounds for the number of primes in an interval.

Let f be a real function and g be a positive function. We use $f \ll g$ to mean that there is a constant $c>0$ such that $|f(x)| \leq c g(x)$ for all x in the domain of f. This is also denoted by $f=O(g)$. For the following two theorems q is a prime. If N is a positive even integer, we write $\pi_{N}(x)$ to denote the number of primes b up to x such that $N+b$ is also prime, and, we write $r(N)$ to denote the number of representations of N as the sum of two primes.
Theorem 3. [6, Theorems 7.2 and 7.3] If N is a positive even integer, then
(1) $\pi_{N}(x) \ll \frac{x}{(\ln x)^{2}} \prod_{q \mid N}\left(1+\frac{1}{q}\right)$.
(2) $r(N) \ll \frac{N}{(\ln N)^{2}} \prod_{q \mid N}\left(1+\frac{1}{q}\right)$.

3. Evidences for Primality of $|T-p|$

In this section we provide strong evidence that Question 1, part (2) is probably true. We use the prime number theorem to give a first approach for the validity of this question, and construct several examples that show that $|T-l|$ is a prime where l is a prime number. We found that if l is in a specific interval, then $|T-l|$ is a prime (we give a detailed description of this interval below.) We give an upper bound for the number of primes in this interval.

Propositions 4 and 6 give a theoretical support to believe that the facts shown in the following examples may be true in general. In Section 5 there are 2 tables that show some primes of the form $Q-T$ and $T-q$, where Q is the smallest prime greater than T and q greatest prime less than T. We have observed that Q is in the interval $\left(T, T+p^{2}\right)$ where p is either the smallest prime greater than $2 k$ if $T=T(k)$ or is the smallest prime greater than $2 k+1$ if $T=T^{\prime}(k)$. From Table 4 we can verify that either $p \leq Q-T<p^{2}$ or $Q-T=1$. From Table 1 we can verify that either $T-p^{2}<q \leq T-p$ or $T-q=1$. Using a computer program the authors verified that this fact is also true for all $k \leq 10^{3}$. Since every number in $(T+1, T+p)$ is composite, we are going to analyze the behavior of Q in $\left[T+p, T+p^{2}\right)$ and $Q=T+1$. In Proposition 4 we show that if $T+p \leq Q<T+p^{2}$, then it proves Question 1, part (2).

We first give a heuristic argument to show that if $Q \neq T+1$, then $T+p \leq Q<$ $T+p^{2}$. It is known from prime number theorem that if q is the next prime greater than a number $m+1$, then q is near $m+\ln m$. So, Q is near $T+\ln T$. If p is the next prime greater than n, then

$$
\ln (T)=\ln \left(\frac{n!}{2^{k}}\right) \sim n \ln n-n-k \ln 2+1<p^{2}
$$

Therefore, if $Q \neq T+1$ and $Q<T+\ln T$, then $T+p \leq Q<T+p^{2}$.
We now give some examples that show that there are several primes l that satisfy $T+p \leq l<T+p^{2}$. Proposition 6 gives a general upper bound for the total number of primes of the form $T+b$ in $\left[T+p, T+p^{2}\right)$ where b is a prime.

If $k=3$, then $T(3)=90,2 k=6$ and $p=7$. So, $p^{2}=49$. These give rise to the interval $\left[T+p, T+p^{2}\right)=[97,139)$. In this interval there are 9 primes. Thus, $Q-T(3)$ is prime where Q is a prime with $97 \leq Q<139$. Indeed, all possible outcomes for $Q-T(3)$ are: $97-90=7 ; 101-90=11 ; 103-90=13 ; 107-90=17$; $109-90=19 ; 113-90=23 ; 127-90=37 ; 131-90=41 ; 137-90=47$. Note that 139 is a prime, but $139-90=49=7^{2}$.

For the next example we need $k>3$. If we take $k=4$, then $T^{\prime}(4)=11340$, $2 k+1=9$ and $p=11$. So, these give rise to the interval $\left[T+p, T+p^{2}\right)=$ $[11351,11461)$. For every prime Q in $[11351,11461)$, it holds that $Q-T^{\prime}(4)$ is a prime. That is, $11351-11340=11 ; 11353-11340=13 ; 11369-11340=29$; $11383-11340=43 ; 11393-11340=53 ; 11399-11340=59 ; 11411-11340=71$; $11423-11340=83 ; 11437-11340=97 ; 11443-11340=103 ; 11447-11340=107$.

We have observed that $Q-T$ is also a prime for some primes Q greater than $T+p^{2}$. That is, if there is no prime number between T and $T+p^{2}$, this does not automatically mean that Question 1 , part (2) will fail. For example, if $k=5$, then $T(5)=113400,2 k=10$ and $p=11>2 k$. So, $p^{2}=121$. These give rise to the interval $\left[T+p, T+p^{2}\right)=[113411,113521)$. The number $T(5)+121=113400+121=$ $113521=61 \cdot 1861$. We analyze the behavior of $Q-T(5)$, for consecutive primes Q beyond of $T(5)+11^{2}$. The outcomes for $Q-T(5)$ are: $113537-113400=$ $137 ; 113539-113400=139 ; 113557-113400=157 ; 113567-113400=167$; $113591-113400=191$.

This example shows that if we take a prime Q beyond $T+p^{2}$, then $Q-T$ is not automatically composite. Thus, even if there is no prime number between T and $T+p^{2}$, we can expect that $Q-T$ may be a prime. Notice, if the next prime greater than T is $Q=T+p^{2}$, then the question fails.

The following example shows that there are several primes q such that $T(k)-q$ is either one or a prime with $T(k)-p^{2}<q<T(k)$.

If $k=3$, then $T(3)=90,2 k=6$ and $p=7$. So, $p^{2}=49$. These give rise to the interval $\left(T-p^{2}, T-p\right]=(41,83]$. In this interval there are 10 primes q. All possible outcomes for $T(3)-q$ are: $90-83=7 ; 90-79=11 ; 90-73=17 ; 90-71=19$; $90-67=23 ; 90-61=29 ; 90-59=31 ; 90-53=47 ; 90-47=43 ; 90-43=47$. In this example, 41 is prime, but $90-41=49=7^{2}$. Note that $T(3)-1=89$ is prime. In Table 3 there are some k values for which $T(k)-1$ is prime.

We now give some notation needed for Propositions 4 and 6 . We use p_{r} to mean the smallest prime greater than n when n is either $2 k$ if $T=T(k)$ or $2 k+1$ if $T=T^{\prime}(k)$. The subscript r takes a special role: $r-1$ counts the number of primes less than or equal to n.

Propositions 6 and 7 are a direct application of Theorem 3. We obtain an upper bound for the number of primes in the intervals $\left[T+p_{r}, T+p_{r}^{2}\right)$ and $\left(T-p_{r}^{2}, T+p_{r}\right]$. If there is a prime in the intervals $\left[T+p_{r}, T+p_{r}^{2}\right.$) then it gives a positive answer for Question 1, part (2). If Cramer's Conjecture [1] is true, then there is a prime in $\left[T+p_{r}, T+p_{r}^{2}\right)$.

Proposition 4. Let l be a prime and $k>3$.
(1) If $T+p_{r} \leq l<T+p_{r}^{2}$, then $l-T$ is prime.
(2) If $T-p_{r}^{2}<l \leq T-p_{r}$, then $T-l$ is p rime.

Proof. We prove part (1) for $T=T(k)$, the other case and part (2) are similar. Suppose that $T+p_{r} \leq l<T+p_{r}^{2}$. Since $T(k)=\frac{(2 k)!}{2^{k}}$, every prime $t<2 k$ divides $T(k)$. Thus, if $t<2 k$ is a prime, then t does not divide $l-T(k)$. We know that $p_{r} \leq l-T(k)<p_{r}^{2}$. Since p_{r}^{2} is the smallest composite number that satisfies that $T(k)$ and p_{r}^{2} are relatively prime, $l-T$ is a prime number.

Corollary 5. If p is a prime and $k>3$, then
(1) if $p \in\left[T+p_{r}, T+p_{r}^{2}\right)$, then p has the form $T+b$ where b is a prime.
(2) If $p \in\left(T-p_{r}^{2}, T-p_{r}\right]$, then p has the form $T-b$ where b is a prime.

Proof. We prove part (1); part (2) is similar. Suppose that $p \in\left[T+p_{r}, T+p_{r}^{2}\right.$), by Proposition 4, $p-T$ is prime. Therefore, $p=T+(p-T)$.

Proposition 6. The number of primes in $\left[T+p_{r}, T+p_{r}^{2}\right)$ is $O\left((n+1) r^{2}\right)$.
Proof. We prove the case $n=2 k$, the other case is similar. By Corollary 5 the number of primes in $\left[T+p_{r}, T+p_{r}^{2}\right)$ is $\pi_{T}\left(p_{r}^{2}\right)$ as in Theorem 3, part (1). Thus,

$$
\begin{gathered}
\pi_{T}\left(p_{r}^{2}\right) \ll \frac{p_{r}^{2}}{\left(\ln p_{r}^{2}\right)^{2}} \prod_{p \mid T}\left(1+\frac{1}{p}\right) . \\
\pi_{T}\left(p_{r}^{2}\right) \ll \frac{p_{r}^{2}}{4\left(\ln p_{r}\right)^{2}} \prod_{t=1}^{n} \frac{t+1}{t}=\left(\frac{p_{r}}{\ln p_{r}}\right)^{2} \frac{n+1}{4} .
\end{gathered}
$$

If r tends to infinity, then by the Prime Number Theorem $r \sim \frac{p_{r}}{\ln p_{r}}$. This implies that $\pi_{T}\left(p_{r}^{2}\right)=O\left(r^{2}(n+1)\right)$.

Proposition 7. The number of primes in $\left(T-p_{r}^{2}, T-p_{r}\right]$ is $O\left(\frac{T}{(\log T)^{2}}(n+1)\right)$.

Proof. Let $S_{T}\left(p_{r}\right)$ be the number of primes of the form $T-l$ where $l<p_{r}^{2}$ is prime. By Corollary 5 the number of primes in $\left(T-p_{r}^{2}, T-p_{r}\right]$ is $S_{T}\left(p_{r}\right)$. If $T-l$ is a prime where $l<p_{r}^{2}$ is a prime, then T can be written as a sum of two primes. Indeed, $T=(T-l)+l$. This and Theorem 3, part (2), imply that

$$
S_{T}\left(p_{r}\right) \leq r(T) \ll \frac{T}{(\log T)^{2}} \prod_{q \mid T}\left(1+\frac{1}{q}\right) \leq \frac{T}{(\log T)^{2}} \prod_{t=1}^{n}\left(\frac{t+1}{t}\right)=\frac{T}{(\log T)^{2}}(n+1) .
$$

This proves that $S_{T}\left(p_{r}\right)$ is $O\left(\frac{T}{(\log T)^{2}}(n+1)\right)$.

4. Primality of $T \pm 1$

We are going to discuss whether a number of the form $T \pm 1$ is not a prime. From Tables 4 and 1 we observe that there are few primes of the form $T \pm 1$. For example, in our search we have found only 6 primes of the form $T(k)-1$, for $2 \leq k \leq 2000$ (see Table 2). Table 3 shows all k values for which $T \pm 1$ is prime, for $k \leq 2000$. Note that $T(2000) \sim 1.59 \times 10^{12072}$.

Propositions 8, 9 and 10 prove that there are infinitely many k such that $T \pm 1$ is not a prime. These results give rise to another question. Are there infinitely many primes of the form $T \pm 1$? We now formally state the propositions.

Proposition 8. If $p>7$ is a prime number with p equal to either $2 k+1$ or $2 k+3$, then
(1) $p \equiv \pm 1 \bmod 8$ if and only if p is a proper divisor of $T(k)+1$.
(2) $p \equiv \pm 3 \bmod 8$ if and only if p is a proper divisor of $T(k)-1$.

Proof. We suppose that $p \equiv \pm 1 \bmod 8$ and prove that p divides $T(k)+1$. If $k=\frac{p-1}{2}$, then

$$
(2 k)!=\left(2 \frac{p-1}{2}\right)!=(p-1)!
$$

Therefore, by Wilson's theorem $(2 k)!\equiv-1 \bmod p$. Since $p \equiv \pm 1 \bmod 8$, by the law of quadratic reciprocity 2 is a quadratic residue modulo p. Therefore, by Euler's criterion $2^{k}=2^{\frac{p-1}{2}} \equiv 1 \bmod p$. This and Proposition 2 imply that

$$
T(k)=\frac{(2 k)!}{2^{k}}=\frac{(p-1)!}{2^{\frac{p-1}{2}}} \equiv-1 \bmod p .
$$

Thus, p divides $T(k)+1$.

We suppose that $p=T(k)+1$. That is,

$$
p=T(k)+1=\frac{(p-1)!}{2^{\frac{p-1}{2}}}+1
$$

Therefore, $(p-1)!=(p-1) 2^{\frac{p-1}{2}}$. This implies that $(p-2)!=2^{\frac{p-1}{2}}$. That is a contradiction. This proves that p is a proper divisor of $T(k)+1$.

We now suppose that $k=\frac{p-3}{2}$. Since

$$
\begin{gathered}
T(k)=\frac{(p-3)!}{2^{\frac{p-3}{2}}}=\frac{(p-3)!(-2)(-1)}{2^{\frac{p-1}{2}}\left(2^{-1}\right)(2)} \\
\frac{(p-3)!}{2^{\frac{p-3}{2}}} \equiv \frac{(p-3)!(p-2)(p-1)}{2^{\frac{p-1}{2}}} \equiv-1 \bmod p
\end{gathered}
$$

Thus, p divides $T(k)+1$. If $p=T(k)+1$, then

$$
\begin{equation*}
p-1=\frac{(p-3)!}{2^{\frac{p-3}{2}}} \tag{1}
\end{equation*}
$$

Since $p>7, p-3=2 t$ for some $t \geq 4$. Thus,

$$
\begin{aligned}
(p-3)!=(2 t)! & =2 \cdot 4 \ldots(2 t) \cdot 1 \cdot 3 \ldots(2 t-1) \\
& =2^{t}(1 \cdot 2 \ldots t) \cdot(1 \cdot 3 \ldots(2 t-1)) \\
& =2^{t} \cdot t!\cdot(1 \cdot 3 \ldots(2 t-1))
\end{aligned}
$$

Therefore, $(p-3)!/ 2^{t}=t!\cdot(1 \cdot 3 \ldots(2 t-1))$. This, (1) and $p-3=2 t$ imply that $2(t+1)=t$! $\cdot(1 \cdot 3 \ldots(2 t-1))$. That is a contradiction, since $2(t+1)<t$! for $t \geq 4$. This proves that p is a proper divisor of $T(k)+1$.

Conversely, we assume that p is a proper divisor of $T(k)+1$ and prove that $p \equiv \pm 1 \bmod 8$. We suppose that $k=\frac{p-1}{2}$. Since p is a proper divisor of $T(k)+1$, $T(k) \equiv-1 \bmod p . \quad$ So, $(2 k)!\equiv-2^{k} \bmod p$. Therefore, $(p-1)!\equiv-2^{\frac{p-1}{2}} \bmod p$. This and the Wilson's theorem imply that $2^{\frac{p-1}{2}} \equiv 1 \bmod p$. By the law of quadratic reciprocity 2 is a quadratic residue modulo p. This implies that $p \equiv \pm 1 \bmod 8$.

We now suppose that $k=\frac{p-3}{2}$. Since p divides $T(k)+1, T(k) \equiv-1 \bmod p$.
So, $(2 k)!\equiv-2^{k} \bmod p$. Therefore, $\left(2 \frac{(p-3)}{2}\right)!\equiv-2^{\frac{p-3}{2}} \bmod p$. Thus,

$$
(p-3)!(p-2)(p-1) \equiv-2^{\frac{p-3}{2}}(-2)(-1) \bmod p
$$

This implies that

$$
(p-1)!\equiv-2^{\frac{p-1}{2}}\left(2^{-1}\right)(-2)(-1) \bmod p
$$

Since $(p-1)!\equiv-1 \bmod p, 2^{\frac{p-1}{2}} \equiv 1 \bmod p$. This implies that $p \equiv \pm 1 \bmod 8$.

Proof of part (2). We prove that p divides $T(k)-1$. Suppose that $p \equiv \pm 3 \bmod 8$. Wilson's theorem and $k=\frac{p-1}{2}$ imply that $(2 k)!\equiv-1 \bmod p$. Since $p \equiv \pm 3 \bmod 8$, by the quadratic reciprocity law, 2 is not a quadratic residue modulo p. Therefore, by Euler's criterion, $2^{k}=2^{\frac{p-1}{2}} \equiv-1 \bmod p$. This implies that $T(k) \equiv 1 \bmod p$. So, p divides $T(k)-1$. We suppose $p=T(k)-1$. That is, $p=\frac{(p-1)!}{2^{\frac{p-1}{2}}}-1$. So, $(p-1)!=(p+1) 2^{\frac{p-1}{2}}$. That is a contradiction.

If $k=\frac{p-3}{2}$, then

$$
T(k)=\frac{(p-3)!}{2^{\frac{p-3}{2}}} \equiv \frac{(p-3)!(p-2)(p-1)}{2^{\frac{p-1}{2}}} \equiv 1 \bmod p
$$

So, the proof follows as above, proving that p is a proper divisor of $T(k)-1$.
We prove that $p \equiv \pm 3 \bmod 8$. Suppose that $k=\frac{p-1}{2}$. Since p divides $T(k)-1$, $T(k) \equiv 1 \bmod p . \operatorname{So},(2 k)!\equiv 2^{k} \bmod p$. Therefore, $(p-1)!\equiv 2^{\frac{p-1}{2}} \bmod p$. This and Wilson's theorem imply that $2^{\frac{p-1}{2}} \equiv-1 \bmod p$. By the law of quadratic reciprocity, 2 is not a quadratic residue modulo p. This implies that $p \equiv \pm 3 \bmod 8$.

We now suppose that $k=\frac{p-3}{2}$. Since p divides $T(k)-1, T(k) \equiv 1 \bmod p$. So, $(2 k)!\equiv 2^{k} \bmod p$. Therefore, $\left(2 \frac{(p-3)}{2}\right)!\equiv 2^{\frac{p-3}{2}} \bmod p$. Thus,

$$
(p-3)!(p-2)(p-1) \equiv 2^{\frac{p-3}{2}}(-2)(-1) \bmod p
$$

This implies that $(p-1)!\equiv 2^{\frac{p-1}{2}}\left(2^{-1}\right)(-2)(-1) \bmod p$. This and Wilson's theorem imply that $2^{\frac{p-1}{2}} \equiv-1 \bmod p$. Thus, $p \equiv \pm 3 \bmod 8$.

Proposition 9. If $p>3$ is a prime number with $p=2 k+3$, then
(1) $p \equiv \pm 1 \bmod 8$ if and only if p is a proper divisor of $T^{\prime}(k)-1$.
(2) $p \equiv \pm 3 \bmod 8$ if and only if p is a proper divisor of $T^{\prime}(k)+1$.

Proof. The proofs of parts (1) and (2) are similar to the proofs of Proposition 8, parts (1) and (2), respectively.

Proposition 10. Let p be a prime number such that $p=4 k+1$. Then $p \equiv 5 \bmod 8$ if and only if p is a proper divisor of either $T(k)+1$ or $T(k)-1$.

Proof. We first prove that $\left[\left(\frac{p-1}{2}\right)!\right]^{2} \equiv-1 \bmod p$. Obviously,

$$
(p-1)!=(1)(p-1)(2)(p-2) \ldots\left(\frac{p-1}{2}\right)\left(p-\frac{p-1}{2}\right)
$$

Therefore,

$$
(p-1)!\equiv(1)(-1)(2)(-2) \ldots\left(\frac{p-1}{2}\right)\left(-\frac{p-1}{2}\right) \bmod p
$$

So,

$$
(p-1)!\equiv\left(\frac{p-1}{2}\right)!\left(\frac{p-1}{2}\right)!(-1)^{\frac{p-1}{2}} \bmod p
$$

Since $p=4 k+1,(-1)^{\frac{p-1}{2}}=1$. These and Wilson's theorem imply that

$$
\begin{equation*}
\left[\left(\frac{p-1}{2}\right)!\right]^{2} \equiv-1 \bmod p \tag{2}
\end{equation*}
$$

We now prove that $p \equiv 5 \bmod 8$ if and only if p is a proper divisor of either $T(k)-1$ or $T(k)+1$.
$(T(k))^{2} \equiv 1 \bmod p$ if and only if $\left[\frac{(2 k)!}{2^{k}}\right]^{2} \equiv 1 \bmod p$ if and only if $\frac{\left[\left(\frac{p-1}{2}\right)!\right]^{2}}{2^{\frac{p-1}{2}}} \equiv 1 \bmod p$.
This and (2), imply that

$$
(T(k))^{2} \equiv 1 \bmod p \text { if and only if } 2^{\frac{p-1}{2}} \equiv-1 \bmod p \text { if and only if } p \equiv \pm 3 \bmod 8
$$

Since $p=4 k+1,(T(k))^{2} \equiv 1 \bmod p$ if and only if $p \equiv 5 \bmod 8$.
It is easy to see that if p is a divisor of either $T(k)+1$ or $T(k)-1$, then p is a proper divisor of either $T(k)+1$ or $T(k)-1$, respectively.

5. Tables

k	$T(k)-q=$ prime or 1	$T^{\prime}(k)-q=$ prime or 1
2	$6-5=1$	$15-13=2$
3	$90-89=1$	$315-313=2$
4	$2520-2503=17$	$11340-11329=11$
5	$113400-113383=17$	$623700-623699=1$
6	$7484400-7484383=17$	$48648600-48648583=17$
7	$681080400-681080383=17$	$5108103000-5108102983=17$
8	$81729648000-81729647983=17$	$694702008000-694702007959=41$
9	$12504636144000-12504636143963$	$118794043368000-118794043367959$$\| r=47$

Table 1: Some primes of the form $T-q$.

k	Primes of the form $T(k)-1$ for $1<k \leq 2000$
2	5
3	89
56	274017871895886614355245021851226872507509096980847975994844266521420
	299245431500324696494845549659356284618231033652966211387635562226647
92	0399999999999999999999999999
	450018843569393882276227680596716006487089310681842539412514262048834
	586837442952353379844205073472685159662546130153568890072873003795362
	844451732581991505888011382020736335842085227184693441046947485669624
	634485050019491730954221690926915254316208777513302761668607999999999
162	99999999999999999999999999999999999
	391548904515671716051346787260500894329100804861599843863236605693157
	75393851528663955952744808018030709274922211738171154934229102563766
	290007325839516166193652888106370272813680446264582621040916668979828
	580909916493415772072696168113862960117719779637815600306771585482508
	107493783060331912640281361853801867542860886655307894329862579460676
	242332750442838738797300511969290692778986492294540611691256473129914
	302664438196211535426598076748503430292272338133961040599560472739917
	745073510746720620786978825877351293154441445603700969180904816639999
	999
	99999
170	340835263800046398325677066929789037599272966910781694237134220511694
	592407221674541257352326694161941173174852612734995048749948298785427
	864201761896754518975857870525407100505502667584445509342421176972834
	591260193220046550390720555465344872560673854426589683541035239901055
	283433221132729908219748626265401668191417034808684514905620110985521
	966631215768857310684931442273323569549523637187288201582664169777656
	534508255699021660672565431211046992785044507318407554205409308573862
	694583409249597473614199749407605708422218605584741173228268059043735
	7667360308440198837539595878399
	999

Table 2: Some primes of the form $T(k)-1$.

Form	k values for which $T \pm 1$ is prime	Search limit
$T(k)+1$	$2,4,6,70,146,448,978$	2000
$T(k)-1$	$2,3,56,92,162,170$	2900
$T^{\prime}(k)+1$	$7,16,18,24,38,44,194,286,382,895$	1000
$T^{\prime}(k)-1$	$5,12,16,24,41,46,75,337,904,2485$	3200

Table 3: Some k values for which $T \pm 1$ is prime.

k	$Q-T(k)=$ prime or 1	$Q-T^{\prime}(k)=$ prime or 1
2	$7-6=1$	$17-15=2$
3	$97-90=7$	$317-315=2$
4	$2521-2520=1$	$11351-11340=11$
5	$113417-113400=17$	$623717-623700=17$
6	$7484401-7484400=1$	$48648617-48648600=17$
7	$681080429-681080400=29$	$5108103001-5108103000=1$
8	$81729648019-81729648000=19$	$694702008041-694702008000=41$
9	$12504636144029-12504636144000$ $118794043368047-118794043368000$ $=29$	

Table 4: Some primes of the form $Q-T$.

Acknowledgment The authors are indebted to Florian Luca, for his comments that helped to improve the paper. We also thank A. Castaño for inspiring us to work on this problem.

References

[1] H. Cramer, On the order of magnitude of the differences between consecutive prime numbers, Acta. Arith. 2 (1937), 23-46.
[2] R. Flórez, Advanced Problem H-662, Fibonacci Quart. 45 (2007), 376.
[3] R. Flórez, Solution to Advanced Problem H-662, Fibonacci Quart. 46/47 (2008/09), 379.
[4] R. K. Guy, Unsolved Problems in Number Theory. Springer, New York, 2004.
[5] S. W. Golomb, The Evidence for Fortune's Conjecture. Mathematics Magazine, 54 (1981), 209-210.
[6] M. B. Nathanson, Additive Number Theory. Springer, New York, 1996.

