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Abstract
For k ≥ 1, let pk(n) count the number of k-component multipartitions of a nonneg-
ative integer n, and let σ(n) =

∑
d|n d be the usual divisor function. In this paper,

we give a combinatorial proof of the recursive formula

pk(n) =
k

n

n∑

r=1

pk(n− r)σ(r),

both for k ≥ 1, where pk(n) is defined as above, and also for k < 0, which requires
a subtler approach.

This formula was used by Gandhi in 1963 to prove several theorems, which
yield numerous Ramanujan type congruences for pk(n), including some well-known
congruences for Ramanujan’s τ -function.

1. Introduction

The subject of partitions has a long fascinating history, including connections to
several areas of mathematics, and mathematical physics (see [5], [3] for a glimpse
into some of this history). In particular, the generalization of partitions to k-
component multipartitions (also known as k-colored partitions) has been a rich
subject in its own right (see [6] for a nice survey of this area). We begin by reviewing
partitions and multipartitions.

1This research was partially supported by NSF grant DMS-0852030.
2This research was partially supported by NSF grant DMS-0852030.
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1.1. Partitions

We recall that a partition of a positive integer n is defined to be a nonincreasing
sequence of positive integers called parts that sum to n (these are often written as
a sum). For n = 0 we consider the empty set the unique “empty partition” of 0.
We write λ # n to denote that λ is a partition of n, and also say that λ has size n,
written |λ| = n. For example, the following gives all the partitions λ # 5:

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

A partition λ # n with parts l1 ≥ l2 ≥ · · · ≥ lk can be represented graphically by
a Ferrers diagram F (λ), which consists of a left-justified array of n cells, where the
ith row contains li cells corresponding to the ith part of λ. We refer to each cell in
F (λ) with an ordered pair (i, j) representing the position of the cell in the ith row
and jth column of F (λ). For example, the Ferrers diagram of the partition 2+2+1
of 5 with marked cell (2, 1) is given by the following.

We define the partition function p(n) to count the total number of partitions of n.
In order to define p(n) on all integers we make the further definition that p(n) = 0
when n < 0. We see from our example above that p(5) = 7.

The generating function for p(n) has the following infinite product form due to
Euler,

∞∑

n=0

p(n)qn =
∞∏

n=1

1
(1− qn)

.

One of the most celebrated results in partition theory is the following list of
Ramanujan’s congruences for p(n). For all integers n ≥ 0,

p(5n + 4) ≡ 0 (mod 5)
p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11).

Work of Ono and Ahlgren [12], [4], [1] has shown that for any m coprime to 6
there exist infinitely many nonnested arithmetic progressions for which p(an+b) ≡ 0
(mod m). However, it has been shown by Ahlgren and Boylan [2] that the three
Ramanujan congruences above are the only congruences for p(n) of the form

p(qn + b) ≡ 0 (mod q),

for q prime.
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1.2. Multipartitions

Partitions can be easily generalized in the following way. We define a k-component
multipartition of a positive integer n to be a k-tuple of partitions λ = (λ1, . . . ,λk)
such that

k∑

i=1

|λi| = n.

We write λ #k n if λ is a k-component multipartition of n. The following gives all
the multipartitions λ #2 3:

(3, ∅), (2+1, ∅), (1+1+1, ∅), (2, 1), (1+1, 1), (1, 2), (1, 1+1), (∅, 3), (∅, 2+1), (∅, 1+1+1).

We define pk(n) to count the number of k-component multipartitions of n, again
defining pk(0) = 1 and pk(n) = 0 for n < 0. We note that ordering does matter in
this definition, so a rearrangement of distinct λi yields a distinct multipartition. In
addition, we note that since the empty set is a partition of 0, some λi may equal ∅.
From our example above, we see that p2(3) = 10.

The generating function for pk(n) is seen to follow from the generating function
for p(n) by taking the kth power. Namely,

∞∑

n=0

pk(n)qn =
∞∏

n=1

1
(1− qn)k

. (1)

For this reason, multipartitions are often referred to as powers of the partition
function.

This generating function provides a definition of pk(n) for k < 0. We will give a
combinatorial interpretation of pk(n) for these cases in Section 4.

1.3. Congruences for Multipartitions

Much work has been done on the study of Ramanujan type congruences for multi-
partitions. This can be seen in papers by Andrews [6], Atkin [7], Kiming and Olsson
[10], Serre [13], Newman [11], Boylan [8], and Gandhi [9], to name a few.

For example, in [9], Gandhi establishes several theorems which yield numerous
Ramanujan type congruences for pk(n), for various k. For example,

p6(5n + 4) ≡ 0 (mod 5)
p8(7n + 5) ≡ 0 (mod 7)

p12(11n + 6) ≡ 0 (mod 11),

p−4(5n + 4) ≡ 0 (mod 5)
p−6(7n + 5) ≡ 0 (mod 7)

p−10(11n + 6) ≡ 0 (mod 11).
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These theorems also yield some well-known congruences for Ramanujan’s τ -function,
due to the fact that τ(n) = p−24(n− 1).

These results stem from the following important recursive formula for pk(n).

Proposition 1. Fix an integer k &= 0. For any integer n ≥ 0, we have that

pk(n) =
k

n

n∑

r=1

pk(n− r)σ(r),

where σ(r) =
∑

d|r d is the usual divisor function.

Proposition 1 can be derived quickly from (1) using logarithmic differentiation.
However, this sheds little light into this recursive relationship. In this paper, we
give a combinatorial proof of Proposition 1 for k ≥ 1, in terms of k-component
multipartitions. In addition, we provide a combinatorial proof of Proposition 1 for
k < 0, where a subtler interpretation is needed.

2. The Case k = 1

We first demonstrate the proof when k = 1, the case involving usual partitions.
When k = 1, Proposition 1 states that for all integers n ≥ 0,

n · p(n) =
n∑

r=1

p(n− r)σ(r). (2)

When n = 0 we see that (2) holds trivially, interpreting the empty sum as 0. Fix
n ≥ 1. The left hand side of (2) can be interpreted as the number of partitions of
n such that exactly one square of its Ferrers diagram is marked. I.e., let

Sn : {(λ, (i, j)) : λ # n, (i, j) ∈ F (λ)}.

For example, the element (3 + 2 + 2 + 2 + 1, (3, 2)) of S10 is represented by the
following.

Since each partition λ of n contains exactly n squares in its Ferrers diagram, we see
that

|Sn| = n · p(n).

To interpret the right hand side, we first consider each summand separately. For
each 1 ≤ r ≤ n, let

Tn,r := {(λ, µ, j) : λ # n− r, µ # r, µ rectangular, j a column of F (µ)},
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where when we say µ is rectangular, we mean that all parts of µ are equal, so that
F (µ) has a rectangular shape.

For example, (3 + 2 + 1, 2 + 2, 2) is an element of T10,4. It is represented by the
following pair.

Notice that for each rectangular partition µ of r, the number of columns of µ is
a distinct divisor of r. Thus, the total number of columns of rectangular partitions
µ of r is σ(r). Thus we see that |Tn,r| = p(n− r)σ(r).

Since the Tn,r are clearly disjoint for distinct r, if we define Tn := ∪n
r=1Tn,r, then

|Tn| =
n∑

r=1

p(n− r)σ(r).

We thus have a combinatorial interpretation for the right hand side of (2).

Example 2. Let n = 3. Then S3 contains the following 9 elements

S3 = {(3, (1, 1)), (3, (1, 2)), (3, (1, 3)), (2 + 1, (1, 1)), (2 + 1, (1, 2)),
(2 + 1, (2, 1)), (1 + 1 + 1, (1, 1)), (1 + 1 + 1, (2, 1)), (1 + 1 + 1, (3, 1))},

which correspond to the following Ferrers diagrams:

In addition, T3 contains the following 9 elements

T3 = {(2, 1, 1), (1+1, 1, 1), (1, 2, 1), (1, 2, 2), (1, 1+1, 1), (∅, 3, 1), (∅, 3, 2), (∅, 3, 3), (∅, 1+1+1, 1)},

which correspond to the following pairs of Ferrers diagrams.

! ! ! ! !

! ! ! !

Here the first two are in T3,1, the next three are in T3,2, and the last four are in
T3,3.

We prove (2) by constructing a bijection Φn : Sn → Tn. We can describe the
map Φn most easily by stating what it does to an element of Sn in terms of Ferrers
diagrams.
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Consider an arbitrary element of Sn, say (λ, (i, j)). The marked square (i, j) lies
in a particular row of F (λ), i.e., in a particular part of λ of size s. More specifically,
(i, j) lies in the mth occurrence of the part s in λ.

For example, in the element (3 + 2 + 2 + 2 + 1, (3, 2)) ∈ S10, the marked square
(3, 2) lies in the second occurrence of the part 2 in λ = 3 + 2 + 2 + 2 + 1.

The map Φ separates the first m occurrences of the part s to form a rectangular
partition µ = s+s+ · · ·+s, where the part s is repeated m times. Since ms squares
were removed from F (λ), |µ| = ms. The resulting partition λ′ that remains after
the m copies of s are removed must then satisfy |λ′| = n −ms. Finally, we mark
the jth column of µ in correspondence to the marking of the square (i, j) that was
used to create µ. In this way, we define Φn : Sn → Tn.

Example 3. We’ve seen that for (3 + 2 + 2 + 2 + 1, (3, 2)) ∈ S10, the square (3, 2)
lies in the second occurrence of the part 2. Thus s = 2, and µ = 2 + 2. Removing
2 + 2 from λ leaves λ′ = 3 + 2 + 1. Finally, since (3, 2) was marked in λ, we mark
column 2 in µ. Thus we have that Φ10(3+2+2+2+1, (3, 2)) = (3+2+1, 2+2, 2).

!

It is easy to see that the map Φn is invertible, because this process is completely
reversible. If we start with an element (λ, µ, j) ∈ Tn, then by our construction of
Tn, (λ′, µ, j) ∈ Tn,k for some 1 ≤ k ≤ n. We can thus simply insert the rectangular
partition µ = s + s + · · · + s of k = ms into the partition λ′ after any parts of size
greater than s, and before any parts of size s or less. This creates a new partition
λ, and since |λ′| = n − k, we have that |λ| = n. The last square of the marked
column of µ now becomes the marked (i, j) square of λ.

Thus Φn is a bijection, and we have established our combinatorial proof of (2).

3. The Case k > 1

In this section, we generalize the ideas from Section 2 to the case when k > 1, the
case involving k-component multipartitions. When k > 1, Proposition 1 states that
for all integers n ≥ 0,

n · pk(n) = k
n∑

r=1

pk(n− r)σ(r). (3)



INTEGERS: 11 (2011) 7

Again, when n = 0 we see that (3) holds trivially. Fix n ≥ 1.
A k-component multipartition λ = (λ1, . . . ,λk) of n can also be viewed as a

partition of n for which each part is allowed to be one of k colors, one color for
each component. We then must not count rearrangements of colors, so if we label
the k colors by {1, . . . , k}, we require repeated parts to occur in nondecreasing
colors. Such a partition is called a k-colored partition of n. Thus we will write
λ #k n to denote both that λ is a k-component multipartition of n and also that
λ is a k-colored partition of n. For the remainder of the paper we will view our
multipartitions in this way. In addition, we will now use colors for parts in our
Ferrers diagrams, so we will mark individual cells or columns with crossed lines.

Example 4. The following gives all the 2-colored partitions of 3 (we use boldface
to denote the second color):

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1, 1 + 1 + 1, 1 + 1 + 1.

This corresponds to listing the 2-component multipartitions of 3 from our exam-
ple in Section 1.2 in the following order:

(3, ∅), (∅, 3), (2+1, ∅), (2, 1), (1, 2), (∅, 2+1), (1+1+1, ∅), (1+1, 1), (1, 1+1), (∅, 1+1+1).

For each color k ≥ 1, define

Sk,n := {(λ, (i, j)) : λ #k n, (i, j) ∈ Fk(λ)}.

For example, (3+2+2+2+1, (3, 2)) ∈ S2,10 is represented by the following (where
shading represents the second color).

Since each k-colored partition λ of n contains exactly n squares in its Ferrers dia-
gram, we see that

|Sk,n| = npk(n).

In addition, for each 1 ≤ r ≤ n, let

Tk,n,r := {(λ′, µ, j, c) : λ′ #k n− r, µ #k r rectangular with all parts

color c, j a column of F (µ)}.

For example, (3 + 2 + 2 + 1,2, 2, 2) ∈ T2,10,2 is represented by the following.

!
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As we noted in Section 2, the total number of columns of rectangular partitions µ of
r is σ(r). Hence the total number of columns of rectangular partitions µ of r with
all parts a single color is kσ(r). Therefore, we see that |Tk,n,r| = pk(n− r) · kσ(r).
Since the Tk,n,r are clearly disjoint for distinct r, if we define Tk,n := ∪n

r=1Tk,n,r,
then

|Tk,n| =
n∑

r=1

pk(n− r) · kσ(r) = k
n∑

r=1

pk(n− r)σ(r).

We thus have a combinatorial interpretation for the right hand side of (3).
As in Section 2, we prove (3) by constructing a bijection Φk,n : Sk,n → Tk,n.

This map is constructed in an analogous way to the Φn in Section 2, however there
is one main difference. When removing parts of size s from our k-colored partition
λ of n, we remove the first m occurrences of the part s that are the same color as
the part in which the marked square (i, j) lies.

Example 5. For (3 + 2 + 2 + 2 + 1, (3, 2)) ∈ S2,10, although the cell (3, 2) lies in
the second occurrence of the part 2, it lies in the first occurrence of the part 2 with
color 2. Thus, s = 2, µ = 2, and removing µ from λ = 3 + 2 + 2 + 2 + 1 leaves
λ′ = 3+2+2+1. Thus we have that Φ2,10(3+2+2+2+1, (3, 2)) = (3+2+2+1,2, 2).

As with Φn in Section 2, it is easy to see that the map Φk,n is invertible, because
this process is completely reversible. If we start with an element (λ′, µ, j, r) ∈ Tk,n,
then by our construction of Tk,n, (λ′, µ, j, r) ∈ Tk,n,r for some 1 ≤ r ≤ n. We can
thus simply insert the rectangular partition µ = s + s + · · · + s of k = ms into the
partition λ′ after any parts of size greater than s, and before any parts of size s or
less, so that the color is in the appropriate order. This creates a new partition λ,
and since |λ′| = n− k, we have that |λ| = n. The last square of the marked column
of µ now becomes the marked (i, j) square of λ.

Thus Φk,n is a bijection, and we have established our combinatorial proof of (3).

4. The Case k < 0

When k < 0, we do not have the definition of pk(n) as the number of k-component
multipartitions of n. However, considering the generating function for pk(n) as
defined for k ≥ 1 in (1), we define p−k(n) for all −k < 0 and n ≥ 0, by

∞∑

n=0

p−k(n)qn =
∞∏

n=1

(1− qn)k.
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Example 6. Let k = 2 represent two colors, where as before we use boldface to
denote the second color. Then

∞∑

n=0

p−2(n)qn =
∞∏

n=1

(1− qn)2 =
∞∏

n=1

(1− qn)(1− qn)

= 1− q1− q1 + q1+1− q2− q2 + q1+2 + q1+2 + q1+2 + q1+2− q3− q3− q1+1+2− · · ·
= (1+q1+1+q1+2+q1+2+q1+2+q1+2+· · · )−(q1+q1+q2+q2+q3+q3+q1+1+2+· · · ).

So for example, p−2(3) = 4− 2 = 2.

We see then that we can give p−k(n) a combinatorial interpretation in the fol-
lowing way. Define peven

−k (n) to count the number of k-colored partitions of n into
an even number of parts, where common parts are distinctly colored (thus each
part can occur at most k times). Likewise, define podd

−k (n) to count the number of
k-colored partitions of n into an odd number of parts, where common parts are
distinctly colored. For short, if a partition has common parts distinctly colored we
will call the parts cpd-colored. Then for all n ≥ 0, we have

p−k(n) = peven
−k (n)− podd

−k (n).

When −k < 0, Proposition 1 becomes for all integers n ≥ 0,

n · p−k(n) = −k
n∑

r=1

p−k(n− r)σ(r). (4)

Again, when n = 0 we see that (4) holds trivially. Fix n ≥ 1. To interpret the left
hand side, we define

SDeven
k,n := {(λ, (i, j)) : λ #k n into an even number of cpd-colored parts, (i, j) ∈ Fk(λ)},

SDodd
k,n := {(λ, (i, j)) : λ #k n into an odd number of cpd-colored parts, (i, j) ∈ Fk(λ)}.

For example, (3 + 2 + 2 + 1) shown below is an element of SDeven
2,8 .

Since each k-colored partition λ of n contains exactly n squares in its Ferrers
diagram, we see that |SDeven

k,n | = npeven
−k (n), and |SDodd

k,n | = npodd
−k (n). Thus

n · p−k(n) = |SDeven
k,n |− |SDodd

k,n |.
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In addition, for each 1 ≤ r ≤ n, let

TDeven
k,n,r := {(λ′, µ, j, c) : λ′ #k n− r into an even number of cpd-colored parts,

µ #k r rectangular with all parts color c, j a column of F (µ)},

TDodd
k,n,r := {(λ′, µ, j, c) : λ′ #k n− r into an odd number of cpd-colored parts,

µ #k r rectangular with all parts color c, j a column of F (µ)}.

For example, (3 + 2 + 2 + 1,2, 2, 2) shown below is an element of TDeven
2,8,2.

As we noted in Section 3, the total number of columns of rectangular partitions
µ of r with all parts a single color is kσ(r). Therefore, we see that |TDeven

k,n,r| =
peven
−k (n − r) · kσ(r), and |TDodd

k,n,r| = podd
−k (n − r) · kσ(r). Since the TDeven

k,n,r, and
TDodd

k,n,r are clearly disjoint for distinct r, if we define TDeven
k,n := ∪n

r=1T
even
k,n,r and

TDodd
k,n := ∪n

r=1T
odd
k,n,r, then

|TDeven
k,n | = k

n∑

r=1

peven
−k (n− r)σ(r),

|TDodd
k,n | = k

n∑

r=1

podd
−k (n− r)σ(r).

Thus

−k
n∑

r=1

p−k(n− r)σ(r) = −k
n∑

r=1

(
peven
−k (n)− podd

−k (n)
)
σ(r) = |TDodd

k,n |− |TDeven
k,n |,

and we have a combinatorial interpretation for the right hand side of (4).

We will now prove (4) by showing that

|TDodd
k,n |− |TDeven

k,n | = |SDeven
k,n |− |SDodd

k,n |. (5)

We note that it is not the case that |TDodd
k,n | = |SDeven

k,n | and |TDeven
k,n | = |SDodd

k,n |.
For example, |SDeven

2,2 | = 2, since the only partition of 2 into an even number of
parts is 1 + 1, so the only 2-colored partition of 2 with cpd-colored parts is 1 + 1.
Marking the cells in the Ferrers diagram yields the following elements in SDeven

2,2 .
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However, TDodd
2,2 = 4. This can be seen by first observing that TDodd

2,2,2 is empty,
since there are no partitions of zero into an odd number of parts. Thus TDodd

2,2 =
TDodd

2,2,1, and as both λ′ and µ must partition 1, the four elements are given by the
following.

! ! ! !

Thus, in order to prove (5), we need more care than in previous sections. We first
notice that TDeven

k,n , TDodd
k,n are subsets of Tk,n, and SDeven

k,n , SDodd
k,n are subsets of

Sk,n. Thus we can consider the inverse of our map from Section 3, Φ−1
k : Tk,n → Sk,n

restricted to the sets TDeven
k,n , and TDodd

k,n . We use Φ−1
k to partition the sets TDeven

k,n ,
and TDodd

k,n in terms of the images of their elements via Φ−1
k . In particular, we

define

Eeven
k,n := {(λ′, µ, j, c) ∈ TDeven

k,n : Φ−1
k ((λ′, µ, j, c)) ∈ SDeven

k,n },
Oeven

k,n := {(λ′, µ, j, c) ∈ TDeven
k,n : Φ−1

k ((λ′, µ, j, c)) ∈ SDodd
k,n },

Beven
k,n := {(λ′, µ, j, c) ∈ TDeven

k,n : Φ−1
k ((λ′, µ, j, c)) &∈ SDeven

k,n ∪ SDodd
k,n },

and similarly

Eodd
k,n := {(λ′, µ, j, c) ∈ TDodd

k,n : Φ−1
k ((λ′, µ, j, c)) ∈ SDeven

k,n },
Oodd

k,n := {(λ′, µ, j, c) ∈ TDodd
k,n : Φ−1

k ((λ′, µ, j, c)) ∈ SDodd
k,n },

Bodd
k,n := {(λ′, µ, j, c) ∈ TDodd

k,n : Φ−1
k ((λ′, µ, j, c)) &∈ SDeven

k,n ∪ SDodd
k,n }.

Thus

TDeven
k,n = Eeven

k,n ∪Oeven
k,n ∪Beven

k,n ,

TDodd
k,n = Eodd

k,n ∪Oodd
k,n ∪Bodd

k,n ,

and these unions are disjoint.

Lemma 7. The sets Eeven
k,n and Oodd

k,n are empty.

Proof. Recall that elements (λ′, µ, j, c) ∈ Tk,n have the property that the parts of µ
are all of the same color, c. Thus, if Φ−1

k is to map (λ′, µ, j, c) into SDeven
k,n ∪SDodd

k,n ,
µ must contain at most one part to ensure cpd-colored parts. Since µ is a partition
of r ≥ 1, µ must then contain exactly one part. Thus by the construction of the
map Φk, the number of parts in λ′ must increase by 1 when combined with µ to
form λ. So it will never be the case that Φ−1

k maps an element of TDeven
k,n to SDeven

k,n ,
or an element of TDodd

k,n to SDodd
k,n , and we have established the lemma.

Since the map Φk is a bijection it follows from Lemma 7 that the restrictions
Φ−1

k : Oeven
k,n → SDodd

k,n and Φ−1
k : Eodd

k,n → SDeven
k,n are bijections. Thus |Oeven

k,n | =
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|SDodd
k,n |, |Eodd

k,n | = |SDeven
k,n |, and we have that

|TDodd
k,n |− |TDeven

k,n | = |SDeven
k,n |− |SDodd

k,n | + |Bodd
k,n |− |Beven

k,n |.

It remains only to show the following lemma.

Lemma 8. The sets Bodd
k,n and Beven

k,n have the same cardinality.

Proof. In order for an element (λ′, µ, j, c) ∈ TDodd
k,n , with µ # r containing m parts of

size s and color c, to be in the subset Bodd
k,n , one of two things must happen. Either λ′

already includes a part of size s and color c, so that Φ−1
k (λ′, µ, j, c) &∈ SDeven

k,n ∪SDodd
k,n

for any value of m, or λ′ has no parts of size s and color c, but m ≥ 2, so that
Φ−1

k (λ′, µ, j, c) &∈ SDeven
k,n ∪ SDodd

k,n . With this in mind, define

BY even
k,n := {(λ′, µ, j, c) ∈ Beven

k,n : λ′ has a part of size s, color c},
BNeven

k,n := {(λ′, µ, j, c) ∈ Beven
k,n : λ′ has no part of size s, color c},

and

BY odd
k,n := {(λ′, µ, j, c) ∈ Bodd

k,n : λ′ has a part of size s, color c},
BNodd

k,n := {(λ′, µ, j, c) ∈ Bodd
k,n : λ′ has no part of size s, color c}.

Thus, since Beven
k,n = BY even

k,n ∪ BNeven
k,n and Bodd

k,n = BY odd
k,n ∪ BNodd

k,n are disjoint
unions, we have that

|Beven
k,n | = |BY even

k,n | + |BNeven
k,n |, and

|Bodd
k,n | = |BY odd

k,n | + |BNodd
k,n |.

We will show that |BY even
k,n | = |BNodd

k,n | and |BNeven
k,n | = |BY odd

k,n |, thus establishing
the lemma.

Let (λ′, µ, j, c) ∈ BY even
k,n . Then λ′ is a partition of n − r into an even number

of parts, and µ is a partition of r = ms into m parts of size s and color c. We
can modify (λ′, µ, j, c) by removing the part of size s and color c from λ′ that must
exist by definition, and attaching it to µ. For example, the following illustrates this
process for the element (3 + 2 + 2 + 1,2, 2, 2) ∈ BY even

2,10 .

!

We then obtain an element (λ′′, µ′, j, c) where λ′′ is now a partition of n− (m− 1)s
into an odd number of parts, that contains no part of size s and color c, and
µ′ is now a partition of (m + 1)s with m + 1 parts of size s and color c. Thus
(λ′′, µ′, j, c) ∈ BNodd

k,n , because m + 1 ≥ 2. This process is reversible, since any
element of (λ′′, µ′, j, c) ∈ BNodd

k,n must have the property that µ′ contains at least
two parts. Thus |BY even

k,n | = |BNodd
k,n |, and with the same process applied to BY odd

k,n ,
we see that |BNeven

k,n | = |BY odd
k,n |.
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