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Abstract
Let p, with or without subscripts, always denote a prime number. In this paper
we are able to establish two localized results on a theorem of Prachar which states
that almost all positive even integers n can be written as n = p2

2 + p3
3 + p4

4 + p5
5. As

a consequence of one result, we prove additionally that each sufficiently large odd
integer N can be represented as N = p1+p2

2+p3
3+p4

4+p5
5 with

∣∣pk
k − N

5

∣∣ ≤ N1− 1
264+ε

for k = 1, . . . , 5.

1. Introduction

In 1951, Roth [20] proved that almost all positive integers n can be written in the
form

n = m2
2 + m3

3 + m4
4 + m5

5,

where mk are positive integers. Prachar [15] improved the above result two years
later by showing that

n = p2
2 + p3

3 + p4
4 + p5

5 (1)

is expressible for almost all positive even integers n. Here and in the sequel the
letter p, with or without subscript, always stands for a prime number. Let E(N)
denote the number of even positive integers n up to N that cannot be written as
(1). Then Prachar actually proved that E(N) # N(log N)− 30

47+ε where ε > 0 is
arbitrary. In another paper [16], Prachar also considered the following equation

n = p1 + p2
2 + p3

3 + p4
4 + p5

5 (2)
1The first author was partially supported by GIIFSDU (No. yzc09049).
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and showed that all large odd integers n can be written in this way. After that,
the cardinality of E(N) has been improved by Bauer [1, 2, 3] and Ren and Tsang
[18, 19] successively. And the best record at present, O(N 1633

1680+ε), was given by
Bauer [4].

In this paper, we will investigate Prachar’s result in short intervals:
{

n = p2
2 + p3

3 + p4
4 + p5

5,∣∣∣pk
k − N

4

∣∣∣ ≤ U, k = 2, . . . , 5. (3)

To state the result precisely, we let E(N,U) be the number of all positive even
integers n satisfying N ≤ n ≤ N + U which cannot be written as (3). Our interest
in E(N,U) is twofold. First, a non-trivial bound of the type E(N,U) # N1−ε

implies that almost all even integers n satisfying N ≤ n ≤ N + U can be written
in the form (3). Namely, we are interested in the bound N1−ε with U as small as
possible. Furthermore, we will not only devote our attention to the size of U , but
also be concerned with the cardinality of E(N,U). In particular, we establish the
following results in both directions outlined above.

Theorem 1. For U = N1− 1
36+ε, we have

E(N,U)# N1−ε.

Theorem 2. For U = N1− 1
264+ε, we have

E(N,U)# U1−ε.

Actually our results can be regarded as the localized version of Prachar’s theorem
involving unlike powers of primes. We remark that the second estimate implies the
following theorem, which sharpens substantially the classical result (2), because one
can combine it with known results on the distribution of primes in short intervals
to deduce the statement in Theorem 3.

Theorem 3. For every sufficiently large odd integer N , the equation
{

N = p1 + p2
2 + p3

3 + p4
4 + p5

5,∣∣∣pk
k − N

5

∣∣∣ ≤ U, k = 1, . . . , 5

is solvable in primes pk for U = N1− 1
264+ε.

Theorems 1 and 2 will be proved by the circle method. A result of this strength
needs efforts in three aspects. When treating the major arcs, we will apply the
iterative method in Liu [12] and the mean-value estimate for Dirichlet polynomials
in Choi and Kumchev [6] to establish the asymptotic formulae for the number of
solutions to the problem. In fact we are able to control quite large major arcs for
the problem, which will occupy a great portion of this paper (see Sections 3–5).
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On the other hand, in handling the minor arcs, the new estimate for exponential
sums over primes in short intervals in the recent work of the second author [21] in
combination with the estimate in Liu, Lü and Zhan [13] will play an important role.
Additionally, we will need the mean-value estimate for exponential sums over the
minor arcs. And as usual, the joint contribution of these two aspects on the minor
arcs is expected to be as “small” as possible. Combining this with the argument on
the major arcs, we can finally determine and calculate the magnitude of the main
parameter U in the theorems. The full details will be explained in the following
relevant places.

Notation. As usual, ϕ(n), µ(n) and Λ(n) stand for the functions of Euler, Möbius
and von Mangoldt respectively. We use χ mod q to denote a Dirichlet character
modulo q, and χ0 mod q the principal character; and use the notation

∑∗ to denote
sums over all primitive characters. N is a large integer and n satisfies n $ N , and
thus we use L to denote both log N and log n. r ∼ R means R < r ≤ 2R. The
letters ε and A denote positive constants which are arbitrarily small and sufficiently
large respectively, c denotes a positive constant which may vary at different places.

2. Outline of the Method and Proof of Theorem 1

We shall concentrate on proving Theorem 1, and then describe the straightforward
modifications needed for Theorem 2 and present the proof of Theorem 3 at the end
of the paper.

We first introduce the notation

µ =
1
2

+
1
3

+
1
4

+
1
5
, µ̄ =

1
2

+
1
3

+
1
4
.

Then for even integer n satisfying N ≤ n ≤ N + U and U = N1− 1
36+ε, consider

r(n,U) =
∑

n=p2
2+p3

3+p4
4+p5

5

|pk
k
−N

4 |≤U, k=2,...,5

(log p2) · · · (log p5)

which is the weighted number of representations of (3). For

Y =
N

4
− U, X =

N

4
+ U,

we define the exponential sums

Sk(α) =
∑

Y≤pk≤X

(log p)e(pkα), k = 2, . . . , 5.
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Then we have

r(n,U) =
∫ 1

0
S2(α) · · ·S5(α)e(−nα)dα. (4)

In order to apply the circle method, we set

P = Nε, Q = N
29
36 .

By Dirichlet’s lemma on rational approximation, each α ∈ [ 1
Q , 1+ 1

Q ] may be written
in the form α = a

q + λ with 1 ≤ q ≤ Q and |λ| ≤ 1
qQ . We define n to be the subset

of α with
P ≤ q ≤ Q, |λ| ≤ 1

qQ
.

To define the major arcs, let

P∗ = N
ε
2 , Q∗ = N

11
12+2ε. (5)

Then the major arcs M are defined as the union of all intervals
[
a

q
− 1

qQ∗
,

a

q
+

1
qQ∗

]

with 1 ≤ a ≤ q ≤ P∗ and (a, q) = 1. Obviously M and n are disjoint. Let k be the
complement of M and n in [ 1

Q , 1+ 1
Q ], so that [ 1

Q , 1+ 1
Q ] = M∪n∪ k. Consequently,

the formula (4) becomes

r(n,U) =
{∫

M
+

∫

n∪k

}
S2(α) · · ·S5(α)e(−nα)dα.

To handle the integral on the major arcs, we have the following asymptotic
formula which will be carried out in Sections 3–5.

Lemma 4. Let M be as above. Then for N ≤ n ≤ N + U and any A > 0,
∫

M
S2(α)S3(α)S4(α)S5(α)e(−nα)dα =

1
120

S(n)J(n,U) + O
(
U3Nµ−4L−A

)
. (6)

Here S(n) is the singular series defined in (15), for which there exists an absolute
positive constant c0 such that

S(n)( (log log N)−c0 (7)

for any even integer n; while J(n,U) is defined by (19) and satisfies

U3Nµ−4 # J(n,U)# U3Nµ−4. (8)

Next we estimate S4(α) on n∪ k. We first estimate S4(α) on n, and this has been
done recently by the second author [21, Lemma 2]. This explains why we define n
in such a way.
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Lemma 5. Let k ≥ 2, K = 2k−1 and α ∈ n. Then

∑

x≤p≤x+y

(log p)e
(
pkα

)
# y1+ε

(
1
P

+
x

1
2

y
+

x
K2

K+1

yK
+

Qxk−1

y2k−1

) 1
K2

.

Then taking x = Y
1
4 and y = X

1
4 − Y

1
4 in Lemma 5, we have

S4(α)# UN− 3
4+ ε

128

(
1
P

+
N

7
8

U
+

N
70
9

U8
+

QN6

U7

) 1
64

# UN− 3
4−

ε
128 . (9)

To bound S4(α) on k, we need the following estimate for exponential sums over
primes in short intervals established by Liu, Lü and Zhan [13, Theorem 1.1].

Lemma 6. For k ≥ 1, 2 ≤ y ≤ x and α = a
q + λ, define

Ξ = |λ|xk + x2y−2.

Then

∑

x≤p≤x+y

(log p)e
(
pkα

)
# (qx)ε

{
q

1
2 yΞ 1

2

x
1
2

+ q
1
2 x

1
2 Ξ

1
6 + y

1
2 x

3
10 +

x
4
5

Ξ 1
6

+
x

q
1
2 Ξ 1

2

}
.

Now we estimate S4(α) on k. To this end, we further write k = k1 ∪ k2, where

k1 =
{

α : 1 ≤ q ≤ P∗,
1

qQ∗
≤ |λ| ≤ 1

qQ

}

and
k2 ⊂

{
α : P∗ < q < P, |λ| ≤ 1

qQ

}
.

For α ∈ k1, we have |λ| ≥ 1
qQ∗ ≥

N
U2 , and thus

Ξ $ |λ|N +
N2

U2
$ |λ|N.

Then Lemma 6 gives

S4(α)# N
ε
4

{
UN− 3

4
√

q|λ|N
N

1
8

+ N
1
8 q

1
2 (|λ|N)

1
6 + N− 3

10 U
1
2 +

N
1
5

(|λ|N) 1
6

+
N

1
4

√
q|λ|N

}

# UN− 3
4−

ε
128 . (10)

If α ∈ k2, then

P∗ < q < P, Ξ( N2U−2, qΞ# NQ−1 + PN2U−2 # N
7
36 .
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Now Lemma 6 gives

S4(α)# N
ε
4

{
UN− 3

4 (qΞ) 1
2

N
1
8

+ N
1
8 q

1
3 (qΞ)

1
6 + N− 3

10 U
1
2 +

N
1
5

Ξ 1
6

+
N

1
4

(P∗Ξ) 1
2

}

# UN− 3
4−

ε
128 . (11)

From (9), (10) and (11), we obtain

Lemma 7. Let n and k be as above. Then we have

sup
α∈n∪k

|S4(α)|# UN− 3
4−

ε
128 .

In fact, in the argument above the magnitude of the main parameters U,P∗, Q∗, P,
Q was determined simultaneously. We present more detailed explanation at this
point. We first show the details for U . There are altogether five terms that restrict
the lower bound of U , i.e. the 2nd & 3rd terms in (9), the 3rd term in (10) and
the 3rd & 4th terms in (11). After calculation we can give the magnitude of U as
shown in the beginning of the section from the 3rd term in (9) which is the worst
one among these five terms. Since now U is fixed, the choice of P and Q will be in a
matter of course. Note that we need qΞ# NQ−1 +PN2U−2 in the first two terms
of (11), and hence this makes it better to take the size of Q as large as possible
and of P as small as possible. As for P , the 1st term in (9) gives the required
lower bound immediately. While for Q, we can fix it from the 4th term in (9) by
comparing with the 1st term in (10). Then one can find that the contribution of
this choice for P and Q to the first two terms in (11) is also acceptable. Now it
remains to show the choice of P∗ and Q∗. Since P∗ is the size of the major arcs,
there will be other restrictions for its upper bound in the following proof of Lemma
4. This implies that it is reasonable to choose a good lower bound of P∗ here. Then
compared with the 2nd & 4th terms in (10), we take P∗ as in (5) from the last term
of (11). We will see in Sections 4 and 5 that this choice for P∗ also meets all the
demands there. For Q∗, the 4th & 5th terms in (10) give the restriction of its upper
bound, and one finds easily that the choice in (5) is acceptable.

To bound the contribution of mean-value estimate for exponential sums over the
minor arcs, we shall need the following lemma. Note that the argument can also be
used in other similar problems (see [4] for example).

Lemma 8. For U ( N1− 1
30 , we have

∫ 1

0
|S2(α)S3(α)S5(α)|2dα# U4N− 44

15+ ε
128 . (12)

Proof. Denote the left-hand side of (12) by H, and let Nk :=
[
Y

1
k ,X

1
k

]
, Nk :=∣∣Nk

∣∣ $ UN
1
k−1. Then the value of H equals the number of integer solutions of the
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equation
a2
1 − a2

2 + b3
1 − b3

2 + c5
1 − c5

2 = 0,

where ai ∈ N2, bi ∈ N3, ci ∈ N5. The solutions are of the three kinds:

1. a1 += a2;

2. a1 = a2, b1 += b2;

3. a1 = a2, b1 = b2, c1 = c2.

Thus we have

H # N2
3 N

2+ ε
30

5 + N2N
2+ ε

30
5 + N2N3N5 # U4N− 44

15+ ε
128 ,

as required.

Now we can establish Theorem 1.

Proof of Theorem 1. Applying Bessel’s inequality, we have

∑

N≤n≤N+U
n≡0 (mod 2)

∣∣∣∣
∫

n∪k
S2(α)S3(α)S4(α)S5(α)e(−nα)dα

∣∣∣∣
2

#
∫

n∪k
|S2(α)S3(α)S4(α)S5(α)|2dα.

By Lemmas 7 and 8, the last integral is

# sup
α∈n∪k

|S4(α)|2
∫ 1

0
|S2(α)S3(α)S5(α)|2dα# (U3Nµ−4)2N1−ε/128.

Thus, for all but O(N1−ε/256) even integers n ∈ [N,N + U ], one has
∣∣∣∣
∫

n∪k
S2(α)S3(α)S4(α)S5(α)e(−nα)dα

∣∣∣∣# U3Nµ−4−ε/512.

Then Theorem 1 follows by Lemma 4.

3. An Explicit Expression

The purpose of this section is to establish in Lemma 9 an explicit expression for the
left-hand side of (6).

For k = 2, . . . , 5 and Dirichlet character χ mod q, we define

Ck(χ, a) =
q∑

h=1

χ̄(h)e
(

ahk

q

)
and Ck(q, a) = Ck(χ0, a), (13)
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where χ0 is the principal character modulo q, and Ck(q, a) is the Ramanujan sum.
For α = a

q + λ with (a, q) = 1, we have

Sk(α) =
q∑

h=1
(h,q)=1

e

(
ahk

q

) ∑

Y≤pk≤X
p≡h (mod q)

(log p)e(pkλ).

Note that for q ≤ P∗ and Y ≤ pk ≤ X, k = 2, . . . , 5, we have (q, p) = 1. Then by
introducing Dirichlet characters to the above sum over p, one can rewrite Sk(α) as

Ck(q, a)
ϕ(q)

Vk(λ) +
1

ϕ(q)

∑

χ mod q

Ck(χ, a)Wk(χ,λ),

where

Vk(λ) =
∑

Y≤mk≤X

e(mkλ),

Wk(χ,λ) =
∑

Y≤pk≤X

(log p)χ(p)e(pkλ)− δχ

∑

Y≤mk≤X

e(mkλ). (14)

Here and throughout, δχ is 1 or 0 according as χ is principal or not.
For j = 0, 1, . . . , 15, if we set

Sj =






{2, 3, 4, 5}, if j =0; {2, 3, 4}, if j =1; {2, 3, 5}, if j =2; {2, 3}, if j =3;
{2, 4, 5}, if j =4; {2, 4}, if j =5; {2, 5}, if j =6; {2}, if j =7;
{3, 4, 5}, if j =8; {3, 4}, if j =9; {3, 5}, if j =10; {3}, if j =11;
{4, 5}, if j =12; {4}, if j =13; {5}, if j =14; ∅, if j =15

and S̄j = {2, 3, 4, 5}\Sj , then we have
∫

M
S2(α) · · ·S5(α)e(−nα)dα =: I0 + I1 + · · · + I15,

where

Ij =
∑

q≤P∗

1
ϕ4(q)

q∑

a=1
(a,q)=1

{ ∏

k∈Sj

Ck(q, a)
}

e

(
−an

q

)

×
∫ 1/(qQ∗)

−1/(qQ∗)

{ ∏

k∈Sj

Vk(λ)
}{ ∏

k∈S̄j

∑

χ mod q

Ck(χ, a)Wk(χ,λ)
}

e(−nλ)dλ.

Therefore we obtain

Lemma 9. We have
∫

M
S2(α) · · ·S5(α)e(−nα)dα =

15∑

j=0

Ij .

In the following sections we shall prove that I0 produces the main term, while
the others contribute the error term.
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4. Treatment of the Major Arcs

We need some more notation. Let χ2, . . . ,χ5 be characters mod q, Ck(χ, a) be
defined by (13). Then we take

B(n, q,χ2, . . . ,χ5) =
q∑

a=1
(a,q)=1

e

(
−an

q

) 5∏

k=2

Ck(χk, a),

B(n, q) = B(n, q,χ0, . . . ,χ0),

and write

A(n, q) =
B(n, q)
ϕ4(q)

, S(n) =
∞∑

q=1

A(n, q). (15)

Lemma 10. The singular series S(n) satisfies (7).

For the proof, one may see [15, Lemma 16] or [18, Lemma 5.3].
The following lemma, for which the proof is implied in Leung and Liu [11], plays

an important role when we prove Lemma 4.

Lemma 11. Let χk mod rk with k = 2, . . . , 5 be primitive characters, r0 = [r2, . . . , r5],
and χ0 the principal character mod q. Then

∑

q≤x
r0|q

1
ϕ4(q)

∣∣B(n, q,χ2χ
0, . . . ,χ5χ

0)
∣∣# r−1+ε

0 logc x.

Now we can establish the following asymptotic formula of I0.

Lemma 12. Let I0 be as given in Lemma 9. Then for N ≤ n ≤ N + U and any
A > 0,

I0 =
1

120
S(n)J(n,U) + O(U3Nµ−4L−A),

where J(n,U) is defined by (19) and satisfies (8).

Proof. Applying [10, Lemma 8.8] to Vk(λ), we get for k = 2, . . . , 5,

Vk(λ) =
∫ X

1
k

Y
1
k

e(ukλ)du + O(1) =
1
k

∫ X

Y
v

1
k−1e(vλ)dv + O(1)

=
1
k

∑

Y≤m≤X

e(mλ)m
1
k−1 + O(1). (16)
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Substituting this into I0 we see that

I0 =
1

120

∑

q≤P∗

B(n, q)
ϕ4(q)

∫ 1/(qQ∗)

−1/(qQ∗)

{ 5∏

k=2

∑

Y≤m≤X

e(mλ)m
1
k−1

}
e(−nλ)dλ

+ O




∑

q≤P∗

|B(n, q)|
ϕ4(q)

∫ 1/(qQ∗)

−1/(qQ∗)

∣∣∣∣∣

4∏

k=2

∑

Y≤m≤X

e(mλ)m
1
k−1

∣∣∣∣∣dλ



 . (17)

Using the elementary estimate
∑

Y≤m≤X

e(mλ)m
1
k−1 # N

1
k−1 min

(
U,

1
|λ|

)
(18)

and Lemma 11 with r0 = 1, the O-term in (17) can be estimated as

#
∑

q≤P∗

|B(n, q)|
ϕ4(q)

{∫ U−1

0
U3N µ̄−3dλ +

∫ ∞

U−1
N µ̄−3 dλ

λ3

}

# U2N µ̄−3Lc # U3Nµ−4L−A.

Now we extend the integral in the main term of (17) to [−1/2, 1/2]. Then by a
similar argument we see that the resulting error is

# Lc

∫ 1/2

1/(P∗Q∗)
Nµ−4 dλ

λ4
# Nµ−4(P∗Q∗)3Lc # U3Nµ−4L−A,

where we have used (5). Thus by Lemma 10, (17) becomes

I0 =
1

120
S(n)J(n,U) + O(U3Nµ−4L−A),

where

J(n,U) :=
∑

m2+···+m5=n
Y≤mk≤X, k=2,...,5

{ 5∏

k=2

m
1
k−1
k

}
$ U3Nµ−4. (19)

This finishes the proof of Lemma 12.

To bound the contribution of Ij for j = 1, 2, . . . , 15, we shall need the following
preliminary Lemmas 13–15. In view of this, recall the definition of Wk(χ,λ) in (14)
and further, for k = 2, . . . , 5, write

Jk(g) =
∑

r≤P∗

[g, r]−1+ε
∑∗

χ mod r

max
|λ|≤1/(rQ∗)

|Wk(χ,λ)|,

Kk(g) =
∑

r≤P∗

[g, r]−1+ε
∑∗

χ mod r

(∫ 1/(rQ∗)

−1/(rQ∗)
|Wk(χ,λ)|2dλ

) 1
2

.
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Here and throughout,
∑∗ indicates that the summation is taken over all primitive

characters.

Lemma 13. Let P∗, Q∗ be as in (5). We have

Jk(g)# g−1+εUN
1
k−1Lc.

Lemma 14. Let P∗, Q∗ be as in (5). For g = 1, Lemma 13 can be improved to

Jk(1)# UN
1
k−1L−A,

where A > 0 is arbitrary.

Lemma 15. Let P∗, Q∗ be as in (5). We have

Kk(g)# g−1+εU
1
2 N

1
k−1Lc.

The proof of Lemmas 13–15 will be postponed to the next section. From the
proof, one will actually find that the magnitude of P∗ can be larger than that in
(5). We should point, however, that the choice of P∗ in (5) is merely convenient
for our purpose to get the main parameter U in the theorem. Since more technical
argument would be required, we select simplicity here and will not show how large
we can take P∗ to be in the three lemmas.

With these lemmas ready, we can now use the iterative method of [12] to give
the upper bound of Ij for j = 1, 2, . . . , 15. At this stage we shall point out that, in
contrast to the previous problems we have investigated, we will be embedded in a
slightly new situation in the present paper when applying the iterative procedures
to choose the employ of maximizing or integrating Wk(χ,λ) for k = 2, . . . , 5 from a
set of multiple sums. Arising from the fact that the exponents of the prime variables
in our problem vary from one another, we will have more than one choice. These
different procedures could have been expected to be no essentially distinct, however
the choice of the iterative procedures definitely results in whether we will appeal to
J or K. Note that in the argument below, we will rely on J2, J3 and K4,K5.

Lemma 16. Let Ij , j = 1, . . . , 15 be as in Lemma 9. Then for N ≤ n ≤ N + U
and any A > 0,

15∑

j=1

Ij # U3Nµ−4L−A.

Proof. We begin with I15 which is the most complicated one. Reducing the char-
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acters in I15 into primitive characters, we have

|I15| =
∣∣∣∣

∑

q≤P∗

∑

χ2 mod q

· · ·
∑

χ5 mod q

B(n, q,χ2, . . . ,χ5)
ϕ4(q)

×
∫ 1/(qQ∗)

−1/(qQ∗)
W2(χ2,λ) · · ·W5(χ5,λ)e(−nλ)dλ

∣∣∣∣

≤
∑

r2≤P∗

· · ·
∑

r5≤P∗

∑∗

χ2 mod r2

· · ·
∑∗

χ5 mod r5

∑

q≤P∗
r0|q

|B(n, q,χ2χ0, . . . ,χ5χ0)|
ϕ4(q)

×
∫ 1/(qQ∗)

−1/(qQ∗)

∣∣W2(χ2χ
0,λ)

∣∣ · · ·
∣∣W5(χ5χ

0,λ)
∣∣dλ,

where χ0 is the principal character modulo q and r0 = [r2, . . . , r5]. For q ≤ P∗
and Y ≤ pk ≤ X, k = 2, . . . , 5, we have (q, p) = 1. Using this and (14), we have
Wk(χkχ0,λ) = Wk(χk,λ) for the primitive characters χk above. Thus by Lemma
11, we obtain

|I15| ≤
∑

r2≤P∗

· · ·
∑

r5≤P∗

∑∗

χ2 mod r2

· · ·
∑∗

χ5 mod r5

∫ 1/(r0Q∗)

−1/(r0Q∗)

∣∣W2(χ2,λ)
∣∣ · · ·

∣∣W5(χ5,λ)
∣∣dλ

×
∑

q≤P∗
r0|q

|B(n, q,χ2χ0, . . . ,χ5χ0)|
ϕ4(q)

# Lc
∑

r2≤P∗

· · ·
∑

r5≤P∗

r−1+ε
0

∑∗

χ2 mod r2

· · ·
∑∗

χ5 mod r5

×
∫ 1/(r0Q∗)

−1/(r0Q∗)

∣∣W2(χ2,λ)
∣∣ · · ·

∣∣W5(χ5,λ)
∣∣dλ.

In the last integral, we take out |W2(χ1,λ)| and |W3(χ3,λ)|, and then use Cauchy’s
inequality to get

|I15|# Lc

{ 3∏

k=2

∑

rk≤P∗

∑∗

χk mod rk

max
|λ|≤1/(rkQ∗)

|Wk(χk,λ)|
}

×
∑

r4≤P∗

∑∗

χ4 mod r4

(∫ 1/(r4Q∗)

−1/(r4Q∗)
|W4(χ4,λ)|2dλ

) 1
2

×
∑

r5≤P∗

r−1+ε
0

∑∗

χ5 mod r5

(∫ 1/(r5Q∗)

−1/(r5Q∗)
|W5(χ5,λ)|2dλ

) 1
2

. (20)

Now we introduce the iterative procedure to bound the above sums over r5, . . . , r2

consecutively.
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We first estimate the above sum over r5 in (20) via Lemma 15. Since r0 =
[r2, . . . , r5] = [[r2, . . . , r4], r5], the sum over r5 in (20) is

=
∑

r5≤P∗

[[r2, . . . , r4], r5]−1+ε
∑∗

χ5 mod r5

(∫ 1/(r5Q∗)

−1/(r5Q∗)
|W5(χ5,λ)|2dλ

) 1
2

= K5([r2, . . . , r4]) # [r2, . . . , r4]−1+εU
1
2 N

1
5−1Lc.

This contributes to the sum over r4 in (20) in amount

# U
1
2 N

1
5−1Lc

∑

r4≤P∗

[[r2, r3], r4]−1+ε
∑∗

χ4 mod r4

(∫ 1/(r4Q∗)

−1/(r4Q∗)
|W4(χ4,λ)|2dλ

) 1
2

= U
1
2 N

1
5−1Lc K4([r2, r3]) # [r2, r3]−1+εUN

1
4+ 1

5−2Lc,

by Lemma 15 again. The contribution of this quantity to the sum over r3 in (20) is

# UN
1
4+ 1

5−2Lc
∑

r3≤P∗

[r2, r3]−1+ε
∑∗

χ3 mod r3

max
|λ|≤1/(r3Q∗)

|W3(χ3,λ)|

= UN
1
4+ 1

5−2Lc J3(r2) # r−1+ε
2 U2N

1
3+ 1

4+ 1
5−3Lc,

where we have used Lemma 13. Inserting this last bound into (20), we can bound
the sum over r2 and find that

I15 # U2N
1
3+ 1

4+ 1
5−3Lc

∑

r2≤P∗

r−1+ε
2

∑∗

χ2 mod r2

max
|λ|≤1/(r2Q∗)

|W2(χ2,λ)|

= U2N
1
3+ 1

4+ 1
5−3Lc J2(1) # U3Nµ−4L−A, (21)

where we have used Lemma 14 in the last step.
For the estimation of the terms I1, I2, . . . , I14, by noting (16) and (18) we get

(∫ 1/Q∗

−1/Q∗
|Vk(λ)|2dλ

) 1
2

#
(
Y

2
k−2U

) 1
2 # U

1
2 N

1
k−1.

Using this estimate and the bound of Vk(λ) in (16) & (18), we argue similarly to
the treatment of I15 and obtain

14∑

j=1

Ij # U3Nµ−4L−A. (22)

Lemma 16 now follows from (21) and (22).
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5. Estimation of J and K

In this section, we will establish Lemmas 13–15. The proofs are similar to those of
Lemmas 3.1–3.3 in [5], but with some minor technical modifications to our argu-
ment. We first present the details in the proof of Lemma 15. For this purpose, we
shall introduce the following mean-value estimate for Dirichlet polynomials estab-
lished by Choi and Kumchev [6, Theorem 1.1].

Lemma 17. Let R ≥ 1,X ≥ 2, T ≥ 2. Then we have

∑

r∼R
d|r

∑∗

χ mod r

∫ 2T

T

∣∣∣∣
∑

X≤n≤2X

Λ(n)χ(n)n−it

∣∣∣∣dt#
(

R2T

d
X11/20 + X

)
(log RTX)c.

5.1. Proof of Lemma 15

We approximate the Wk(χ,λ) in (14) by

Ŵk(χ,λ) =
∑

Y≤mk≤X

(Λ(m)χ(m)− δχ)e(mkλ).

Then the error is
Wk(χ,λ)− Ŵk(χ,λ)# N

1
2k . (23)

Therefore we have

∑

r≤P∗

[g, r]−1+ε
∑∗

χ mod r

(∫ 1/(rQ∗)

−1/(rQ∗)
|Wk(χ,λ)− Ŵk(χ,λ)|2dλ

) 1
2

# N
1
2k

∑

r≤P∗

[g, r]−1+ε

(
r

Q∗

) 1
2

# g−1+εN
1
2k Q∗−

1
2

∑

r≤P∗

(
r

(g, r)

)−1+ε

r
1
2

# g−1+εN
1
2k Q∗−

1
2

∑

d|g
d≤P∗

∑

r≤P∗
d|r

( r

d

)−1+ε
r

1
2 # g−1+εN

1
2k P∗

1
2+εQ∗−

1
2

# g−1+εU
1
2 N

1
k−1Lc,

where we have used [g, r](g, r) = gr and (5).
Thus it suffices to show that

∑

r∼R

[g, r]−1+ε
∑∗

χ mod r

(∫ 1/(rQ∗)

−1/(rQ∗)
|Ŵk(χ,λ)|2dλ

) 1
2

# g−1+εU
1
2 N

1
k−1Lc, (24)

where R ≤ P∗.
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By Gallagher’s lemma [8, Lemma 1], we have
∫ 1/(rQ∗)

−1/(rQ∗)
|Ŵk(χ,λ)|2dλ#

(
1

RQ∗

)2 ∫ +∞

−∞

∣∣∣∣
∑

v<mk≤v+rQ∗
Y≤mk≤X

(Λ(m)χ(m)− δχ)
∣∣∣∣
2

dv

#
(

1
RQ∗

)2 ∫ X

Y−rQ∗

∣∣∣∣
∑

v<mk≤v+rQ∗
Y≤mk≤X

(Λ(m)χ(m)− δχ)
∣∣∣∣
2

dv.

(25)

Let

Y 1/k ≤ y < x ≤ X1/k,

x− y # (v + rQ∗)1/k − v1/k # v1/k{(1 + rQ∗/v)1/k − 1}# rQ∗Y 1/k−1.

Then the last sum in (25) can be written as
∑

y≤m≤x

(Λ(m)χ(m)− δχ). (26)

In the case R < 1, the quantity in (26) is

# x− y # Q∗Y 1/k−1.

This contributes to (24) as

g−1+ε

(
1

Q∗2
U

Q∗2

Y 2−2/k

) 1
2

# g−1+εU
1
2 N

1
k−1,

which is acceptable.
For R ≥ 1, we have χ += χ0 and hence δχ = 0. Applying Perron’s summation

formula (see for example, Theorem 2, p. 98 in [14] or Lemma 3.12 in [22]), we see
that (26) can be written as

S :=
1

2πi

∫ b+iT

b−iT
F (s,χ)

xs − ys

s
ds + O(L2)

for T = N
1
k and 0 < b < L−1, with

F (s,χ) =
∑

y≤m≤x

Λ(m)χ(m)m−s.

Using trivial estimates, we see that for 0 < b < L−1

xs − ys

s
# min

(
T−1

0 , (|t| + b)−1
)
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for T0 = N(RQ∗)−1. Thus for b→ 0, we have

S # T−1
0

∫

|t|≤T0

|F (it,χ)|dt +
∫

T0<|t|≤T
|F (it,χ)|dt

|t| + L2. (27)

Then from (25) and (27), we find that the left-hand side of (24) is

# U
1
2 N−1

∑

r∼R

[g, r]−1+ε
∑∗

χ mod r

∫

|t|≤T0

|F (it,χ)|dt

+ U
1
2 (RQ∗)−1

∑

r∼R

[g, r]−1+ε
∑∗

χ mod r

∫

T0<|t|≤T
|F (it,χ)|dt

|t|

+ g−1+εL2U
1
2+εQ∗−1.

Obviously the third term is acceptable. Therefore it follows that (24) is a conse-
quence of the following two estimates: For R ≤ P∗ and 0 < T1 ≤ T0, we have

∑

r∼R

[g, r]−1+ε
∑∗

χ mod r

∫ 2T1

T1

|F (it,χ)|dt# g−1+εN
1
k Lc; (28)

while for R ≤ P∗ and T0 < T2 ≤ T , we have

∑

r∼R

[g, r]−1+ε
∑∗

χ mod r

∫ 2T2

T2

|F (it,χ)|dt# g−1+εRQ∗N
1
k−1T2L

c. (29)

To show (28), we note that [g, r](g, r) = gr. Then the left-hand side of (28) is

# g−1+ε
∑

d|g
d≤R

(
R

d

)−1+ε ∑

r∼R
d|r

∑∗

χ mod r

∫ 2T1

T1

|F (it,χ)|dt.

By Lemma 17, the above quantity can be estimated as

# g−1+ε
∑

d|g
d≤R

(
R

d

)−1+ε (
R2T1

d
N

11
20k + n

1
k

)
Lc

# g−1+ετ(g)
(

N1+ 11
20k

Q∗
+ n

1
k

)
Lc

# g−1+εN
1
k Lc.

Similarly, we can prove (29) by taking T = T2 in Lemma 17. Lemma 15 now follows.
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5.2. Proof of Lemma 13

The contribution of N
1
2k in (23) to Jk(g) is

∑

r≤P∗

[g, r]−1+εrN
1
2k # g−1+εN

1
2k

∑

d|g
d≤P∗

∑

r≤P∗
d|r

( r

d

)−1+ε
r

# g−1+εN
1
2k P∗

1+ε # g−1+εUN
1
k−1L−A.

Hence Lemma 13 is a consequence of the estimate
∑

r∼R

[g, r]−1+ε
∑∗

χ mod r

max
|λ|≤1/(rQ∗)

|Ŵk(χ,λ)|# g−1+εUN
1
k−1Lc, (30)

where R ≤ P∗.
The case R < 1 contributes to (30) as g−1+εUN

1
k−1L which is obviously accept-

able. Therefore it remains to show (30) in the case R ≥ 1.
For R ≥ 1, we have δχ = 0 for all χ mod r in the definition of Ŵk(χ,λ), and thus

Ŵk(χ,λ) =
∑

Y≤mk≤X

Λ(m)χ(m)e(mkλ).

Then by partial summation and Perron’s formula, we get

Ŵk(χ,λ) =
1

2πi

∫ b+iT

b−iT
H(s,χ)v(s,λ)ds + O(1),

where 0 < b < L−1, T = (1 + |λ|N)UN
1
k−1L2, and

H(s,χ) =
∑

Y≤mk≤X

Λ(m)χ(m)m−s, v(s,λ) =
∫ X

1
k

Y
1
k

ws−1e(wkλ)dw.

Using Lemmas 4.3 & 4.4 in [22] together with a trivial estimate, we have

v(s,λ)# N b/k min
{

UN−1,
1√

|t| + 1
, max

Y 1/k≤w≤X1/k

1∣∣t + 2kπλwk
∣∣

}

#






UN b/k−1, if |t| ≤ T∗;
N b/k/(|t| + 1)1/2, if T∗ < |t| ≤ T ∗;
N b/k/|t|, if T ∗ < |t| ≤ T,

where
T∗ =

N2

U2
, T ∗ =

4kπN

RQ∗
.

Here the choice of T ∗ is to ensure that |t + 2kπλwk| > |t|/2 whenever |t| > T ∗; in
fact,

|t + 2kπλwk| ≥ |t|− 2kπ|wk|/(rQ∗) > |t|/2 + T ∗/2− 2kπ|wk|/(RQ∗) ≥ |t|/2.
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Then for b→ 0, we obtain

Ŵk(χ,λ)#UN−1

∫

|t|≤T∗

|H(it,χ)|dt +
∫

T∗<|t|≤T∗
|H(it,χ)| dt√

|t| + 1

+
∫

T∗<|t|≤T
|H(it,χ)|dt

|t| + O(1).

The contribution of the last quantity O(1) to (30) can be checked easily. Therefore,
(30) is a consequence of the following three estimates: For R ≤ P∗ and 0 < T1 ≤ T∗,
we have

∑

r∼R

[g, r]−1+ε
∑∗

χ mod r

∫ 2T1

T1

|H(it,χ)|dt# g−1+εN
1
k Lc; (31)

and for R ≤ P∗ and T∗ < T2 ≤ T ∗, we have

∑

r∼R

[g, r]−1+ε
∑∗

χ mod r

∫ 2T2

T2

|H(it,χ)|dt# g−1+εUN
1
k−1(T2 + 1)

1
2 Lc; (32)

while for R ≤ P∗ and T ∗ < T3 ≤ T , we have

∑

r∼R

[g, r]−1+ε
∑∗

χ mod r

∫ 2T3

T3

|H(it,χ)|dt# g−1+εUN
1
k−1T3L

c. (33)

The estimates (31), (32) and (33) follow from Lemma 17 via the argument leading
to (28) and (29). This proves Lemma 13.

5.3. Proof of Lemma 14

We will first state the following two lemmas which are well-known results in number
theory. For the proof of Lemma 18, see for example pp. 669 & 801 in Pan-Pan [14],
and for a slightly weak form which suffices for our purposes, see Huxley [9]. For the
proof of Lemma 19, see Satz VIII.6.2 in Prachar [17].

Lemma 18. For T ≥ 2, let N∗(α, q, T ) denote the number of zeros of all the L-
functions L(s,χ) with primitive characters χ mod q in the region Re s ≥ α, |Im s| ≤
T . Then ∑

q≤X

N∗(α, q, T )# (X2T )12(1−α)/5 logc1(X2T ),

where c1 > 0 is an absolute constant.

Lemma 19. Let T ≥ 2. There is an absolute constant c2 > 0, such that the product∏
χ mod q L(s,χ) is zero-free in the region

Re s ≥ 1− c2/max{log q, log4/5 T}, |Im s| ≤ T,

except for the possible Siegel zero.
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Now we turn to the proof. Clearly, Lemma 14 is the same as that of Lemma 13
except for the saving L−A on its right-hand side. Because of this saving, we have
to distinguish two cases according as R is small or large.

By an argument similar to that leading to (30), Lemma 14 is a consequence of
the estimate

∑

r∼R

r−1+ε
∑∗

χ mod r

max
|λ|≤1/(rQ∗)

|Ŵk(χ,λ)|# UN
1
k−1L−A, (34)

where R ≤ P∗ and A > 0 is arbitrary.
In the case LC < R ≤ P∗ where C is a constant depending on A, we argue

similarly in the proof of Lemma 13 for g = 1, and use R > LC to obtain the saving
L−A. The details are omitted.

Now we concentrate on the case R ≤ LC , where C > 0 is arbitrary. We use the
explicit formula (see [7, pp. 109 & 120], or [14, p. 313])

∑

m≤u

Λ(m)χ(m) = δχu−
∑

|γ|≤T

uρ

ρ
+ O

(( u

T
+ 1

)
log2(quT )

)
, (35)

where ρ = β + iγ runs over non-trivial zeros of the function L(s,χ), and 2 ≤ T ≤ u
is a parameter. Taking T = N

1
12−ε in (35), and then inserting it into Ŵk(χ,λ), we

get by Y
1
k ≤ u ≤ X

1
k and (14) that

Ŵk(χ,λ) =
∫ X

1
k

Y
1
k

e(ukλ)d
{ ∑

m≤u

(Λ(m)χ(m)− δχ)
}

= −
∫ X

1
k

Y
1
k

e(ukλ)
∑

|γ|≤N
1
12−ε

uρ−1du + O

(
UN

1
k−1

N
1
12−ε

(1 + |λ|N)L2

)

# UN
1
k−1

∑

|γ|≤N
1
12−ε

N
β−1

k + O
(
UN

1
k−1L−A

)
.

Note that in the last step, the condition Q∗ ( N
11
12+ε is required.

Now let η(T ) = c3 log−4/5 T . By Lemma 19,
∏

χ mod r L(s,χ) is zero-free in the
region Re s ≥ 1 − η(T ), |Im s| ≤ T except for the possible Siegel zero. But by
Siegel’s theorem (see, for example, [7, §21]) the Siegel zero does not exist in the
present situation, since r ≤ LC . Thus by Lemma 18,

∑

|γ|≤N
1
12−ε

N
β−1

k # Lc

∫ 1−η(N
1
12−ε)

0

(
N

1
12−ε

)12(1−α)/5
N

α−1
k dα

# LcN−η(N
1
12−ε)( 1

k−
1
5 )−ε # exp

(
− c4L

1/5
)
.
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Consequently,
∑

r∼R

∑∗

χ mod r

max
|λ|≤1/(rQ∗)

|Ŵk(χ,λ)|# UN
1
k−1L−A,

for any A > 0. This proves (34) in the second case, and the lemma follows.

6. Proof of Theorems 2 and 3

In this section, we outline the modifications necessary for the proof of Theorem 2
by the previous argument and give a terse proof of Theorem 3. For this purpose,
we put

P = N
4
33+ε, Q = N

225
264 , P∗ = N

1
264+ε, Q∗ = N

11
12+2ε, (36)

then define the major arcs M and the minor arcs n, k as in Section 2 with P,Q,P∗, Q∗

determined by (36). Then for even integer n ∈ [N,N + U ] and U = N1− 1
264+ε,

consider

R(n,U) :=
∑

n=p2
2+p3

3+p4
4+p5

5

|pk
k
−N

4 |≤U, k=2,...,5

(log p2)(log p3)(log p4)(log p5)

=
{∫

M
+

∫

n∪k

}
S2(α)S3(α)S4(α)S5(α)e(−nα)dα.

Moreover, define Jk(g) and Kk(g) as in Section 4. By the same treatment, we can
estimate J and K for P∗ replaced by (36) to get the desired upper bounds as shown
in Lemmas 13–15. Then following the proof of Lemma 4, we can get the asymptotic
formula of R(n,U) on the major arcs.

Lemma 20. Let the major arcs M be as above. Then for N ≤ n ≤ N +U and any
A > 0,

∫

M
S2(α)S3(α)S4(α)S5(α)e(−nα)dα =

1
120

S(n)J(n,U) + O
(
U3Nµ−4L−A

)
.

Here S(n) is the singular series defined in (15), for which there exists an absolute
positive constant c0 such that

S(n)( (log log N)−c0

for any even integer n; while J(n,U) is defined by (19) and satisfies

U3Nµ−4 # J(n,U)# U3Nµ−4.
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By using the similar argument in Section 2, we can estimate S4(α) on n ∪ k and
obtain

Lemma 21. Let the minor arcs n and k be defined as above. Then we have

sup
α∈n∪k

|S4(α)|# U
3
2 N− 5

4−
ε

128 .

Here for the choice of the parameters, we only remark that we fix U from the
second term in (9) which is different from that in Lemma 7. With Lemmas 20 and
21 known, we find by combining with Lemma 8 that Theorem 2 follows as required.

At the end of this section, we give the proof of Theorem 3.

Proof of Theorem 3. Let N be a sufficiently large odd integer, and N1 = 4
5N . Then

we consider the subset of primes

P =
{

p :
∣∣∣∣p−

N

5

∣∣∣∣ ≤ U = N1− 1
264+ε

}
.

Obviously the number of elements in P is ( U/L by the prime number theorem.
And thus there are ( U/L even integers n such that n = N − p and N1 < n ≤
N1 + U . Then by Theorem 2, we find that there exists a prime p ∈ P such that the
equation

N − p = p2
2 + p3

3 + p4
4 + p5

5,

∣∣∣∣p
k
k −

N

5

∣∣∣∣ ≤ U, k = 2, . . . , 5

has solutions. Hence Theorem 3 holds for odd integer N .
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[16] K. Prachar, Über ein Problem vom Waring-Goldbach’schen Typ II (in German), Monatsh.
Math., 57 (1953), 113–116.

[17] K. Prachar, “Primzahlverteilung” (in German), Springer-Verlag, Berlin, 1957.

[18] X. M. Ren and K.-M. Tsang, Waring-Goldbach problems for unlike powers, Acta Math.
Sin. (Engl. Ser.), 23 (2007), 265–280.

[19] X. M. Ren and K.-M. Tsang, Waring-Goldbach problems for unlike powers II (in Chinese),
Acta Math. Sinica (Chin. Ser.), 50 (2007), 175–182.

[20] K. F. Roth, A problem in additive number theory, Proc. London Math. Soc., 53 (1951),
381–395.

[21] H. C. Tang, A note on some results of Hua in short intervals, Lithuanian Math. J., 51
(2011), 75–81.

[22] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edition, The Clarendon
Press, Oxford University Press, New York, 1986.


