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Abstract
Let A be the set of nonzero k-th powers in Fq and γ∗(k, q) denote the minimal n such
that nA = Fq. We use sum-product estimates for |nA| and |nA−nA|, following the
method of Glibichuk and Konyagin to estimate γ∗(k, q). In particular, we obtain
γ∗(k, q) ≤ 633(2k)log 4/ log |A| for |A| > 1 provided that γ∗(k, q) exists.

1. Introduction

Let Fq be a finite field in q = pf elements and k be a positive integer. The smallest
s such that the equation

xk
1 + xk

2 + · · · + xk
s = a (1)

is solvable for all a ∈ Fq (should such an s exist) is called Waring’s number for Fq,
denoted γ(k, q). Similarly, the smallest s such that

±xk
1 ± xk

2 ± · · · ± xk
s = a, (2)

is solvable for all a ∈ Fq is denoted δ(k, p). If d = (k, q − 1) then clearly γ(d, q) =
γ(k, q) and so we may assume k|(q− 1). If A is the multiplicative subgroup of k-th
powers in F∗q then we write

γ(A, q) = γ(k, q), δ(A, q) = δ(k, q).

Also, we let γ∗(A, q), δ∗(A, q) denote the minimal s such that every element of Fq

is the sum (± sum ) of exactly s nonzero k-th powers, that is, (1), (2) resp. are
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solvable with all xi $= 0. It is well-known that γ(A, q), δ(A, q), γ∗(A, q), δ∗(A, q)
exist if and only if A contains a set of f linearly independent points over Fp; see
Lemma 6.

For any subsets S, T of Fq and positive integer n, let

S + T = {s + t : s ∈ S, t ∈ T}, S − T = {s− t : s ∈ S, t ∈ T},

nS = S+S+· · ·+S (n-times), ST = {st : s ∈ S, t ∈ T}, Sn = SS · · ·S (n-times).

Note that (nS)T ⊆ n(ST ). We let nST denote the latter, n(ST ). Also, for any
a ∈ Fq we let aS = {as : s ∈ S}.

If A is a multiplicative subgroup of F∗q then γ∗(A, q) (if it exists) is the minimal
s such that sA = Fq, while γ(A, q) is the minimal s such that sA0 = Fq, where
A0 = A∪{0}. It is well-known that γ(k, q) ≤ k with equality if k = q−1 or (q−1)/2.
This was first observed by Cauchy [5] for the case q = p. Our first result is the
analogue for γ∗(k, q). The proof makes use of Kneser’s lower bound for |A + B|.

Theorem 1. If A is the multiplicative subgroup of k-th powers in F∗q, |A| > 2 and
γ∗(A, q) exists, then γ∗(A, q) ≤ k + 1. When |A| = 2 (that is, q is an odd prime
and A = {±1}) then γ∗(A, q) = 2k.

For |A| > 2 it was established by Tietäväinen [20], for odd q, and by Winterhof
[22], [23, Lemma 1], for even q, that γ(A, q) ≤ [k/2] + 1. It is an open question
whether the same improvement holds for γ∗(A, q). For the case of prime fields
Heilbronn [17] formulated two conjectures, which in the more general setting of Fq

can be stated as follow:

1. If |A| > 2 then γ(A, q) '
√

k.

2. For any ε > 0 there exists a constant c(ε) such that if |A| > c(ε) then
γ(A, q) 'ε kε.

The second conjecture was proven by Konyagin [18] for prime fields. Cipra,
Cochrane and Pinner [8] established the first conjecture for prime fields, and the
explicit bound γ(A, p) ≤ 83

√
k was obtained in [9]. Cipra [6, Theorem 4] proved

the first conjecture for the general finite field Fq, obtaining

γ(A, q) ≤
{

16
√

k + 1, for q = p2.
10
√

k + 1, for q = pf , f ≥ 3,
(3)

whenever γ(A, q) is defined.
Next, let A′ = A∩Fp, so that |A′| = (|A|, p− 1). Cipra [6], sharpening the work

of Winterhof [22], established the bound

γ(k, q) ≤ 8f
⌈

(k + 1)1/f − 1
|A′|

⌉
, (4)
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whenever γ(k, q) exists. He also established the bound

γ(k, q) ' fk
log 4

f log |A′| log log(k), (5)

which resolved the second Heilbronn conjecture provided |A′|f is sufficiently large.
For prime fields Glibichuk and Konyagin [15] used methods of additive combina-

torics to obtain
γ∗(A, p) ≤ 400 k

log 4
log |A| , (6)

for any multiplicative subgroup A with |A| > 1. Cochrane and Pinner [9, Corollary
7.1] obtained a similar bound for q = p, and Glibichuk [13] established the same
type of bound for q = p2. The main result of this paper is a generalization of (6)
to arbitrary Fq, thus resolving the second Heilbronn conjecture for any finite field.

Theorem 2. If A is a multiplicative subgroup of F∗q for which γ∗(A, q) is defined
and |A| > 1, then with k = (q − 1)/|A|, we have

γ∗(A, q) ≤ 633(2k)
log 4

log |A| .

After submitting this work, the author’s learned that Glibichuk [14, Corollary 1]
recently proved a similar result, albeit with weaker constants. In particular, if |A| =
pε, then our result gives γ∗(A, q) ' 41/ε, whereas his result gives γ∗(A, q) ' 61/ε.

For δ∗(A, q) we establish the stronger bound,

Theorem 3. If A is a multiplicative subgroup of F∗q for which δ∗(A, q) is defined
and |A| > 1, then with k = (q − 1)/|A|, we have

δ∗(A, q) ≤ (40/3)k
log 4

log |A| .

As noted in Theorem 9, if q is even or |A| is even then γ∗(A, q) = δ∗(A, q) and
thus the stronger bound in Theorem 3 applies to γ∗(A, q) as well. Further relations
between δ(A, q) and γ(A, q) are given in Theorem 9. The exponent on k in the
theorem improves on (5) when |A| > (|A|, p − 1)f and on (4) when |A| > 4f . For
small |A| (|A| = O(1) as p →∞) one can obtain a stronger result by employing the
lattice method of Bovey. In this manner we prove,

Theorem 4. For any positive integer t there is a constant c1(t) such that if A is a
multiplicative subgroup of F∗q with |A| = t, and such that γ(A, q) is defined, then

γ(A, q) ≤ c1(t)k1/φ(t).

The constant c1(t), estimated in [4] for prime fields, depends on the size of the
coefficients of the cyclotomic polynomial of order t.

Corollary 5. For any positive integer l there is a constant c(l) such that if A is a
multiplicative subgroup of F∗q of order t such that φ(t) ≥ l and γ(A, q) exists, then
γ(A, q) ≤ c(l)k1/l.
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Proof. Suppose that φ(t) ≥ l. Put c = maxt≤4l c1(t), c(l) = max{c, 21/l633}, with
c1(t) as defined in Theorem 4. If t > 4l then, by Theorem 2, γ(k, q) ≤ 633·21/lk1/l ≤
c(l)k1/l. If t ≤ 4l then, by Theorem 4, γ(k, q) ≤ ck1/φ(t) ≤ c(l)k1/l. !

2. Preliminary Lemmas

The first lemma gives equivalent conditions for the existence of γ(k, q). It is well-
known, and follows from the fact that the set of all sums of k-th powers is a mul-
tiplicatively closed set and therefore a subfield of Fq; see Tornheim [21, Lemma 1],
or Bhaskaran [1].

Lemma 6. Let A be the set of nonzero k-th powers in Fq. The following are
equivalent.

(i) γ(k, q) exists, that is, every element of Fq is a sum of k-th powers.

(ii) A is not contained in any proper subfield of Fq; that is, A contains a set of f
linearly independent points over Fp.

(iii) |A| does not divide pj − 1 for any j|f , j < f , that is, pf−1
pj−1 does not divide k

for any j|f , j < f .

It is also not hard to show that γ∗(A, q) exists if and only if |A| > 1 and γ(A, q)
exists.

An important tool needed throughout this paper is Rusza’s triangle inequality
(see, e.g., Nathanson [19, Lemma 7.4]),

|S + T | ≥ |S|1/2|T − T |1/2, (7)

for any S, T ⊆ Fq, and its corollary

|nS| ≥ |S|
1

2n−1 |S − S|1−
1

2n−1 ≥ |S − S|1− 1
2n , (8)

for any positive integer n. The first inequality in (8) follows by induction on n, and
the second from the trivial bound |S − S| ≤ |S|2.

The following is a key lemma for showing that a sum-product set fills up Fq.

Lemma 7. Let A, B be subsets of Fq and m ≥ 3 be a positive integer.

(a) If |B||A|1− 2
m > q

(
1− |B|

q

)2/m
then mAB = Fq.

(b) If |B||A| ≥ 2q then 8AB = Fq.

(c) If |B||A| > q and either A or B is symmetric (A = −A) or antisymmetric
(A ∩ −A = ∅) then 8AB = Fq.
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A slightly weaker form of part (a) was proven by Bourgain [2, Lemma 1] for q = p
and m = 3 and by Cochrane and Pinner [9, Lemma 2.1] for q = p and general m. A
similar proof works for Fq and is provided in Section 7. In the earlier versions of this

statement, an extra hypothesis, 0 $∈ A, was included, and the factor
(
1− |B|

q

)2/m

was excluded.
Part (b) is due to Glibichuk and Konyagin [15, Lemma 2.1] for prime fields and

to Glibichuk and Rudnev [16] for general Fq. Part (c) is due to Glibichuk [12] for
prime fields and to Glibichuk and Rudnev [16] as well as Cipra [7] for general Fq.
In particular, if A is a multiplicative subgroup, then applying (c) with B = A we
see that γ∗(A, q) ≤ 8 provided that |A| >

√
q.

In the cases where |A| = 3, 4 or 6 one can actually evaluate γ(A, q). This was
done in [8] for the case of prime moduli.

Theorem 8. Let A is a multiplicative subgroup of Fq of order 3,4 or 6 for which
γ(A, q) exists. Then q = p or p2. If q = p2 then γ(A, q) = p− 1. If q = p then

γ(A, p) =






a + b− 1, if |A| = 3,
c− 1, if |A| = 4,⌊

2
3a + 1

3b
⌋
, if |A| = 6

where, if |A| = 3 or 6, then a, b are the unique positive integers with a > b and
a2 +b2 +ab = p, while if |A| = 4 then c, d are the unique positive integers with c > d
and c2 + d2 = p.

In particular, for |A| = 3, 4 or 6 we have
√

3k + 1− 1 ≤γ(A, q) ≤ 2
√

k, if |A| = 3,
√

2k − 1 ≤γ(A, q) ≤ 2
√

k − 1, if |A| = 4,
√

2k − 1
2 ≤γ(A, q) ≤ 2

3

√
6k, if |A| = 6.

Proof. Since |A| = 3, 4 or 6, every element of A is of degree 1 or 2 over Fp and
therefore A ⊂ Fp2 . Thus, in order for γ(k, q) to exist we must have q = p or p2.
The case q = p is just Theorem 2 of [8] and the case q = 22 is trivial, so we shall
assume q = p2 with p an odd prime and that A is not contained in Fp.

Case i: |A| = 3. Say A = {1, T, T 2} where T ∈ Fp2 −Fp satisfies T 2 + T + 1 = 0.
In particular, p ≡ 2 (mod 3). We claim that γ(A, q) = p − 1 and consequently,
since 3k = p2 − 1, γ(k, q) =

√
3k + 1− 1. Let w = x + yT denote a typical element

of Fq where 0 ≤ x, y ≤ p− 1 and let γ(w) denote the minimal number of elements
of A required to represent w. First note that γ(0) = 3 since 1 + T + T 2 = 0
so we assume that w $= 0. Suppose that x ≤ y. If x + y < p then trivially
γ(w) < p. If x ≤ y < 2x then we write w = (y − x)T + (p − x)T 2 and get
γ(w) ≤ p+y−2x < p. If y ≥ 2x and y > 2

3p then we write w = (x−y+p)·1+(p−y)T 2
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and get γ(w) ≤ (x − 2y + 2p) ≤ 2p − 3
2y < p. If y ≥ 2x and y < 2

3p, then
x + y ≤ 3

2y < p. A similar argument holds for x ≥ y. Finally, one can check that
γ(1

3 (p + 1) + 2
3 (p + 1)T ) = p− 1.

Case ii: |A| = 4. Say A = {±1,±T}, with T 2 = −1, T ∈ Fp2 −Fp. In particular,
p ≡ 3 (mod 4). Any element of Fq may be written x+yT with |x|, |y| ≤ p−1

2 , and so
γ(A, q) ≤ p−1. Also, it is plain that γ(p−1

2 + p−1
2 T ) = p−1. Thus, γ(A, q) = p−1.

Case iii: |A| = 6. Say A = {±1,±T,±T 2} with T 2 − T + 1 = 0. As in case ii,
any element of Fq may be written x+yT with |x|, |y| ≤ p−1

2 , and so γ(A, q) ≤ p−1.
Also, with just a little work one again sees that γ(p−1

2 + p−1
2 T ) = p − 1. Thus,

γ(A, q) = p− 1. !

The precise relationship between γ(k, q) and δ(k, q) is an important unresolved
problem. It is not known whether γ(k, q) ≤ Cδ(k, q) for some constant C. Bovey [4,
Lemma 2] established γ(k, p) ≤ (log2 p + 1)δ(k, p) for prime moduli, and improve-
ments were given in [8]. Here we prove the analogue of [8, Theorem 4.1] for general
finite fields.

Theorem 9. Let A be the set of nonzero k-th powers in Fq with k|(q − 1), such
that γ(k, q) is defined. Then,

(a) γ(k, q) ≤ 3
⌈
log2

(
3 log q
log |A|

)⌉
δ(k, q).

(b) γ(k, q) ≤ 3 0log2(4δ(k, q))1 δ(k, q)

(c) γ(k, q) ≤ 2 0log2(log2(q))1 δ(k, q).

(d) γ(k, q) ≤ (pmin − 1)δ(k, q), where pmin is the minimal prime divisor of |A|.

(e) If q is even or |A| is even then δ(k, q) = γ(k, q). If |A| is odd and p is odd,
then δ(k, q) = γ(k

2 , q).

Proof. a) Put A0 = A∪ {0}, δ = δ(k, q). Since δA0− δA0 = Fq we obtain from (8),
(observing that this inequality is strict for |S| > 1),

|jδA0| > |δA0 − δA0|1−1/2j

= q1−1/2j

, (9)

for any positive integer j. Hence if j ≥ log2

(
3 log q
log |A|

)
we have |jδA0||A| 13 ≥ q, and

so by Lemma 7 (a) with m = 3, 3(jδA0)A = Fq, that is, 3jδA0 = Fq.
b) This follows from part (a) and the trivial bound (2|A|+1)δ ≥ q, when |A| ≥ 11.

Indeed, in this case,
log q

log |A| ≤ δ
log(2|A| + 1)

log |A| <
4
3
δ.

For |A| < 11, the result follow from part (d) of this theorem, since pmin ≤ 7 for
such |A|.
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c) We repeat the proof given by Cipra [6]. If j ≥ log2(log2(q)) then q1/2j ≤ 2
and so by (9), |jδA| > q/2. Thus, 2jδA = Fq. (Here we have used the fact that if
S is a subset of a finite group G with |S| > |G|/2 then S + S = G.)

d) Let % be the minimal prime divisor of |A|. Then A has a subgroup G of order
% and

∑
x∈G x = 0 so that −1 is a sum of %− 1 elements of A.

e) If q is even then 1 = −1, and so trivially δ(k, q) = γ(k, q). If |A| is even then
−1 is a k-th power, and so again γ(k, q) = δ(k, q). If |A| is odd then k must be even
(for p $= 2) and A ∪ (−A) is the set of k/2-th powers. !

3. Proof of Theorem 1

Let k|(q − 1), A be the set of nonzero k-th powers in Fq and A0 = A ∪ {0}.
Before addressing Theorem 1, which is concerned with representing elements as
sums of nonzero k-th powers, we start by reviewing the proof of Cauchy’s theorem,
γ(k, q) ≤ k, which allows for some terms to be zero. For any positive integer n,

nA0 = {0} ∪Ax1 · · · ∪Axl,

for some distinct cosets Axi of A, 1 ≤ i ≤ l. If nA0 $= Fq then (n+1)A0 contains nA0

and, assuming that γ(k, q) exists, must be strictly larger. Therefore, |(n + 1)A0| ≥
|nA0| + |A|. By induction we get a Cauchy-Davenport type inequality,

|nA0| ≥ min{q, 1 + n|A|}, (10)

for n ≥ 1, and in view of the equality k|A| = q−1, deduce that γ(k, q) ≤ k whenever
γ(k, q) exists. To estimate γ∗(k, q) we have to work a little harder since (n + 1)A
doesn’t contain nA in general, so it is not immediate that it has larger cardinality.
However, we are able to recover the following analogue of (10), and Theorem 1 is
an immediate consequence.

Lemma 10. If A is a multiplicative subgroup of F∗q containing f linearly inde-
pendent points over Fp and |A| > 2, then for any positive integer n, |nA| ≥
min{q, n|A|}.

Proof. Let A be a multiplicative subgroup of Fq containing f linearly independent
points over Fp. We first show that if B is any subset of Fq such that AB ⊂ B
then either A + B = Fq or |A + B| ≥ |A| + |B| − 1. This follows from Kneser’s
inequality (see [19, Theorem 4.1]): |A + B| ≥ |A| + |B| − |stab(A + B)|, where
stab(A + B) = {x ∈ Fq : A + B + x = A + B}, an additive subgroup of Fq, that
is, an Fp subspace of Fq. We need only establish that if stab(A + B) $= {0} then
A+B = Fq. Suppose x is a nonzero element of stab(A+B). Then A+B+x = A+B.
Since AB ⊂ B and AA = A we get A+B+Ax ⊂ A+B. Thus Ax ⊂ stab(A+B), but
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Ax contains f linearly independent points over Fp. Thus stab(A+B) is of dimension
f over Fp, and so stab(A + B) = Fq. Plainly, we must also have A + B = Fq since
for any point c ∈ A + B, c + stab(A + B) ⊂ A + B.

Now let n be any positive integer and B = nA. Then AB ⊂ B and so either
(n+1)A = Fq or |(n+1)A| ≥ |nA|+ |A|−1. The proof now follows by induction on
n. Suppose |nA| ≥ n|A| for a given n and that (n + 1)A $= Fq. Then |(n + 1)A| ≥
(n + 1)|A|− 1, but (n + 1)A is a union of cosets of A together (possibly) with 0. If
|A| > 2, this forces (n + 1)A to be a union of at least (n + 1) cosets of A together
(possibly) with 0. Thus |(n + 1)A| ≥ (n + 1)|A|. !

When |A| = 2; that is, q = p and A = {±1}, then |nA| = n + 1 for n < p. Thus
γ∗(A, q) = p− 1 = 2k.

4. Estimating δ∗(A, q) and Proof of Theorem 3

Following the method of Glibichuk and Konyagin [15], for any subsets X,Y of Fq

let
X −X

Y − Y
=

{
x1 − x2

y1 − y2
: x1, x2 ∈ X, y1, y2 ∈ Y, y1 $= y2

}
.

The key lemma is a generalization of a lemma of Glibichuk and Konyagin [15,
Lemma 3.2] to finite fields.

Lemma 11. Let q = pf , X,Y ⊆ Fq and a1, a2, . . . , af ∈ Fq be a set of f linearly
independent points over Fp. If X−X

Y−Y $= Fq then for some ai we have

|2XY − 2XY + aiY
2 − aiY

2| ≥ |X||Y |.

Proof. Let S = X−X
Y−Y . Assume S $= Fq and that a1, . . . , af are linearly independent

values in Fq. We claim that for some ai, S +ai $⊆ S, for otherwise S +k1a1 +k2a2 +
· · · + kfaf ⊆ S for all nonnegative integers k1, . . . , kf , implying that S = Fq. Say
x1−x2
y1−y2

+ ai /∈ S, for some x1, x2 ∈ X, y1, y2 ∈ Y . Then the mapping from X × Y

into 2XY − 2XY + aiY 2 − aiY 2 given by

(x, y) → (y1 − y2)x + (x1 − x2 + aiy1 − aiy2)y,

is one-to-one and the lemma follows. !

Applying the lemma to a multiplicative subgroup A of F∗q containing a set
a1, . . . , af of linearly independent points, we immediately obtain,

Lemma 12. Let A be a multiplicative subgroup of F∗q containing f linearly indepen-
dent points over Fp and X be any subset of Fq such that AX ⊆ X and X−X

A−A $= Fq.
Then

|2X − 2X + A−A| ≥ |X||A|.
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We also need the following elementary result.

Lemma 13. Let A be a multiplicative subgroup of F∗q and X,Y be subsets of Fq

such that AX ⊆ X, AY ⊆ Y . If |X −X||Y − Y | ≤ q|A| then X−X
Y−Y $= Fq.

Proof. If c = (x1 − x2)/(y1 − y2) for some x1, x2 ∈ X, y1 $= y2 ∈ Y , then c =
(ax1 − ax2)/(ay1 − ay2) for any a ∈ A. Thus

∣∣∣∣
X −X

Y − Y

∣∣∣∣ ≤
|X −X|(|Y − Y |− 1)

|A| .

Since the right-hand side is less than q by assumption, the result follow. !

For l ∈ N, let n1 = 1 and nl = 5
244l − 1

3 , for l ≥ 2, so that n2 = 3, n3 = 13,
n4 = 53, n5 = 213 and

nl+1 = 4nl + 1, for l ≥ 2. (11)

Put A1 = A and, for l ≥ 2, Al = (nlA− nlA) so that, for l ≥ 2,

2Al−1 − 2Al−1 + A−A = Al. (12)

Lemma 14. Let A be a multiplicative subgroup of F∗q containing f linearly inde-
pendent points over Fp. Then for l ≥ 1,

(a) If |Al−1 −Al−1||A−A| < q|A| then |Al| ≥ |A|l.

(b) In all cases, |Al| ≥ min{|A|l, q/|A|}.

One can compare the above result with Lemma 5.2 of [15] where it is shown for Fp

that |Al| ≥ 3
8 min{|A|l, p−1

2 }.

Proof. The proof of (a) is by induction on l, the statement being trivial for l = 1.
For l > 1, put X = Al−1, Y = A. If |Al−1 − Al−1||A − A| < q|A| then by
Lemma 13, X−X

Y−Y $= Fq. Also, by (12) we have 2X − 2X + A − A = Al. Thus by
Lemma 12, |Al| ≥ |Al−1||A| and so by the induction assumption, |Al| ≥ |A|l. If
|Al−1 − Al−1||A − A| ≥ q|A| then since |A − A| ≤ |A|2 we have |Al−1 − Al−1| ≥
q/|A|. Since |Al| = |nlA − nlA| ≥ |2nl−1A − 2nl−1A| = |Al−1 − Al−1|, we obtain
|Al| ≥ |Al−1 −Al−1| ≥ q|A|/|A−A| ≥ q/|A|. !

Lemma 15. Let A be a multiplicative subgroup of F∗q containing f linearly inde-
pendent points over Fp. Set l = 3log(q − 1)/ log |A|4. Then δ∗(A, q) ≤ 16nl.

Proof. For such l we have l + 1 > log(q − 1)/ log |A| and so |A|l+1 ≥ q. Thus, by
Lemma 14 (b), |Al||A| ≥ min{|A|l+1, q} = q. Since (|A|, q) = 1 we must in fact have
|Al||A| > q. Since A is symmetric (−1 ∈ A) or antisymmetric (−1 /∈ A), it follows
from Lemma 7 (c) that 8AlA = Fq, that is, 8nlA− 8nlA = Fq. !
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Proof of Theorem 3. With l as in Lemma 15 we have using k|A| = (q − 1),

l =
⌊

log(q − 1)
log |A|

⌋
≤ 1 +

log k

log |A| .

Thus by Lemma 15, δ∗(A, q) ≤ 16nl ≤ 16 5
244l ≤ 40

3 4log k/ log |A|, thereby finishing
the proof. !

5. Estimating γ∗(A, q) and Proof of Theorem 2

Let A be a multiplicative subgroup of F∗q containing f linearly independent points.
We start by obtaining growth estimates for |nA|. If |A| = 1 then q = p and |nA| = 1
for any n. If |A| = 2 then q = p, A = ±1 and |nA| = min{p, n + 1}. Next we note
that

|4A| ≥
{
|A|3/2 if |A−A|2 < q|A|,
q1/2|A|3/8, otherwise.

(13)

Indeed, by (7) and Lemma 14 (a) we have

|4A| ≥ |A|1/2|3A− 3A|1/2 = |A|1/2|A2|1/2 ≥ |A|3/2, if |A−A|2 < q|A|.

Otherwise, |A − A| ≥ (q|A|)1/2. In particular, |A|2 > (q|A|)1/2, and so |A| ≥ q1/3.
Thus, by (8), |4A| ≥ |A−A|15/16 ≥ (q|A|)15/32 ≥ q15/32|A|3/32|A|12/32 ≥ q1/2|A|3/8.

For l ∈ N set
ml =

5
18

4l − l

3
+

2
9
,

so that m1 = 1, m2 = 4, m3 = 17, m4 = 70, m5 = 283 and ml = ml−1 + nl for
l ≥ 2, with nl as defined in the previous section.

Lemma 16. Let A be a multiplicative subgroup of F∗q containing f linearly inde-
pendent points over Fp. Then for l ≥ 1 we have

|mlA| ≥






|A|l−1+ 1
2l−1 , if l = 1, or l ≥ 2 and |Al−1 −Al−1||A−A| < q|A|,

max
{(

|A|
|A−A|

)3/4
q3/4, |A|1/4q1/2

}
, otherwise.

(14)

Proof. The result is trivial when l = 1. Assume that the theorem holds for l − 1
with l ≥ 2. Suppose that |Al−1 − Al−1||A − A| < q|A|. In particular, if l ≥ 3
then |Al−2 −Al−2||A−A| < q|A|. Then using ml = nl + ml−1, inequality (7), the
induction assumption and Lemma 14, we have

|mlA| ≥ |ml−1A|1/2|nlA− nlA|1/2 ≥ |A|(l−2+ 1
2l−2 ) 1

2 |A|l/2 = |A|l−1+ 1
2l−1 .
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Suppose next that
|Al−1 −Al−1||A−A| ≥ q|A|. (15)

Then, since ml > nl > 4nl−1, we have by inequality (8) that

|mlA| ≥ |2(2nl−1A)| ≥ |2nl−1A− 2nl−1A|3/4 = |Al−1 −Al−1|3/4 ≥
(

q|A|
|A−A|

)3/4

.

To prove the second inequality, |mlA| ≥ |A|1/4q1/2, under the assumption of (15),
more work is required. A stronger result was established (13) for l = 2, so we assume
l ≥ 3. First observe that by Lemma 12, with X = A−A, if |2A−2A||A−A| < q|A|,
(so that by Lemma 13, (X −X)/(A−A) $= Fq), then

|5A− 5A| = |2(A−A)A− 2(A−A)A + A−A| ≥ |A−A||A|,

and so by (15),

|5A−5A||2nl−1A−2nl−1A|= |5A−5A||Al−1−Al−1|≥ |A−A||A||Al−1−Al−1| ≥ q|A|2.

Since 2nl−1 > 5 for l ≥ 3, it follows that

|2nl−1A− 2nl−1A| > |5A− 5A|1/2|2nl−1A− 2nl−1A|1/2 ≥ q1/2|A|. (16)

Also, since for any set B, |B −B| ≤ |B|2, using (15),

|2nl−1A|2|A|2 ≥ |2nl−1A− 2nl−1A||A−A| = |Al−1 −Al−1||A−A| ≥ q|A|,

and so
|2nl−1A|2|A| ≥ q. (17)

Thus since ml > nl > 4nl−1 we obtain from (7), (16) and (17),

|mlA| ≥ |4nl−1A| ≥ |2nl−1A|1/2|2nl−1A− 2nl−1A|1/2 ≥ |2nl−1A|1/2q1/4|A|1/2

= (|2nl−1A|1/2|A|1/4)q1/4|A|1/4 ≥ q1/4q1/4|A|1/4 = q1/2|A|1/4.

There remains the case |2A − 2A||A − A| ≥ q|A|. In this case |2A − 2A| ≥
q1/2|A|1/2 and |2A|2|A| ≥ q. The latter implies |2A| ≥ (q/|A|)1/2. Thus, by (7),

|4A| ≥ |2A|1/2|2A− 2A|1/2 ≥ q1/4|A|−1/4q1/4|A|1/4 = q1/2,

and
|mlA| ≥ |6A| ≥ |4A|1/2|2A− 2A|1/2 ≥ q1/4q1/4|A|1/4 = q1/2|A|1/4,

which finishes the proof. !

Lemma 17. Let A be a multiplicative subgroup of F∗q containing f linearly inde-
pendent points over Fp. Then for l ≥ 1 we have

|mlA| ≥ min
{
|A|l−1+ 1

2l−1 ,
√

2q
}

. (18)
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Proof. If l = 1 or |A| = 1 the statement is trivial. For |A| = 2,

|mlA| ≥ min{ml + 1, q} = min{ 5
18

4l − l

3
+

11
9

, q} ≥ min{2l,
√

2q}.

For |A| ≥ 4 the result follows from Lemma 16, since q1/2|A|1/4 ≥
√

2q in this case.
For |A| = 3 and l = 2 the result follows from (13) in a similar manner. Suppose that
|A| = 3 and l ≥ 3. Then A = {1,α,α2} = {1,α,−1−α}, where α is a primitive cube
root of 1, and A−A = {0,±(1−α),±(2+α),±(2α+1)}, whence |A−A| = 7. Then,
by Lemma 16, |mlA| ≥ q3/4|A|3/4|A−A|−3/4 ≥ (3/7)3/4q3/4 ≥

√
2q, provided that

q ≥ 4(7/3)3 = 50.8.., and so the result follows from Lemma 16 when q ≥ 51. We
are left with testing the prime powers less than 50. If q is a prime then we can use
the Cauchy-Davenport inequality to get |mkA| ≥ |17A| ≥ min{q, 35} ≥

√
2q. The

prime powers remaining with 3|q − 1 are 4,16,25,49. We can’t have q = 16 or 49
since 3|(22 − 1) and 3|(7− 1), implying that A does not contain a set of f linearly
independent points. For q = 4, A = F∗4, 2A = F4 and trivially |2A| ≥

√
2q. For

q = 25 one can check that |3A| = 10 ≥
√

50. !

Applying Lemma 7 (b) with A = B = mlA we immediately obtain,

Lemma 18. Let A be a multiplicative subgroup of F∗q containing f linearly inde-

pendent points over Fp. If |A| ≥ (2q)
1
2 (l−1+ 1

2l−1 )−1

, then 8m2
l A = Fq.

In particular,

8A = Fq for |A| > q1/2,

128A = Fq for |A| > 1.26 q1/3,

2312A = Fq for |A| > 1.17 q2/9,

39200A = Fq for |A| > 1.12 q4/25,

640712A = Fq for |A| > 1.09 q8/65.

In comparison, for Fp Cochrane and Pinner [9] obtained

8A = Fp for |A| > p1/2,

32A = Fp for |A| > 3.91 p1/3,

392A = Fp for |A| > 2.78 p1/4,

2888A = Fp for |A| > 3.19 p1/5,

12800A = Fp for |A| > 2.28 p1/6,

56448A = Fp for |A| > 2.43 p1/7,

228488A = Fp for |A| > 1.91 p1/8.
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We cannot do quite as well for Fq because we do not have a lower bound on |2A|.
For Fp it was shown in [9, Theorem 5.2] that |2A| ≥ min{1

4 |A|3/2, p
2}. We do not

know if such a bound holds in Fq.

Proof of Theorem 2. An integer l satisfies the hypothesis of Lemma 18 provided
that

l +
1

2l−1
≥ log 2q

2 log |A| + 1. (19)

We claim that the value
l =

⌈
log(2(q − 1))

2 log |A| + 1
⌉

,

suffices. To see this, first observe that for this choice of l, l < log2(4(q − 1)), that
is, q − 1 > 2l−2, and so using the inequality

log(2q)− log(2(q − 1)) = log(q/(q − 1)) <
q

q − 1
− 1 =

1
q − 1

,

we have
log(2q)
2 log |A| −

log(2(q − 1))
2 log |A| <

1
2(q − 1) log |A| <

1
2l−1 log |A| <

1
2l−1

.

Thus (19) is satisfied, and so by Lemma 18, γ∗(A, q) ≤ 8m2
l . Since ml ≤ 5

184l, we
have

γ∗(A, q) ≤ 8(5/18)2420 log 2(q−1)
2 log |A| +11 < 158.03 · 4

log 2(q−1)
log |A| = 158.03(2(q − 1))log 4/ log |A|

= 158.03(2|A|k)
log 4

log |A| ≤ 633(2k)
log 4

log |A| ,

completing the proof of Theorem 2. !

We cannot do quite as well for Fq as for Fp because we do not have a good
lower bound on |2A|. For Fp we were able to use the bound [9, Theorem 5.2],
|2A| ≥ min{1

4 |A|3/2, p
2}. We do not know if such a bound holds in Fq.

6. Proof of Theorem 4

For small |A| we use the method of Bovey [4] to bound δ(A, q) and γ(A, q). We
start by generalizing [4, Lemma 3]. For any n-tuple u = (u1, . . . , un) ∈ Rn let
‖u‖1 =

∑n
i=1 |ui|.

Lemma 19. Let Fq be any finite field and u1, u2, . . . , un ∈ Fq. Let T : Zn → Fq

be the linear function T (x1, . . . , xn) =
∑n

i=1 xiui. Suppose that v1, . . . , vn ∈ Zn

are linearly independent vectors over R with T (vi) = 0, 1 ≤ i ≤ n. Then for
any value a in the range of T there exists a vector u ∈ Zn with T (u) = a and
‖u‖1 ≤ 1

2

∑n
i=1 ‖vi‖1.
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Proof. Let w ∈ Zn with T (w) = a. Write w =
∑n

i=1 yivi for some yi ∈ R, 1 ≤ i ≤ n.
Say yi = xi + εi for some xi ∈ Z and εi ∈ R with |εi| ≤ 1/2, 1 ≤ i ≤ n. Put u =∑n

i=1 εivi = w −
∑n

i=1 xivi. Then u ∈ Zn, T (u) = a and ‖u‖1 ≤ 1
2

∑n
i=1 ‖vi‖1. !

Proof of Theorem 4. By Theorem 9 (d), γ(k, q) ≤ (t− 1)δ(k, q), where t = |A|, and
so it suffices to prove the statement of Theorem 4 for δ(k, q). Put r = φ(t). Let
R be a primitive t-th root of unity in Fq, Φt(x) be the t-th cyclotomic polynomial
over Q of degree r and ω be a primitive t-th root of unity over Q. In particular,
Φt(R) = 0 and the set of nonzero k-th powers in Fq is just {1, R,R2, . . . , Rt−1}.
Let f : Zr → Z[ω] be given by

f(x1, x2, . . . , xr) = x1 + x2ω + · · · + xrω
r−1.

Then f is a one-to-one Z-module homomorphism.
Let T : Zr → Fq be the linear map T (x1, . . . , xr) =

∑r
i=1 xiRi−1 and L be

the lattice of points satisfying T (x1, . . . , xr) = 0. Since the set of k-th powers
1, R, . . . , Rr−1 spans all of Fq we have V ol(L) = q. Thus by Minkowski’s funda-
mental theorem there is a nonzero vector v1 = (a1, a2, . . . , ar) in L with |ai| ≤ q1/r,
1 ≤ i ≤ r. For 2 ≤ i ≤ r set vi = f−1(ωi−1f(v1)). Then v1, . . . , vr form a set of
linearly independent points in L and so, by Lemma 19, for any a ∈ Fq there is an
r-tuple of integers u = (u1, . . . , ur) such that

u1 + u2R + u3R
2 + · · · + urR

r−1 = a,

and
∑r

i=1 |ui| ≤ 1
2

∑r
i=1 ‖vi‖1. Thus δ(k, q) ≤ 1

2

∑r
i=1 ‖vi‖1. Now plainly ‖vi‖1 't

q1/r, (indeed, as shown in [4], ‖vi‖1 ≤ r(A(t) + 1)rpn/r, where A(t) is the maximal
absolute value of the coefficients of Φt(x)). Thus δ(k, q) 't q1/r. !

7. Proof of Lemma 7(a)

Let m ≥ 3 be a positive integer, A,B ⊆ Fq, A′ = A − {0}, a ∈ Fq and N denote
the number of 2m-tuples (x1, . . . , xm, y1, . . . ym) with x1, x2 ∈ A′, x3, . . . , xm ∈ A,
yi ∈ B, 1 ≤ i ≤ m, and x1y1 + · · ·+xmym = a. Let ψ denote the additive character
on Fq, ψ(z) = e2πiTr(z)/p. Then

qN = |A′|2|A|m−2|B|m +
∑

λ&=0

∑

x1,x2∈A′

∑

x3,..,xm∈A

∑

yi∈B

ψ(λ(x1y1 + · · · + xmym − a))

= |A′|2|A|m−2|B|m + Error, (20)

with

Error =
∑

λ&=0

ψ(−λa)




∑

x∈A

∑

y∈B

ψ(λxy)




m−2 


∑

x∈A′

∑

y∈B

ψ(λxy)




2

.
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Now, by the Cauchy-Schwarz inequality,
∣∣∣∣∣∣

∑

x∈A

∑

y∈B

ψ(λxy)

∣∣∣∣∣∣
≤

∑

y∈B

∣∣∣∣∣
∑

x∈A

ψ(λxy)

∣∣∣∣∣ ≤ |B|1/2




∑

y∈B

∣∣∣∣∣
∑

x∈A

ψ(λxy)

∣∣∣∣∣

2



1/2

≤ |B|1/2




∑

y∈Fq

∣∣∣∣∣
∑

x∈A

ψ(λxy)

∣∣∣∣∣

2



1/2

= |B|1/2(q|A|)1/2.

Also,

∑

λ∈Fq

∣∣∣∣∣∣

∑

x∈A′

∑

y∈B

ψ(λ(xy))

∣∣∣∣∣∣

2

=
∑

x1,x2∈A′

∑

y1,y2∈B

∑

λ∈Fq

ψ(λ(x1y1 − x2y2))

= q|{(x1, x2, y1, y2) : x1, x2 ∈ A′, y1, y2 ∈ B, x1y1 = x2y2}| ≤ q|A′|2|B|,

the latter following since 0 $∈ A′, so x1y1 = x2y2 can be written y1 = x−1
1 x2y2.

Thus,

|Error| ≤ |A|
m−2

2 |B|
m−2

2 q
m−2

2
∑

λ&=0

∣∣∣∣∣∣

∑

x∈A′

∑

y∈B

ψ(λ(xy))

∣∣∣∣∣∣

2

= |A|
m−2

2 |B|
m−2

2 q
m−2

2




∑

λ∈Fq

∣∣∣∣∣∣

∑

x∈A′

∑

y∈B

ψ(λ(xy))

∣∣∣∣∣∣

2

− |A′|2|B|2





≤ |A|
m−2

2 |B|
m−2

2 q
m−2

2
(
q|A′|2|B|− |A′|2|B|2

)

= |A|m
2 −1|A′|2|B|m

2 q
m
2

(
1− |B|

q

)
,

and we see that the main term in (20) exceeds the error term provided that

|A|m
2 −1|B|m

2 > q
m
2

(
1− |B|

q

)
.
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