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Abstract
Let A be the set of nonzero k-th powers in F, and v*(k, ¢) denote the minimal n such
that nA =F,. We use sum-product estimates for |[nA| and |nA —nA|, following the
method of Glibichuk and Konyagin to estimate v*(k, ¢). In particular, we obtain
v (k,q) < 633(2k)1°84/1oelAl for |A| > 1 provided that v*(k, q) exists.

1. Introduction

Let F, be a finite field in ¢ = p’ elements and k be a positive integer. The smallest
s such that the equation
af +a5+-+al=a (1)

is solvable for all a € Fy (should such an s exist) is called Waring’s number for F,
denoted v(k, ¢). Similarly, the smallest s such that

+ab + a2k £ 12k =g, (2)

is solvable for all a € F, is denoted §(k,p). If d = (k,q — 1) then clearly v(d,q) =
~v(k,q) and so we may assume k|(qg — 1). If A is the multiplicative subgroup of k-th
powers in F7 then we write

(A, q) =~(k, ), 6(A,q) =6(k, q).

Also, we let v*(4, q), 6*(A, ¢) denote the minimal s such that every element of F,
is the sum (£ sum ) of exactly s nonzero k-th powers, that is, (1), (2) resp. are
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solvable with all x; # 0. It is well-known that y(A4,q), 6(A4,q), v*(4,q), 6*(A4,q)
exist if and only if A contains a set of f linearly independent points over F,; see
Lemma 6.

For any subsets S, T of IF, and positive integer n, let

S+T={s+t:seS5,teT}, S—T={s—t:seS teT},

nS = S+S+---+S (n-times), ST ={st:se€S,teT}, S*"=S55---5 (n-times).

Note that (nS)T C n(ST). We let nST denote the latter, n(ST). Also, for any
a€F, welet aS = {as:s e S}

If A is a multiplicative subgroup of F; then v*(A, q) (if it exists) is the minimal
s such that sA = Fy, while y(A,¢) is the minimal s such that sAg = F,, where
Ap = AU{0}. Tt is well-known that v(k, q) < k with equality if k = ¢—1 or (¢—1)/2.
This was first observed by Cauchy [5] for the case ¢ = p. Our first result is the
analogue for v*(k, ¢). The proof makes use of Kneser’s lower bound for |A + B|.

Theorem 1. If A is the multiplicative subgroup of k-th powers in Fy, |A] > 2 and
v*(A,q) exists, then v*(A,q) < k+ 1. When |A| = 2 (that is, q is an odd prime
and A = {£1}) then v*(A, q) = 2k.

For |A| > 2 it was established by Tietévéinen [20], for odd ¢, and by Winterhof
[22], [23, Lemma 1], for even ¢, that v(A,q) < [k/2] + 1. It is an open question
whether the same improvement holds for v*(A,q). For the case of prime fields
Heilbronn [17] formulated two conjectures, which in the more general setting of F,
can be stated as follow:

1. If |A| > 2 then v(4, q) < Vk.

2. For any € > 0 there exists a constant c(e) such that if |A] > c(e) then
V(4 q) < k*.

The second conjecture was proven by Konyagin [18] for prime fields. Cipra,
Cochrane and Pinner [8] established the first conjecture for prime fields, and the
explicit bound v(A,p) < 83vk was obtained in [9]. Cipra [6, Theorem 4] proved
the first conjecture for the general finite field I, obtaining

16vVk +1, for q = p?.
7(4,9) < ;
10vk+1, forg=9p’, f >3,
whenever (4, q) is defined.

Next, let A’ = ANT,, so that |A’| = (JA],p—1). Cipra [6], sharpening the work
of Winterhof [22], established the bound

1§ _
v(k,q) <8f [%7@1 ,

3)

(4)
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whenever (k, ¢) exists. He also established the bound

v(k,q) < FETEAT loglog(k), (5)

which resolved the second Heilbronn conjecture provided |A’|f is sufficiently large.
For prime fields Glibichuk and Konyagin [15] used methods of additive combina-

torics to obtain -
v (A, p) <400 kTsTar (6)

for any multiplicative subgroup A with |A| > 1. Cochrane and Pinner [9, Corollary
7.1] obtained a similar bound for ¢ = p, and Glibichuk [13] established the same
type of bound for ¢ = p?>. The main result of this paper is a generalization of (6)
to arbitrary IFy, thus resolving the second Heilbronn conjecture for any finite field.

Theorem 2. If A is a multiplicative subgroup of ¥y for which v*(4,q) is defined
and |A] > 1, then with k = (¢ — 1)/|A|, we have

(A, q) < 633(2k)PeTAT.

After submitting this work, the author’s learned that Glibichuk [14, Corollary 1]

recently proved a similar result, albeit with weaker constants. In particular, if |A| =

p¢, then our result gives v*(4,q) < 41/¢ whereas his result gives 7*(4,q) < 61/
For §*(A, q) we establish the stronger bound,

Theorem 3. If A is a multiplicative subgroup of Fy for which 6* (4,q) is defined
and |A] > 1, then with k = (¢ — 1)/|A|, we have

5" (A, q) < (40/3)kTos AT,

As noted in Theorem 9, if ¢ is even or |A| is even then v*(4,q) = §*(4, q) and
thus the stronger bound in Theorem 3 applies to 7*(4, ¢) as well. Further relations
between §(A,q) and v(A,q) are given in Theorem 9. The exponent on k in the
theorem improves on (5) when |A| > (JA|,p — 1)/ and on (4) when |A| > 4f. For
small |A| (JA4] = O(1) as p — o0) one can obtain a stronger result by employing the
lattice method of Bovey. In this manner we prove,

Theorem 4. For any positive integer t there is a constant c1(t) such that if A is a
multiplicative subgroup of Fy with |A| =t, and such that v(A, q) is defined, then

(A, q) < er ()20,

The constant c¢;(t), estimated in [4] for prime fields, depends on the size of the
coefficients of the cyclotomic polynomial of order t.

Corollary 5. For any positive integer | there is a constant ¢(l) such that if A is a
multiplicative subgroup of F; of order t such that ¢(t) > 1 and (A, q) exists, then
(4, q) < (DKM
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Proof. Suppose that ¢(t) > I. Put ¢ = max,<y ¢1(t), c(l) = max{c,2"/!633}, with
c1(t) as defined in Theorem 4. If ¢ > 4! then, by Theorem 2, v(k, q) < 633-2'/1k1/! <
c(l)k'/!. If t < 4 then, by Theorem 4, y(k,q) < ck/*®) < c(1)k'/". O

2. Preliminary Lemmas

The first lemma gives equivalent conditions for the existence of y(k,q). It is well-
known, and follows from the fact that the set of all sums of k-th powers is a mul-
tiplicatively closed set and therefore a subfield of Fy; see Tornheim [21, Lemma 1],
or Bhaskaran [1].

Lemma 6. Let A be the set of nonzero k-th powers in F,. The following are
equivalent.

(i) v(k,q) exists, that is, every element of Fy is a sum of k-th powers.

(ii) A is not contained in any proper subfield of Fy; that is, A contains a set of f
linearly independent points over F,,.

(iii) |A| does not divide p’ — 1 for any j|f, j < f, that is, % does mot divide k
forany jlf, j <[
It is also not hard to show that v*(A, q) exists if and only if |A] > 1 and (A4, q)
exists.

An important tool needed throughout this paper is Rusza’s triangle inequality
(see, e.g., Nathanson [19, Lemma 7.4]),

IS+ 1| > |S|V2|T —T)"/2, (7)

for any S,T C F,, and its corollary

1 1

TS - S|'TET > |5 - 5| (8)

S| > ||z

for any positive integer n. The first inequality in (8) follows by induction on n, and
the second from the trivial bound |S — S| < |S]?.
The following is a key lemma for showing that a sum-product set fills up F,.

Lemma 7. Let A, B be subsets of Fy and m > 3 be a positive integer.

5 2/m
(a) If |B||A]} =™ >q(1—|%‘) then mAB =T,.

(b) If |B||A| > 2q then 8AB =F,.

(c) If |B||A| > q and either A or B is symmetric (A = —A) or antisymmetric
(AN—A=10) then 8AB =TF,.
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A slightly weaker form of part (a) was proven by Bourgain [2, Lemma 1] for ¢ = p
and m = 3 and by Cochrane and Pinner [9, Lemma 2.1] for ¢ = p and general m. A
similar proof works for F, and is provided in Section 7. In the earlier versions of this

statement, an extra hypothesis, 0 ¢ A, was included, and the factor (1 — %)Q/m
was excluded.

Part (b) is due to Glibichuk and Konyagin [15, Lemma 2.1] for prime fields and
to Glibichuk and Rudnev [16] for general F,. Part (c) is due to Glibichuk [12] for
prime fields and to Glibichuk and Rudnev [16] as well as Cipra [7] for general F,,.
In particular, if A is a multiplicative subgroup, then applying (c) with B = A we
see that v*(4,q) < 8 provided that |[A| > /q.

In the cases where |A| = 3,4 or 6 one can actually evaluate y(A4,¢q). This was
done in [8] for the case of prime moduli.

Theorem 8. Let A is a multiplicative subgroup of Fy of order 3,4 or 6 for which
v(A, q) exists. Then q =p or p?. If ¢ = p? then v(A,q) =p— 1. If ¢=p then

a+b—1, if |A] =3,
(A, p)={ec—1, if 1Al =4,
|2a+3b],  if|A|=6
where, if |A| = 3 or 6, then a,b are the unique positive integers with a > b and

a?+b%+ab = p, while if |A| = 4 then c,d are the unique positive integers with ¢ > d
and ¢ +d* = p.

In particular, for |A| = 3,4 or 6 we have

V3E+1-1<y(4A,q) <2Vk, if |A] =3,
V2k — 1 <v(A,q) < 2Vk — 1, if |A| = 4,
V2k — 1 <4(A,q) < 2V6k, if |A| = 6.
Proof. Since |A| = 3,4 or 6, every element of A is of degree 1 or 2 over F,, and

therefore A C F,2. Thus, in order for v(k, q) to exist we must have ¢ = p or p?.
The case ¢ = p is just Theorem 2 of [8] and the case ¢ = 22 is trivial, so we shall
assume ¢ = p? with p an odd prime and that A is not contained in F,,.

Case i: |A| = 3. Say A= {1,T,T?} where T € F,2 — F, satisfies 7> +T +1 = 0.
In particular, p = 2 (mod 3). We claim that y(4,q) = p — 1 and consequently,
since 3k = p?> — 1, v(k,q) = V3k + 1 — 1. Let w = x + yT denote a typical element
of F, where 0 < z,y < p — 1 and let y(w) denote the minimal number of elements
of A required to represent w. First note that v(0) = 3 since 1 + T + T2 = 0
so we assume that w # 0. Suppose that z < y. If z +y < p then trivially
y(w) < p. If x <y < 2z then we write w = (y — )T + (p — 2)T? and get
y(w) < pty—2z < p. Ify > 2z andy > %p then we write w = (z—y+p)-1+(p—y)T?



INTEGERS: 11 (2011) 6

and get y(w) < (# —2y+2p) < 2p— 3y < p. Ify > 2z and y < Zp, then
r+y < %y < p. A similar argument holds for « > y. Finally, one can check that
YEp+1)+2(p+1)T)=p—1.

Case ii: |A| =4. Say A = {£1,£T}, with T? = —1, T € F,> — F,,. In particular,
p =3 (mod 4). Any element of F, may be written z+yT" with |z|, |y| < %, and so
v(A,q) < p—1. Also, it is plain that ’y(pQ;l + pQ;lT) =p—1. Thus, y(4,9) =p—1.

Case iii: |A| = 6. Say A = {£1,+T,+T?} with T? = T +1 = 0. As in case ii,
any element of F, may be written z +y7 with |z|, |y| < p—;l, and so y(4,q) <p-—1.
Also, with just a little work one again sees that 7(% + %T) = p — 1. Thus,
V(A q)=p—1 u|

The precise relationship between v(k, q) and 0(k,q) is an important unresolved
problem. It is not known whether v(k, ¢) < Cd(k, q) for some constant C. Bovey [4,
Lemma 2] established v(k, p) < (log, p + 1)d(k, p) for prime moduli, and improve-

ments were given in [8]. Here we prove the analogue of [8, Theorem 4.1] for general
finite fields.

Theorem 9. Let A be the set of nonzero k-th powers in Fy with k|(q — 1), such
that v(k,q) is defined. Then,

(a) y(k.q) <3 [Ing (%ﬁﬁﬂ 5(k, q)-
V(k, q) < 3 [logy(46(k, q))] 6(k, q)
v(k, q) < 2[logy(logy(q))] (K, q).
v

(k,q) < (Pmin — 1)0(k,q), where ppn is the minimal prime divisor of |A|.

(b)

(c)

(d)

(c) If g is cven or |A| is even then (k. q) = v(k,q). If || is odd and p is odd,
then 6(k,q) = (%, q)-

Proof. a) Put Ag = AU{0}, 6 = d(k,q). Since 604g — Ay =, we obtain from (8),
(observing that this inequality is strict for |S| > 1),

76 A0] > [6Ag — 6Ag|" 1% = ¢t = 1% 9)

for any positive integer j. Hence if j > log, (%) we have [j0A4o]|A|5 > ¢, and
so by Lemma 7 (a) with m = 3, 3(jdA¢)A =T, that is, 3j04o =T
b) This follows from part (a) and the trivial bound (2|A|+1)° > ¢, when |A| > 11.
Indeed, in this case,
log g < 6log(2|A\ +1)
log|A[ = log|A|
For |A| < 11, the result follow from part (d) of this theorem, since ppin, < 7 for
such |A].

4
25
<3
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¢) We repeat the proof given by Cipra [6]. If j > log,(log,(q)) then ¢'/? < 2
and so by (9), |j6A| > g/2. Thus, 2j0A = F,. (Here we have used the fact that if
S is a subset of a finite group G with |S| > |G|/2 then S+ 5 =G.)

d) Let ¢ be the minimal prime divisor of |A|. Then A has a subgroup G of order
Cand ) .~ x=0sothat —1 is a sum of £ — 1 elements of A.

e) If ¢ is even then 1 = —1, and so trivially §(k,q) = v(k,q). If |A] is even then
—1 is a k-th power, and so again y(k, ¢) = d(k,q). If |A| is odd then k must be even
(for p # 2) and AU (—A) is the set of k/2-th powers. O

3. Proof of Theorem 1

Let k|(¢ — 1), A be the set of nonzero k-th powers in F, and Ay = A U {0}.
Before addressing Theorem 1, which is concerned with representing elements as
sums of nonzero k-th powers, we start by reviewing the proof of Cauchy’s theorem,
~v(k,q) < k, which allows for some terms to be zero. For any positive integer n,

nAg = {0} U Az --- U Axy,

for some distinct cosets Ax; of A, 1 < i <. If nAy # F, then (n+1) A, contains nA
and, assuming that y(k, q) exists, must be strictly larger. Therefore, |(n + 1)Ag| >
|[nAg| + |A|. By induction we get a Cauchy-Davenport type inequality,

|[nAg| > min{q, 1+ n|A|}, (10)

for n > 1, and in view of the equality k|A| = ¢—1, deduce that v(k, ¢) < k whenever
~v(k, q) exists. To estimate v*(k,q) we have to work a little harder since (n + 1)A
doesn’t contain nA in general, so it is not immediate that it has larger cardinality.
However, we are able to recover the following analogue of (10), and Theorem 1 is
an immediate consequence.

Lemma 10. If A is a multiplicative subgroup of ¥y containing f linearly inde-
pendent points over F, and |A| > 2, then for any positive integer n, |[nA| >
min{q,n|A|}.

Proof. Let A be a multiplicative subgroup of Fy containing f linearly independent
points over F,. We first show that if B is any subset of F, such that AB C B
then either A+ B = F, or |[A+ B| > |A| + |B| — 1. This follows from Kneser’s
inequality (see [19, Theorem 4.1]): |A + B| > |A| + |B| — |stab(A + B)|, where
stab(A+ B) = {x € F; : A+ B+ x = A+ B}, an additive subgroup of F,, that
is, an F,, subspace of F,. We need only establish that if stab(A + B) # {0} then
A+B =TF,. Suppose z is a nonzero element of stab(A+B). Then A+ B+x = A+B.
Since AB C B and AA = A we get A+ B+Ax C A+B. Thus Az C stab(A+B), but
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Az contains f linearly independent points over F,,. Thus stab(A+ B) is of dimension
f over I, and so stab(A + B) = F,. Plainly, we must also have A+ B = F, since
for any point ¢ € A+ B, ¢+ stab(A+ B) C A+ B.

Now let n be any positive integer and B = nA. Then AB C B and so either
(n+1)A=F, or |(n+1)A| > |nA|+|A|—1. The proof now follows by induction on
n. Suppose [nA| > n|A| for a given n and that (n+ 1)A # F,. Then |(n + 1)A| >
(n+1)|A| — 1, but (n+ 1)A is a union of cosets of A together (possibly) with 0. If
|A| > 2, this forces (n + 1)A to be a union of at least (n + 1) cosets of A together
(possibly) with 0. Thus |(n + 1)A| > (n+ 1)|A]. O

When |A] = 2; that is, ¢ = p and A = {£1}, then |[nA| =n+ 1 for n < p. Thus
(A, q) =p—1=2k.

4. Estimating 6*(A, ¢) and Proof of Theorem 3

Following the method of Glibichuk and Konyagin [15], for any subsets X,Y of F,
let

Y — Y - yl — yg
The key lemma is a generalization of a lemma of Glibichuk and Konyagin [15,
Lemma 3.2] to finite fields.

X-X T — T
_{ L2 2$179€2€X7y1,y2€yayl7éy2}-

Lemma 11. Let g = pf, X, Y C F, and ay,az,...,a5 € Fy be a set of f linearly
independent points over F),. If % # F, then for some a; we have

2XY —2XY +a;Y? — a;Y?| > | X]|Y].

Proof. Let S = % Assume S # F, and that aq,...,a; are linearly independent
values in F,. We claim that for some a;, S+a; € S, for otherwise S+ kia; + kaaz +
-+ + kpay C S for all nonnegative integers ki,..., ks, implying that S = IF,. Say
ﬁ +a; ¢ S, for some x1,29 € X, y1,y2 € Y. Then the mapping from X x Y

into 2XY — 2XY + a;Y? — a;Y? given by
(m,y) = (Y1 — y2)7 + (21 — T2 + @Y1 — a;y2)y,
is one-to-one and the lemma follows. O

Applying the lemma to a multiplicative subgroup A of F; containing a set
ai,...,ay of linearly independent points, we immediately obtain,

Lemma 12. Let A be a multiplicative subgroup of F; containing f linearly indepen-
dent points over Fy, and X be any subset of Fq such that AX C X and % #F,.
Then

[2X —2X + A— A] > | X]|A].
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We also need the following elementary result.

Lemma 13. Let A be a multiplicative subgroup of ¥, and X Y be subsets of I,
such that AX C X, AY CY. If|X — X||Y — Y] <q|A| then =3 # F,.

Proof. It ¢ = (z1 — x2)/(y1 — y2) for some z1,290 € X, y1 # y2 € Y, then ¢ =
(ax1 — axa)/(ay1 — ayz) for any a € A. Thus

‘ L X=Xy -Y]-1)
|A]

Since the right-hand side is less than ¢ by assumption, the result follow. O

Forl € N, let ny =1 and n; = 25—44l—%7 for [ > 2, so that no = 3, ng = 13,
ng = 53, ns = 213 and
n =4n;+1, forl>2. (11)

Put A; = A and, for | > 2, A; = (njA — n;A) so that, for | > 2,
241 —2A, 1 +A—-—A=A,. (12)

Lemma 14. Let A be a multiplicative subgroup of Fy containing f linearly inde-
pendent points over F,. Then for | >1,

(a) If |Aj—1— Ai1]|A— A| < qlA] then |4)] > |A]L
(b) In all cases, |A;| > min{|A|', q/|Al}.

One can compare the above result with Lemma 5.2 of [15] where it is shown for T,
that |A;| > 2 min{|A[", ey

Proof. The proof of (a) is by induction on [, the statement being trivial for [ = 1.
For I > 1, put X =A4_41,Y = A If |A_1 — A_4]|A — Al < q|4] then by
Lemma 13, X ;é F,. Also, by (12) we have 2X —2X + A — A = A;. Thus by
Lemma 12, \Al| > \Al_1||A\ and so by the induction assumption, |A4;| > |A['. If
|Aj—1 — Aj—1||A — A| > q|A| then since |A — A| < |A|? we have [4;_1 — Aj_4| >
q/|A|. Since |A4;| = |njA — mA| > |2nj—1 A — 2ny_1 Al = |Aj—1 — Aj—1|, we obtain
|Ai| > [Ai—1 — Ai_1| > qlA]/|[A— A] > q/|Al =

Lemma 15. Let A be a multiplicative subgroup of Fy containing f linearly inde-
pendent points over Fy,. Set 1 = |log(q —1)/log|A||. Then 6*(A,q) < 16n,.

Proof. For such [ we have [ + 1 > log(q — 1)/log|A| and so |A|'*! > ¢q. Thus, by
Lemma 14 (b), |A;||A| > min{|A|"*!, ¢} = ¢. Since (JA|,¢) = 1 we must in fact have
|Ai]|A] > g. Since A is symmetric (=1 € A) or antisymmetric (=1 ¢ A), it follows
from Lemma 7 (c) that 84;4 =TF,, that is, 8y A — 8my A =TF,,. m]
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Proof of Theorem 8. With [ as in Lemma 15 we have using k|A| = (¢ — 1),

_ log(q — 1) <14 log k
logA] | ="V logla]

Thus by Lemma 15, *(A,q) < 16n; < 1654! < 43—041"“/ log |4l thereby finishing
the proof. O

5. Estimating v*(A, q) and Proof of Theorem 2

Let A be a multiplicative subgroup of Fy containing f linearly independent points.

We start by obtaining growth estimates for [nA|. If |A] = 1 then ¢ = p and [nA| =1

for any n. If |A| = 2 then ¢ = p, A = £1 and |[nA| = min{p,n + 1}. Next we note

that 32 ,

44] > {‘?)2 oA AR <Al (13)
q*/?|A]?/®,  otherwise.

Indeed, by (7) and Lemma 14 (a) we have
[4A] > |A|Y2|3A - BAIY2 = |A|V2| A2 > AP, i |A- AP < qlA].

Otherwise, |A — A| > (q|A|)'/2. In particular, |A|? > (q|A])!/2, and so |A| > ¢'/3.
Thus, by (8), |4A| > |A_A|15/16 > (q|A|)15/32 > q15/32|A|3/32|A|12/32 > q1/2|A|3/8.
For I € N set

B 2
T3y
so that m; = 1, mo = 4, mg = 17, myqy = 70, ms = 283 and m; = m;_q + n; for
[ > 2, with n; as defined in the previous section.

l
my 5 4l

Lemma 16. Let A be a multiplicative subgroup of Fy containing f linearly inde-
pendent points over Fy,. Then for | > 1 we have

AT ifl=1, orl>2 and  |A1 — Ai_1]|A — A < q|A,
Al > 3/4
Al 2 max { (%) /4, |A|1/4q1/2} , otherwise.
(14)
Proof. The result is trivial when [ = 1. Assume that the theorem holds for [ — 1
with [ > 2. Suppose that |41 — A;_1||A — A] < ¢|A|. In particular, if [ > 3

then |A;_o — A;_s||A — A| < ¢|A]. Then using m; = n; + m;_1, inequality (7), the
induction assumption and Lemma 14, we have

1

Al > [ AV A — m AV > A2 ) | 42 = A e
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Suppose next that
|[A—1 — A1 [|A — A[ = g|A]. (15)

Then, since m; > n; > 4n;_1, we have by inequality (8) that

Al 34
ImiA] > (2201 A)] > [2m 1 A = 2my AP/ = Ay — A P > <ﬁ> '

To prove the second inequality, |m; A| > |A|'/4¢"/2, under the assumption of (15),
more work is required. A stronger result was established (13) for [ = 2, so we assume
l > 3. First observe that by Lemma 12, with X = A— A, if |2A—2A||A— A| < ¢|A],
(so that by Lemma 13, (X — X)/(A — A) #F,), then

[pA—5A| =2(A—-A)A-2(A—A)A+A— Al > |A—- A||4],
and so by (15),
|5A—5A||2n; 1 A—2n; 1 A|=|5A—5A||A_1—A;_1| > |A—A||A||A_1—A_1| > q| A%
Since 2n;_1 > 5 for [ > 3, it follows that
120 1A — 21y 1 A| > [5A — 5A|Y2|2n, 1 A — 20, 1 A2 > ¢1/2|Al. (16)
Also, since for any set B, |B — B| < |B|?, using (15),
1201 AP|A]2 > |21 A — 2ny 1 A||A — A] = |Ai_1 — A1 ]|A — A] > q|A]

and so
2n-1 AP|A] > g (17)

Thus since m; > n; > 4n;_; we obtain from (7), (16) and (17),
|miA| > [dng_1 A| > |21 A|Y212n 1 A — 201 A|Y? > 201 A 2gM A A2
— (|2nl,1A|1/2|A|1/4)q1/4|A|1/4 > q1/4q1/4|A|1/4 — q1/2|A|1/4.

There remains the case |2A — 2A4||A — A| > ¢|A|. In this case |24 — 24| >
q*/?|A|*/? and |2A4]?|A| > q. The latter implies [24] > (¢/|A])'/2. Thus, by (7),

|4A| > |2A‘1/2|2A _ 2A|1/2 > q1/4\A|_1/4q1/4|A|1/4 — q1/2,

and
ImiA| > [6A] > [4A|'/?|24 — 2A]'/2 > g'/4q 4 AV = g2 A2,

which finishes the proof. O

Lemma 17. Let A be a multiplicative subgroup of Fy containing f linearly inde-
pendent points over F,. Then for | > 1 we have

miA] = min {4 ET, /2 (18)
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Proof. Tf I =1 or |A| =1 the statement is trivial. For |A] = 2,

11
|my Al > min{m; +1,¢} = min{1—584l — é + g,q} > min{2', \/2¢}.

For |A| > 4 the result follows from Lemma 16, since ¢'/2|A|'/* > \/2¢ in this case.
For |A] = 3 and [ = 2 the result follows from (13) in a similar manner. Suppose that
|A] =3 andl > 3. Then A = {1,a,a?} = {1,a, —1—a}, where « is a primitive cube
root of 1, and A— A = {0, +(1—«), £(2+ ), £(2a+1)}, whence |[A— A| = 7. Then,
by Lemma 16, [m;A| > ¢/ A|P/4|A — A|73/% > (3)7)3/¢3/* > \/2q, provided that
q > 4(7/3)® = 50.8.., and so the result follows from Lemma 16 when ¢ > 51. We
are left with testing the prime powers less than 50. If ¢ is a prime then we can use
the Cauchy-Davenport inequality to get |myA| > [1TA| > min{q, 35} > /2¢q. The
prime powers remaining with 3|¢g — 1 are 4,16,25,49. We can’t have ¢ = 16 or 49
since 3|(2%2 — 1) and 3|(7 — 1), implying that A does not contain a set of f linearly
independent points. For ¢ = 4, A = F}, 2A = F4 and trivially |24| > /2q. For
g = 25 one can check that [3A4] = 10 > V/50. O

Applying Lemma 7 (b) with A = B = m; A we immediately obtain,

Lemma 18. Let A be a multiplicative subgroup of Fy containing f linearly inde-

-1
pendent points over F,,. If |A| > (2q)%(l_1+2l+1> , then 8m?A =TF,.
In particular,

8A=TF, for|A|l>q'/?
1284 =TF, for |A| >1.26 ¢*/°,
23124 =T, for |[A| > 1.17 ¢*/*,
392004 =TF, for |A| > 1.12 ¢*/%,
6407124 =T, for |A| > 1.09 ¢%/%.

In comparison, for F,, Cochrane and Pinner [9] obtained

S8A=T, for|Al>p'/?
324 =T, for |A]>3.91p'/3
3924 =T, for |A| > 2.78 p*/4,
28884 =T, for |A| > 3.19 p*/°,
128004 =T, for |A| > 2.28 p*/°,
564484 =T, for |A| > 2.43 p'/7,
228488A =T, for |A| > 1.91 p'/8.
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We cannot do quite as well for F, because we do not have a lower bound on |2A4].
For F, it was shown in [9, Theorem 5.2] that [2A4| > min{%[A[*/2,£}. We do not
know if such a bound holds in F,.

Proof of Theorem 2. An integer | satisfies the hypothesis of Lemma 18 provided

that ) log 9
S 10829

—_— > —— + 1.
2!=1 = 2log|A|

~ [log(2(¢ — 1))
l‘{ 2log 4] “W

suffices. To see this, first observe that for this choice of I, I < logy(4(q — 1)), that
is, ¢ — 1 > 2!72, and so using the inequality

I+ (19)

We claim that the value

q 1
log(2g) —log(2(q — 1)) =log(q/(¢ - 1)) < — — 1= ——,
q-—1 qg—1
we have
log(2q) _ log(2(¢ 1)) _ 1 < 1 <!
21log |A| 21log |A] 2(q—1)log|A| ~ 2-llog|A|] ~ 2i-1°

Thus (19) is satisfied, and so by Lemma 18, v*(A,q) < 8m}. Since m; < %417 we
have

log

et — 158.03(2(q — 1))los#/ log 4|

V(A q) < 8(5/18)2420 A H1] < 158,03 - 4

= 158.03(2 A|k) P& AT < 633(2k) e 1,
completing the proof of Theorem 2. O

We cannot do quite as well for F, as for I, because we do not have a good
lower bound on |24|. For F, we were able to use the bound [9, Theorem 5.2],
|2A| > min{2|A|3/2,2}. We do not know if such a bound holds in F,.

6. Proof of Theorem 4

For small |A| we use the method of Bovey [4] to bound d(A4,¢) and v(A,q). We
start by generalizing [4, Lemma 3|. For any n-tuple v = (uq,...,u,) € R"” let

lully =323y fual.

Lemma 19. Let F, be any finite field and uy,uz,...,u, € Fq. Let T : Z" — F,
be the linear function T(x1,...,2n) = Y iy Tiu;. Suppose that vy,...,v, € Z"
are linearly independent vectors over R with T(v;) = 0, 1 < i < n. Then for
any value a in the range of T there exists a vector u € Z"™ with T(u) = a and

lully < 3 325 Tvill-
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Proof. Let w € Z™ with T(w) = a. Writew = Y .-, y;v; for some y; € R, 1 <i < n.
Say y; = z; + ¢; for some z; € Z and ¢; € R with |¢;| < 1/2, 1 <i <n. Put u =
S v =w—> ¢ xv;. Thenu € Z", T(u) =aand [|ull; < 330" [Jvii. O

Proof of Theorem 4. By Theorem 9 (d), v(k,q) < (t —1)d(k, q), where t = |A|, and
so it suffices to prove the statement of Theorem 4 for §(k,q). Put r = ¢(t). Let
R be a primitive t-th root of unity in F,, ®;(x) be the t-th cyclotomic polynomial
over Q of degree r and w be a primitive t-th root of unity over Q. In particular,
®,(R) = 0 and the set of nonzero k-th powers in F, is just {1, R, R?,..., R'"'}.
Let f: Z" — Z[w] be given by
flxy, o, ... 2) =21 + 2ow + - + 20" L
Then f is a one-to-one Z-module homomorphism.

Let T : Z" — F, be the linear map T'(z1,...,z,) = > ._, ;R""" and £ be
the lattice of points satisfying T'(z1,...,2z,) = 0. Since the set of k-th powers
L,R,...,R"™! spans all of F; we have Vol(£) = ¢g. Thus by Minkowski’s funda-
mental theorem there is a nonzero vector v; = (a1, as,...,a,) in £ with |a;| < ql/r,
1<i<r. For2<i<rsetv;=f 1w f(vy)). Then vy,...,v, form a set of
linearly independent points in £ and so, by Lemma 19, for any a € F, there is an
r-tuple of integers u = (ug, ..., u,) such that

u FusR+usR?+--+u, R =aq,
and Y7 Jug) < 5307 Jvilli- Thus 6(k,q) < 3 >°7_; |villi. Now plainly [Jv]l1 <

q"/", (indeed, as shown in [4], ||v;|l1 < r(A(t) + 1)"p"™/", where A(t) is the maximal
absolute value of the coefficients of ®;(z)). Thus §(k,q) <; ¢'/". O

7. Proof of Lemma 7(a)

Let m > 3 be a positive integer, A, B C F,, A’ = A — {0}, a € F; and N denote
the number of 2m-tuples (x1, ..., Tm,Y1,---Ym) With x1, 290 € A’ 3,..., 2, € A,
yi € B, 1 <i<m,and 2191+ -+ Tm¥Ym = a. Let ¢ denote the additive character
on Fy, (2) = 2™ T7(:)/P. Then

gN = [APIA™ B+ > > S e\ @+ -+ Ty — a))
AA£O0 x1,22€A" z3,..,.cm EA Y, EB
= |A'|*|A™2|B|™ + Error, (20)
with
m—2 2

Error = Zw(—)\a) Z Z U(Azy) Z Z b(Azy)

A#£Q reAyEB z€A’' yeB
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Now, by the Cauchy-Schwarz inequality,

1/2

DD w0ay)| <D wQay)| < BV YD vy

r€AyEB yeB |z€A yeB |zcA
o\ 1/2
<IB2 | S Swtam)| | = 1B gla) 2,
yelF, lz€A
Also,
2

SIS S w0@)| = S0 S e @i - aam)
AeF, |z€A’ yeB z1,22€A" y1,y2€ B AeF,

= Q|{($1a$2ay1,y2) 1x1,T2 € Alaylva € B,z = x2y2}| < Q|AI|2‘B‘7

the latter following since 0 € A’, so z1y; = x2ys can be written 1y, = J:flxgyg.
Thus,

|Error| < |A|"7

S ST (A @)

A#0 |z€ A’ yeB

=A™ = 131 S wn@y)| - 1A B

AEF, |xz€A’ yeB

m m, m

< A5 BT "5 (gl A'P|B| - |4 BP)
= |A]F A2 B R g (1 121,

and we see that the main term in (20) exceeds the error term provided that

| m %(1_@)
q

m

771|B
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