

SUM-PRODUCT ESTIMATES APPLIED TO WARING'S PROBLEM OVER FINITE FIELDS

Todd Cochrane¹

Department of Mathematics, Kansas State University, Manhattan, Kansas cochrane@math.ksu.edu

James Cipra

Department of Mathematics, Kansas State University, Manhattan, Kansas cipra@math.ksu.edu

Received: 5/13/11, Accepted: 10/31/11, Published: 11/2/11

Abstract

Let A be the set of nonzero k-th powers in \mathbb{F}_q and $\gamma^*(k,q)$ denote the minimal n such that $nA = \mathbb{F}_q$. We use sum-product estimates for |nA| and |nA - nA|, following the method of Glibichuk and Konyagin to estimate $\gamma^*(k,q)$. In particular, we obtain $\gamma^*(k,q) \leq 633(2k)^{\log 4/\log |A|}$ for |A| > 1 provided that $\gamma^*(k,q)$ exists.

1. Introduction

Let \mathbb{F}_q be a finite field in $q=p^f$ elements and k be a positive integer. The smallest s such that the equation

$$x_1^k + x_2^k + \dots + x_s^k = a (1)$$

is solvable for all $a \in \mathbb{F}_q$ (should such an s exist) is called Waring's number for \mathbb{F}_q , denoted $\gamma(k,q)$. Similarly, the smallest s such that

$$\pm x_1^k \pm x_2^k \pm \dots \pm x_s^k = a,\tag{2}$$

is solvable for all $a \in \mathbb{F}_q$ is denoted $\delta(k, p)$. If d = (k, q - 1) then clearly $\gamma(d, q) = \gamma(k, q)$ and so we may assume k|(q - 1). If A is the multiplicative subgroup of k-th powers in \mathbb{F}_q^* then we write

$$\gamma(A,q) = \gamma(k,q), \qquad \delta(A,q) = \delta(k,q).$$

Also, we let $\gamma^*(A, q)$, $\delta^*(A, q)$ denote the minimal s such that every element of \mathbb{F}_q is the sum (\pm sum) of exactly s nonzero k-th powers, that is, (1), (2) resp. are

¹Current address: Dept. of Mathematics, Georgia Institute of Technology, Atlanta, Georgia

solvable with all $x_i \neq 0$. It is well-known that $\gamma(A,q)$, $\delta(A,q)$, $\gamma^*(A,q)$, $\delta^*(A,q)$ exist if and only if A contains a set of f linearly independent points over \mathbb{F}_p ; see Lemma 6.

For any subsets S, T of \mathbb{F}_q and positive integer n, let

$$S + T = \{s + t : s \in S, t \in T\}, \quad S - T = \{s - t : s \in S, t \in T\},\$$

 $nS = S + S + \dots + S$ (*n*-times), $ST = \{st : s \in S, t \in T\}$, $S^n = SS \cdots S$ (*n*-times). Note that $(nS)T \subseteq n(ST)$. We let nST denote the latter, n(ST). Also, for any $a \in \mathbb{F}_q$ we let $aS = \{as : s \in S\}$.

If A is a multiplicative subgroup of \mathbb{F}_q^* then $\gamma^*(A, q)$ (if it exists) is the minimal s such that $sA = \mathbb{F}_q$, while $\gamma(A, q)$ is the minimal s such that $sA_0 = \mathbb{F}_q$, where $A_0 = A \cup \{0\}$. It is well-known that $\gamma(k, q) \leq k$ with equality if k = q-1 or (q-1)/2. This was first observed by Cauchy [5] for the case q = p. Our first result is the analogue for $\gamma^*(k, q)$. The proof makes use of Kneser's lower bound for |A + B|.

Theorem 1. If A is the multiplicative subgroup of k-th powers in \mathbb{F}_q^* , |A| > 2 and $\gamma^*(A,q)$ exists, then $\gamma^*(A,q) \leq k+1$. When |A| = 2 (that is, q is an odd prime and $A = \{\pm 1\}$) then $\gamma^*(A,q) = 2k$.

For |A| > 2 it was established by Tietäväinen [20], for odd q, and by Winterhof [22], [23, Lemma 1], for even q, that $\gamma(A, q) \leq [k/2] + 1$. It is an open question whether the same improvement holds for $\gamma^*(A, q)$. For the case of prime fields Heilbronn [17] formulated two conjectures, which in the more general setting of \mathbb{F}_q can be stated as follow:

- 1. If |A| > 2 then $\gamma(A, q) \ll \sqrt{k}$.
- 2. For any $\epsilon > 0$ there exists a constant $c(\epsilon)$ such that if $|A| > c(\epsilon)$ then $\gamma(A,q) \ll_{\epsilon} k^{\epsilon}$.

The second conjecture was proven by Konyagin [18] for prime fields. Cipra, Cochrane and Pinner [8] established the first conjecture for prime fields, and the explicit bound $\gamma(A, p) \leq 83\sqrt{k}$ was obtained in [9]. Cipra [6, Theorem 4] proved the first conjecture for the general finite field \mathbb{F}_q , obtaining

$$\gamma(A,q) \le \begin{cases} 16\sqrt{k+1}, & \text{for } q = p^2.\\ 10\sqrt{k+1}, & \text{for } q = p^f, f \ge 3, \end{cases}$$
(3)

whenever $\gamma(A,q)$ is defined.

Next, let $A' = A \cap \mathbb{F}_p$, so that |A'| = (|A|, p-1). Cipra [6], sharpening the work of Winterhof [22], established the bound

$$\gamma(k,q) \le 8f\left\lceil \frac{(k+1)^{1/f} - 1}{|A'|} \right\rceil,\tag{4}$$

whenever $\gamma(k,q)$ exists. He also established the bound

$$\gamma(k,q) \ll f k^{\frac{\log 4}{f \log |A'|}} \log \log(k), \tag{5}$$

which resolved the second Heilbronn conjecture provided $|A'|^f$ is sufficiently large.

log

For prime fields Glibichuk and Konyagin [15] used methods of additive combinatorics to obtain

$$\gamma^*(A, p) \le 400 \ k^{\frac{\log 4}{\log |A|}},$$
(6)

for any multiplicative subgroup A with |A| > 1. Cochrane and Pinner [9, Corollary 7.1] obtained a similar bound for q = p, and Glibichuk [13] established the same type of bound for $q = p^2$. The main result of this paper is a generalization of (6) to arbitrary \mathbb{F}_q , thus resolving the second Heilbronn conjecture for any finite field.

Theorem 2. If A is a multiplicative subgroup of \mathbb{F}_q^* for which $\gamma^*(A, q)$ is defined and |A| > 1, then with k = (q-1)/|A|, we have

$$\gamma^*(A,q) \le 633(2k)^{\frac{\log 4}{\log |A|}}.$$

After submitting this work, the author's learned that Glibichuk [14, Corollary 1] recently proved a similar result, albeit with weaker constants. In particular, if $|A| = p^{\epsilon}$, then our result gives $\gamma^*(A, q) \ll 4^{1/\epsilon}$, whereas his result gives $\gamma^*(A, q) \ll 6^{1/\epsilon}$. For $\delta^*(A, q)$ we establish the stronger bound,

Theorem 3. If A is a multiplicative subgroup of \mathbb{F}_q^* for which $\delta^*(A, q)$ is defined and |A| > 1, then with k = (q-1)/|A|, we have

$$\delta^*(A,q) \le (40/3)k^{\frac{\log 4}{\log |A|}}.$$

As noted in Theorem 9, if q is even or |A| is even then $\gamma^*(A,q) = \delta^*(A,q)$ and thus the stronger bound in Theorem 3 applies to $\gamma^*(A,q)$ as well. Further relations between $\delta(A,q)$ and $\gamma(A,q)$ are given in Theorem 9. The exponent on k in the theorem improves on (5) when $|A| > (|A|, p-1)^f$ and on (4) when $|A| > 4^f$. For small |A| (|A| = O(1) as $p \to \infty$) one can obtain a stronger result by employing the lattice method of Bovey. In this manner we prove,

Theorem 4. For any positive integer t there is a constant $c_1(t)$ such that if A is a multiplicative subgroup of \mathbb{F}_q^* with |A| = t, and such that $\gamma(A, q)$ is defined, then

$$\gamma(A,q) \le c_1(t)k^{1/\phi(t)}.$$

The constant $c_1(t)$, estimated in [4] for prime fields, depends on the size of the coefficients of the cyclotomic polynomial of order t.

Corollary 5. For any positive integer l there is a constant c(l) such that if A is a multiplicative subgroup of \mathbb{F}_q^* of order t such that $\phi(t) \geq l$ and $\gamma(A, q)$ exists, then $\gamma(A, q) \leq c(l)k^{1/l}$.

Proof. Suppose that $\phi(t) \geq l$. Put $c = \max_{t \leq 4^l} c_1(t)$, $c(l) = \max\{c, 2^{1/l}633\}$, with $c_1(t)$ as defined in Theorem 4. If $t > 4^l$ then, by Theorem 2, $\gamma(k, q) \leq 633 \cdot 2^{1/l} k^{1/l} \leq c(l)k^{1/l}$. If $t \leq 4^l$ then, by Theorem 4, $\gamma(k, q) \leq ck^{1/\phi(t)} \leq c(l)k^{1/l}$. \Box

2. Preliminary Lemmas

The first lemma gives equivalent conditions for the existence of $\gamma(k, q)$. It is wellknown, and follows from the fact that the set of all sums of k-th powers is a multiplicatively closed set and therefore a subfield of \mathbb{F}_q ; see Tornheim [21, Lemma 1], or Bhaskaran [1].

Lemma 6. Let A be the set of nonzero k-th powers in \mathbb{F}_q . The following are equivalent.

- (i) $\gamma(k,q)$ exists, that is, every element of \mathbb{F}_q is a sum of k-th powers.
- (ii) A is not contained in any proper subfield of F_q; that is, A contains a set of f linearly independent points over F_p.
- (iii) |A| does not divide $p^j 1$ for any j|f, j < f, that is, $\frac{p^f 1}{p^j 1}$ does not divide k for any j|f, j < f.

It is also not hard to show that $\gamma^*(A,q)$ exists if and only if |A| > 1 and $\gamma(A,q)$ exists.

An important tool needed throughout this paper is Rusza's triangle inequality (see, e.g., Nathanson [19, Lemma 7.4]),

$$|S+T| \ge |S|^{1/2} |T-T|^{1/2},\tag{7}$$

for any $S, T \subseteq \mathbb{F}_q$, and its corollary

$$|nS| \ge |S|^{\frac{1}{2^{n-1}}} |S - S|^{1 - \frac{1}{2^{n-1}}} \ge |S - S|^{1 - \frac{1}{2^n}},\tag{8}$$

for any positive integer n. The first inequality in (8) follows by induction on n, and the second from the trivial bound $|S - S| \leq |S|^2$.

The following is a key lemma for showing that a sum-product set fills up \mathbb{F}_q .

Lemma 7. Let A, B be subsets of \mathbb{F}_q and $m \geq 3$ be a positive integer.

(a) If
$$|B||A|^{1-\frac{2}{m}} > q\left(1-\frac{|B|}{q}\right)^{2/m}$$
 then $mAB = \mathbb{F}_q$.

- (b) If $|B||A| \ge 2q$ then $8AB = \mathbb{F}_q$.
- (c) If |B||A| > q and either A or B is symmetric (A = -A) or antisymmetric $(A \cap -A = \emptyset)$ then $8AB = \mathbb{F}_q$.

A slightly weaker form of part (a) was proven by Bourgain [2, Lemma 1] for q = p and m = 3 and by Cochrane and Pinner [9, Lemma 2.1] for q = p and general m. A similar proof works for \mathbb{F}_q and is provided in Section 7. In the earlier versions of this statement, an extra hypothesis, $0 \notin A$, was included, and the factor $\left(1 - \frac{|B|}{q}\right)^{2/m}$ was excluded.

Part (b) is due to Glibichuk and Konyagin [15, Lemma 2.1] for prime fields and to Glibichuk and Rudnev [16] for general \mathbb{F}_q . Part (c) is due to Glibichuk [12] for prime fields and to Glibichuk and Rudnev [16] as well as Cipra [7] for general \mathbb{F}_q . In particular, if A is a multiplicative subgroup, then applying (c) with B = A we see that $\gamma^*(A,q) \leq 8$ provided that $|A| > \sqrt{q}$.

In the cases where |A| = 3, 4 or 6 one can actually evaluate $\gamma(A, q)$. This was done in [8] for the case of prime moduli.

Theorem 8. Let A is a multiplicative subgroup of \mathbb{F}_q of order 3,4 or 6 for which $\gamma(A,q)$ exists. Then q = p or p^2 . If $q = p^2$ then $\gamma(A,q) = p - 1$. If q = p then

$$\gamma(A,p) = \begin{cases} a+b-1, & \text{if } |A| = 3, \\ c-1, & \text{if } |A| = 4, \\ \left|\frac{2}{3}a + \frac{1}{3}b\right|, & \text{if } |A| = 6 \end{cases}$$

where, if |A| = 3 or 6, then a, b are the unique positive integers with a > b and $a^2 + b^2 + ab = p$, while if |A| = 4 then c, d are the unique positive integers with c > d and $c^2 + d^2 = p$.

In particular, for |A| = 3, 4 or 6 we have

$$\begin{split} \sqrt{3k+1} &-1 \leq \gamma(A,q) \leq 2\sqrt{k}, & \text{if } |A| = 3, \\ \sqrt{2k} &-1 \leq \gamma(A,q) \leq 2\sqrt{k} - 1, & \text{if } |A| = 4, \\ \sqrt{2k} &-\frac{1}{2} \leq \gamma(A,q) \leq \frac{2}{3}\sqrt{6k}, & \text{if } |A| = 6. \end{split}$$

Proof. Since |A| = 3, 4 or 6, every element of A is of degree 1 or 2 over \mathbb{F}_p and therefore $A \subset \mathbb{F}_{p^2}$. Thus, in order for $\gamma(k,q)$ to exist we must have q = p or p^2 . The case q = p is just Theorem 2 of [8] and the case $q = 2^2$ is trivial, so we shall assume $q = p^2$ with p an odd prime and that A is not contained in \mathbb{F}_p .

Case i: |A| = 3. Say $A = \{1, T, T^2\}$ where $T \in \mathbb{F}_{p^2} - \mathbb{F}_p$ satisfies $T^2 + T + 1 = 0$. In particular, $p \equiv 2 \pmod{3}$. We claim that $\gamma(A, q) = p - 1$ and consequently, since $3k = p^2 - 1$, $\gamma(k, q) = \sqrt{3k + 1} - 1$. Let w = x + yT denote a typical element of \mathbb{F}_q where $0 \leq x, y \leq p - 1$ and let $\gamma(w)$ denote the minimal number of elements of A required to represent w. First note that $\gamma(0) = 3$ since $1 + T + T^2 = 0$ so we assume that $w \neq 0$. Suppose that $x \leq y$. If x + y < p then trivially $\gamma(w) < p$. If $x \leq y < 2x$ then we write $w = (y - x)T + (p - x)T^2$ and get $\gamma(w) \leq p + y - 2x < p$. If $y \geq 2x$ and $y > \frac{2}{3}p$ then we write $w = (x - y + p) \cdot 1 + (p - y)T^2$

and get $\gamma(w) \leq (x - 2y + 2p) \leq 2p - \frac{3}{2}y < p$. If $y \geq 2x$ and $y < \frac{2}{3}p$, then $x + y \leq \frac{3}{2}y < p$. A similar argument holds for $x \geq y$. Finally, one can check that $\gamma(\frac{1}{3}(p+1) + \frac{2}{3}(p+1)T) = p - 1$.

Case ii: |A| = 4. Say $A = \{\pm 1, \pm T\}$, with $T^2 = -1$, $T \in \mathbb{F}_{p^2} - \mathbb{F}_p$. In particular, $p \equiv 3 \pmod{4}$. Any element of \mathbb{F}_q may be written x + yT with $|x|, |y| \leq \frac{p-1}{2}$, and so $\gamma(A,q) \leq p-1$. Also, it is plain that $\gamma(\frac{p-1}{2} + \frac{p-1}{2}T) = p-1$. Thus, $\gamma(A,q) = p-1$. Case iii: |A| = 6. Say $A = \{\pm 1, \pm T, \pm T^2\}$ with $T^2 - T + 1 = 0$. As in case ii,

Case iii: |A| = 6. Say $A = \{\pm 1, \pm T, \pm T^2\}$ with $T^2 - T + 1 = 0$. As in case ii, any element of \mathbb{F}_q may be written x + yT with $|x|, |y| \le \frac{p-1}{2}$, and so $\gamma(A, q) \le p-1$. Also, with just a little work one again sees that $\gamma(\frac{p-1}{2} + \frac{p-1}{2}T) = p-1$. Thus, $\gamma(A,q) = p-1$.

The precise relationship between $\gamma(k,q)$ and $\delta(k,q)$ is an important unresolved problem. It is not known whether $\gamma(k,q) \leq C\delta(k,q)$ for some constant C. Bovey [4, Lemma 2] established $\gamma(k,p) \leq (\log_2 p + 1)\delta(k,p)$ for prime moduli, and improvements were given in [8]. Here we prove the analogue of [8, Theorem 4.1] for general finite fields.

Theorem 9. Let A be the set of nonzero k-th powers in \mathbb{F}_q with k|(q-1), such that $\gamma(k,q)$ is defined. Then,

- (a) $\gamma(k,q) \le 3 \left[\log_2 \left(\frac{3 \log q}{\log |A|} \right) \right] \delta(k,q).$
- (b) $\gamma(k,q) \leq 3 \left\lceil \log_2(4\delta(k,q)) \right\rceil \delta(k,q)$
- (c) $\gamma(k,q) \le 2 \left\lceil \log_2(\log_2(q)) \right\rceil \delta(k,q).$
- (d) $\gamma(k,q) \leq (p_{min}-1)\delta(k,q)$, where p_{min} is the minimal prime divisor of |A|.
- (e) If q is even or |A| is even then $\delta(k,q) = \gamma(k,q)$. If |A| is odd and p is odd, then $\delta(k,q) = \gamma(\frac{k}{2},q)$.

Proof. a) Put $A_0 = A \cup \{0\}$, $\delta = \delta(k, q)$. Since $\delta A_0 - \delta A_0 = \mathbb{F}_q$ we obtain from (8), (observing that this inequality is strict for |S| > 1),

$$|j\delta A_0| > |\delta A_0 - \delta A_0|^{1-1/2^j} = q^{1-1/2^j},$$
(9)

for any positive integer j. Hence if $j \ge \log_2\left(\frac{3\log q}{\log |A|}\right)$ we have $|j\delta A_0||A|^{\frac{1}{3}} \ge q$, and so by Lemma 7 (a) with m = 3, $3(j\delta A_0)A = \mathbb{F}_q$, that is, $3j\delta A_0 = \mathbb{F}_q$.

b) This follows from part (a) and the trivial bound $(2|A|+1)^{\delta} \ge q$, when $|A| \ge 11$. Indeed, in this case,

$$\frac{\log q}{\log |A|} \le \delta \frac{\log(2|A|+1)}{\log |A|} < \frac{4}{3}\delta.$$

For |A| < 11, the result follow from part (d) of this theorem, since $p_{min} \leq 7$ for such |A|.

c) We repeat the proof given by Cipra [6]. If $j \ge \log_2(\log_2(q))$ then $q^{1/2^j} \le 2$ and so by (9), $|j\delta A| > q/2$. Thus, $2j\delta A = \mathbb{F}_q$. (Here we have used the fact that if S is a subset of a finite group G with |S| > |G|/2 then S + S = G.)

d) Let ℓ be the minimal prime divisor of |A|. Then A has a subgroup G of order ℓ and $\sum_{x \in G} x = 0$ so that -1 is a sum of $\ell - 1$ elements of A.

e) If q is even then 1 = -1, and so trivially $\delta(k,q) = \gamma(k,q)$. If |A| is even then -1 is a k-th power, and so again $\gamma(k,q) = \delta(k,q)$. If |A| is odd then k must be even (for $p \neq 2$) and $A \cup (-A)$ is the set of k/2-th powers. \Box

3. Proof of Theorem 1

Let k|(q-1), A be the set of nonzero k-th powers in \mathbb{F}_q and $A_0 = A \cup \{0\}$. Before addressing Theorem 1, which is concerned with representing elements as sums of nonzero k-th powers, we start by reviewing the proof of Cauchy's theorem, $\gamma(k,q) \leq k$, which allows for some terms to be zero. For any positive integer n,

$$nA_0 = \{0\} \cup Ax_1 \cdots \cup Ax_l,$$

for some distinct cosets Ax_i of $A, 1 \leq i \leq l$. If $nA_0 \neq \mathbb{F}_q$ then $(n+1)A_0$ contains nA_0 and, assuming that $\gamma(k,q)$ exists, must be strictly larger. Therefore, $|(n+1)A_0| \geq |nA_0| + |A|$. By induction we get a Cauchy-Davenport type inequality,

$$|nA_0| \ge \min\{q, 1+n|A|\},\tag{10}$$

for $n \ge 1$, and in view of the equality k|A| = q-1, deduce that $\gamma(k,q) \le k$ whenever $\gamma(k,q)$ exists. To estimate $\gamma^*(k,q)$ we have to work a little harder since (n+1)A doesn't contain nA in general, so it is not immediate that it has larger cardinality. However, we are able to recover the following analogue of (10), and Theorem 1 is an immediate consequence.

Lemma 10. If A is a multiplicative subgroup of \mathbb{F}_q^* containing f linearly independent points over \mathbb{F}_p and |A| > 2, then for any positive integer n, $|nA| \ge \min\{q, n|A|\}$.

Proof. Let A be a multiplicative subgroup of \mathbb{F}_q containing f linearly independent points over \mathbb{F}_p . We first show that if B is any subset of \mathbb{F}_q such that $AB \subset B$ then either $A + B = \mathbb{F}_q$ or $|A + B| \ge |A| + |B| - 1$. This follows from Kneser's inequality (see [19, Theorem 4.1]): $|A + B| \ge |A| + |B| - |stab(A + B)|$, where $stab(A + B) = \{x \in \mathbb{F}_q : A + B + x = A + B\}$, an additive subgroup of \mathbb{F}_q , that is, an \mathbb{F}_p subspace of \mathbb{F}_q . We need only establish that if $stab(A + B) \ne \{0\}$ then $A+B = \mathbb{F}_q$. Suppose x is a nonzero element of stab(A+B). Then A+B+x = A+B. Since $AB \subset B$ and AA = A we get $A+B+Ax \subset A+B$. Thus $Ax \subset stab(A+B)$, but Ax contains f linearly independent points over \mathbb{F}_p . Thus stab(A+B) is of dimension f over \mathbb{F}_p , and so $stab(A+B) = \mathbb{F}_q$. Plainly, we must also have $A + B = \mathbb{F}_q$ since for any point $c \in A + B$, $c + stab(A + B) \subset A + B$.

Now let *n* be any positive integer and B = nA. Then $AB \subset B$ and so either $(n+1)A = \mathbb{F}_q$ or $|(n+1)A| \ge |nA| + |A| - 1$. The proof now follows by induction on *n*. Suppose $|nA| \ge n|A|$ for a given *n* and that $(n+1)A \ne \mathbb{F}_q$. Then $|(n+1)A| \ge (n+1)|A| - 1$, but (n+1)A is a union of cosets of *A* together (possibly) with 0. If |A| > 2, this forces (n+1)A to be a union of at least (n+1) cosets of *A* together (possibly) with 0. Thus $|(n+1)A| \ge (n+1)|A|$.

When |A| = 2; that is, q = p and $A = \{\pm 1\}$, then |nA| = n + 1 for n < p. Thus $\gamma^*(A, q) = p - 1 = 2k$.

4. Estimating $\delta^*(A,q)$ and Proof of Theorem 3

Following the method of Glibichuk and Konyagin [15], for any subsets X,Y of \mathbb{F}_q let

$$\frac{X-X}{Y-Y} = \left\{ \frac{x_1 - x_2}{y_1 - y_2} : x_1, x_2 \in X, y_1, y_2 \in Y, y_1 \neq y_2 \right\}.$$

The key lemma is a generalization of a lemma of Glibichuk and Konyagin [15, Lemma 3.2] to finite fields.

Lemma 11. Let $q = p^f$, $X, Y \subseteq \mathbb{F}_q$ and $a_1, a_2, \ldots, a_f \in \mathbb{F}_q$ be a set of f linearly independent points over \mathbb{F}_p . If $\frac{X-X}{Y-Y} \neq \mathbb{F}_q$ then for some a_i we have

$$|2XY - 2XY + a_iY^2 - a_iY^2| \ge |X||Y|.$$

Proof. Let $S = \frac{X-X}{Y-Y}$. Assume $S \neq \mathbb{F}_q$ and that a_1, \ldots, a_f are linearly independent values in \mathbb{F}_q . We claim that for some $a_i, S + a_i \not\subseteq S$, for otherwise $S + k_1 a_1 + k_2 a_2 + \cdots + k_f a_f \subseteq S$ for all nonnegative integers k_1, \ldots, k_f , implying that $S = \mathbb{F}_q$. Say $\frac{x_1-x_2}{y_1-y_2} + a_i \notin S$, for some $x_1, x_2 \in X, y_1, y_2 \in Y$. Then the mapping from $X \times Y$ into $2XY - 2XY + a_iY^2 - a_iY^2$ given by

$$(x,y) \rightarrow (y_1 - y_2)x + (x_1 - x_2 + a_iy_1 - a_iy_2)y_2$$

is one-to-one and the lemma follows.

Applying the lemma to a multiplicative subgroup A of \mathbb{F}_q^* containing a set a_1, \ldots, a_f of linearly independent points, we immediately obtain,

Lemma 12. Let A be a multiplicative subgroup of \mathbb{F}_q^* containing f linearly independent points over \mathbb{F}_p and X be any subset of \mathbb{F}_q such that $AX \subseteq X$ and $\frac{X-X}{A-A} \neq \mathbb{F}_q$. Then

$$|2X - 2X + A - A| \ge |X||A|.$$

We also need the following elementary result.

Lemma 13. Let A be a multiplicative subgroup of \mathbb{F}_q^* and X, Y be subsets of \mathbb{F}_q such that $AX \subseteq X$, $AY \subseteq Y$. If $|X - X||Y - Y| \leq q|A|$ then $\frac{X - X}{Y - Y} \neq \mathbb{F}_q$.

Proof. If $c = (x_1 - x_2)/(y_1 - y_2)$ for some $x_1, x_2 \in X$, $y_1 \neq y_2 \in Y$, then $c = (ax_1 - ax_2)/(ay_1 - ay_2)$ for any $a \in A$. Thus

$$\left|\frac{X-X}{Y-Y}\right| \le \frac{|X-X|(|Y-Y|-1)|}{|A|}$$

Since the right-hand side is less than q by assumption, the result follow. \Box

For $l \in \mathbb{N}$, let $n_1 = 1$ and $n_l = \frac{5}{24}4^l - \frac{1}{3}$, for $l \ge 2$, so that $n_2 = 3$, $n_3 = 13$, $n_4 = 53$, $n_5 = 213$ and

$$n_{l+1} = 4n_l + 1, \quad \text{for } l \ge 2.$$
 (11)

Put $A_1 = A$ and, for $l \ge 2$, $A_l = (n_l A - n_l A)$ so that, for $l \ge 2$,

$$2A_{l-1} - 2A_{l-1} + A - A = A_l. (12)$$

Lemma 14. Let A be a multiplicative subgroup of \mathbb{F}_q^* containing f linearly independent points over \mathbb{F}_p . Then for $l \geq 1$,

- (a) If $|A_{l-1} A_{l-1}| |A A| < q|A|$ then $|A_l| \ge |A|^l$.
- (b) In all cases, $|A_l| \ge \min\{|A|^l, q/|A|\}.$

One can compare the above result with Lemma 5.2 of [15] where it is shown for \mathbb{F}_p that $|A_l| \geq \frac{3}{8} \min\{|A|^l, \frac{p-1}{2}\}$.

Proof. The proof of (a) is by induction on l, the statement being trivial for l = 1. For l > 1, put $X = A_{l-1}$, Y = A. If $|A_{l-1} - A_{l-1}||A - A| < q|A|$ then by Lemma 13, $\frac{X-X}{Y-Y} \neq \mathbb{F}_q$. Also, by (12) we have $2X - 2X + A - A = A_l$. Thus by Lemma 12, $|A_l| \geq |A_{l-1}||A|$ and so by the induction assumption, $|A_l| \geq |A|^l$. If $|A_{l-1} - A_{l-1}||A - A| \geq q|A|$ then since $|A - A| \leq |A|^2$ we have $|A_{l-1} - A_{l-1}| \geq q/|A|$. Since $|A_l| = |n_l A - n_l A| \geq |2n_{l-1} A - 2n_{l-1}A| = |A_{l-1} - A_{l-1}|$, we obtain $|A_l| \geq |A_{l-1} - A_{l-1}| \geq q|A|/|A - A| \geq q/|A|$.

Lemma 15. Let A be a multiplicative subgroup of \mathbb{F}_q^* containing f linearly independent points over \mathbb{F}_p . Set $l = \lfloor \log(q-1)/\log |A| \rfloor$. Then $\delta^*(A,q) \leq 16n_l$.

Proof. For such l we have $l+1 > \log(q-1)/\log|A|$ and so $|A|^{l+1} \ge q$. Thus, by Lemma 14 (b), $|A_l||A| \ge \min\{|A|^{l+1}, q\} = q$. Since (|A|, q) = 1 we must in fact have $|A_l||A| > q$. Since A is symmetric $(-1 \in A)$ or antisymmetric $(-1 \notin A)$, it follows from Lemma 7 (c) that $8A_lA = \mathbb{F}_q$, that is, $8n_lA - 8n_lA = \mathbb{F}_q$. \Box

Proof of Theorem 3. With l as in Lemma 15 we have using k|A| = (q-1),

$$l = \left\lfloor \frac{\log(q-1)}{\log|A|} \right\rfloor \le 1 + \frac{\log k}{\log|A|}$$

Thus by Lemma 15, $\delta^*(A,q) \leq 16n_l \leq 16\frac{5}{24}4^l \leq \frac{40}{3}4^{\log k/\log |A|}$, thereby finishing the proof.

5. Estimating $\gamma^*(A,q)$ and Proof of Theorem 2

Let A be a multiplicative subgroup of \mathbb{F}_q^* containing f linearly independent points. We start by obtaining growth estimates for |nA|. If |A| = 1 then q = p and |nA| = 1 for any n. If |A| = 2 then q = p, $A = \pm 1$ and $|nA| = \min\{p, n + 1\}$. Next we note that

$$|4A| \ge \begin{cases} |A|^{3/2} & \text{if } |A-A|^2 < q|A|, \\ q^{1/2}|A|^{3/8}, & \text{otherwise.} \end{cases}$$
(13)

Indeed, by (7) and Lemma 14 (a) we have

$$|4A| \ge |A|^{1/2} |3A - 3A|^{1/2} = |A|^{1/2} |A_2|^{1/2} \ge |A|^{3/2}, \quad \text{if} \quad |A - A|^2 < q|A|.$$

Otherwise, $|A - A| \ge (q|A|)^{1/2}$. In particular, $|A|^2 > (q|A|)^{1/2}$, and so $|A| \ge q^{1/3}$. Thus, by (8), $|4A| \ge |A - A|^{15/16} \ge (q|A|)^{15/32} \ge q^{15/32} |A|^{3/32} |A|^{12/32} \ge q^{1/2} |A|^{3/8}$.

For $l \in \mathbb{N}$ set

$$m_l = \frac{5}{18}4^l - \frac{l}{3} + \frac{2}{9},$$

so that $m_1 = 1$, $m_2 = 4$, $m_3 = 17$, $m_4 = 70$, $m_5 = 283$ and $m_l = m_{l-1} + n_l$ for $l \ge 2$, with n_l as defined in the previous section.

Lemma 16. Let A be a multiplicative subgroup of \mathbb{F}_q^* containing f linearly independent points over \mathbb{F}_p . Then for $l \geq 1$ we have

$$|m_{l}A| \geq \begin{cases} |A|^{l-1+\frac{1}{2^{l-1}}}, & \text{if } l = 1, \text{ or } l \geq 2 \text{ and } |A_{l-1} - A_{l-1}| |A - A| < q |A|, \\ \max\left\{ \left(\frac{|A|}{|A - A|}\right)^{3/4} q^{3/4}, |A|^{1/4} q^{1/2} \right\}, & \text{otherwise.} \end{cases}$$

$$(14)$$

Proof. The result is trivial when l = 1. Assume that the theorem holds for l - 1 with $l \geq 2$. Suppose that $|A_{l-1} - A_{l-1}| |A - A| < q|A|$. In particular, if $l \geq 3$ then $|A_{l-2} - A_{l-2}| |A - A| < q|A|$. Then using $m_l = n_l + m_{l-1}$, inequality (7), the induction assumption and Lemma 14, we have

$$|m_l A| \ge |m_{l-1}A|^{1/2} |n_l A - n_l A|^{1/2} \ge |A|^{\left(l-2+\frac{1}{2^{l-2}}\right)\frac{1}{2}} |A|^{l/2} = |A|^{l-1+\frac{1}{2^{l-1}}}.$$

Suppose next that

$$|A_{l-1} - A_{l-1}| |A - A| \ge q |A|.$$
(15)

Then, since $m_l > n_l > 4n_{l-1}$, we have by inequality (8) that

$$|m_l A| \ge |2(2n_{l-1}A)| \ge |2n_{l-1}A - 2n_{l-1}A|^{3/4} = |A_{l-1} - A_{l-1}|^{3/4} \ge \left(\frac{q|A|}{|A-A|}\right)^{3/4}.$$

To prove the second inequality, $|m_l A| \ge |A|^{1/4} q^{1/2}$, under the assumption of (15), more work is required. A stronger result was established (13) for l = 2, so we assume $l \geq 3$. First observe that by Lemma 12, with X = A - A, if |2A - 2A||A - A| < q|A|, (so that by Lemma 13, $(X - X)/(A - A) \neq \mathbb{F}_q$), then

$$|5A - 5A| = |2(A - A)A - 2(A - A)A + A - A| \ge |A - A||A|,$$

and so by (15),

$$|5A-5A||2n_{l-1}A-2n_{l-1}A| = |5A-5A||A_{l-1}-A_{l-1}| \ge |A-A||A||A_{l-1}-A_{l-1}| \ge q|A|^2.$$

Since $2n_{l-1} > 5$ for $l \ge 3$, it follows that

$$|2n_{l-1}A - 2n_{l-1}A| > |5A - 5A|^{1/2} |2n_{l-1}A - 2n_{l-1}A|^{1/2} \ge q^{1/2} |A|.$$
(16)

Also, since for any set B, $|B - B| \le |B|^2$, using (15),

$$|2n_{l-1}A|^2 |A|^2 \ge |2n_{l-1}A - 2n_{l-1}A| |A - A| = |A_{l-1} - A_{l-1}| |A - A| \ge q|A|,$$

and so

$$|2n_{l-1}A|^2|A| \ge q.$$
(17)

Thus since $m_l > n_l > 4n_{l-1}$ we obtain from (7), (16) and (17),

$$\begin{split} m_l A &| \ge |4n_{l-1}A| \ge |2n_{l-1}A|^{1/2} |2n_{l-1}A - 2n_{l-1}A|^{1/2} \ge |2n_{l-1}A|^{1/2} q^{1/4} |A|^{1/2} \\ &= (|2n_{l-1}A|^{1/2} |A|^{1/4}) q^{1/4} |A|^{1/4} \ge q^{1/4} q^{1/4} |A|^{1/4} = q^{1/2} |A|^{1/4}. \end{split}$$

There remains the case $|2A - 2A||A - A| \ge q|A|$. In this case $|2A - 2A| \ge q|A|$ $q^{1/2}|A|^{1/2}$ and $|2A|^2|A| \ge q$. The latter implies $|2A| \ge (q/|A|)^{1/2}$. Thus, by (7),

$$|4A| \ge |2A|^{1/2} |2A - 2A|^{1/2} \ge q^{1/4} |A|^{-1/4} q^{1/4} |A|^{1/4} = q^{1/2},$$

and

$$|m_l A| \ge |6A| \ge |4A|^{1/2} |2A - 2A|^{1/2} \ge q^{1/4} q^{1/4} |A|^{1/4} = q^{1/2} |A|^{1/4},$$
 finishes the proof. $\hfill \Box$

which finishes the proof.

Lemma 17. Let A be a multiplicative subgroup of \mathbb{F}_q^* containing f linearly independent points over \mathbb{F}_p . Then for $l \geq 1$ we have

$$|m_l A| \ge \min\left\{ |A|^{l-1+\frac{1}{2^{l-1}}}, \sqrt{2q} \right\}.$$
 (18)

Proof. If l = 1 or |A| = 1 the statement is trivial. For |A| = 2,

$$|m_l A| \ge \min\{m_l + 1, q\} = \min\{\frac{5}{18}4^l - \frac{l}{3} + \frac{11}{9}, q\} \ge \min\{2^l, \sqrt{2q}\}.$$

For $|A| \ge 4$ the result follows from Lemma 16, since $q^{1/2}|A|^{1/4} \ge \sqrt{2q}$ in this case. For |A| = 3 and l = 2 the result follows from (13) in a similar manner. Suppose that |A| = 3 and $l \ge 3$. Then $A = \{1, \alpha, \alpha^2\} = \{1, \alpha, -1 - \alpha\}$, where α is a primitive cube root of 1, and $A - A = \{0, \pm(1-\alpha), \pm(2+\alpha), \pm(2\alpha+1)\}$, whence |A - A| = 7. Then, by Lemma 16, $|m_l A| \ge q^{3/4} |A|^{3/4} |A - A|^{-3/4} \ge (3/7)^{3/4} q^{3/4} \ge \sqrt{2q}$, provided that $q \ge 4(7/3)^3 = 50.8..$, and so the result follows from Lemma 16 when $q \ge 51$. We are left with testing the prime powers less than 50. If q is a prime then we can use the Cauchy-Davenport inequality to get $|m_k A| \ge |17A| \ge \min\{q, 35\} \ge \sqrt{2q}$. The prime powers remaining with 3|q - 1 are 4,16,25,49. We can't have q = 16 or 49 since $3|(2^2 - 1)$ and 3|(7 - 1), implying that A does not contain a set of f linearly independent points. For q = 4, $A = \mathbb{F}_4^*$, $2A = \mathbb{F}_4$ and trivially $|2A| \ge \sqrt{2q}$. For q = 25 one can check that $|3A| = 10 \ge \sqrt{50}$.

Applying Lemma 7 (b) with $A = B = m_l A$ we immediately obtain,

Lemma 18. Let A be a multiplicative subgroup of \mathbb{F}_q^* containing f linearly independent points over \mathbb{F}_p . If $|A| \ge (2q)^{\frac{1}{2}\left(l-1+\frac{1}{2^{l-1}}\right)^{-1}}$, then $8m_l^2 A = \mathbb{F}_q$.

In particular,

$$\begin{split} 8A &= \mathbb{F}_q \quad \text{for } |A| > q^{1/2}, \\ 128A &= \mathbb{F}_q \quad \text{for } |A| > 1.26 \ q^{1/3}, \\ 2312A &= \mathbb{F}_q \quad \text{for } |A| > 1.17 \ q^{2/9}, \\ 39200A &= \mathbb{F}_q \quad \text{for } |A| > 1.12 \ q^{4/25} \\ 640712A &= \mathbb{F}_q \quad \text{for } |A| > 1.09 \ q^{8/65} \end{split}$$

In comparison, for \mathbb{F}_p Cochrane and Pinner [9] obtained

$$\begin{split} 8A &= \mathbb{F}_p \quad \text{for } |A| > p^{1/2}, \\ 32A &= \mathbb{F}_p \quad \text{for } |A| > 3.91 \ p^{1/3} \\ 392A &= \mathbb{F}_p \quad \text{for } |A| > 2.78 \ p^{1/4} \\ 2888A &= \mathbb{F}_p \quad \text{for } |A| > 3.19 \ p^{1/5} \\ 12800A &= \mathbb{F}_p \quad \text{for } |A| > 2.28 \ p^{1/6} \\ 56448A &= \mathbb{F}_p \quad \text{for } |A| > 2.43 \ p^{1/7} \\ 228488A &= \mathbb{F}_p \quad \text{for } |A| > 1.91 \ p^{1/8} \end{split}$$

We cannot do quite as well for \mathbb{F}_q because we do not have a lower bound on |2A|. For \mathbb{F}_p it was shown in [9, Theorem 5.2] that $|2A| \ge \min\{\frac{1}{4}|A|^{3/2}, \frac{p}{2}\}$. We do not know if such a bound holds in \mathbb{F}_q .

Proof of Theorem 2. An integer l satisfies the hypothesis of Lemma 18 provided that

$$l + \frac{1}{2^{l-1}} \ge \frac{\log 2q}{2\log|A|} + 1.$$
⁽¹⁹⁾

We claim that the value

$$l = \left\lceil \frac{\log(2(q-1))}{2\log|A|} + 1 \right\rceil,$$

suffices. To see this, first observe that for this choice of l, $l < \log_2(4(q-1))$, that is, $q-1 > 2^{l-2}$, and so using the inequality

$$\log(2q) - \log(2(q-1)) = \log(q/(q-1)) < \frac{q}{q-1} - 1 = \frac{1}{q-1},$$

we have

$$\frac{\log(2q)}{2\log|A|} - \frac{\log(2(q-1))}{2\log|A|} < \frac{1}{2(q-1)\log|A|} < \frac{1}{2^{l-1}\log|A|} < \frac{1}{2^{l-1}}.$$

Thus (19) is satisfied, and so by Lemma 18, $\gamma^*(A,q) \leq 8m_l^2$. Since $m_l \leq \frac{5}{18}4^l$, we have

$$\begin{split} \gamma^*(A,q) &\leq 8(5/18)^2 4^{2\left\lceil \frac{\log 2(q-1)}{2\log|A|} + 1 \right\rceil} < 158.03 \cdot 4^{\frac{\log 2(q-1)}{\log|A|}} = 158.03(2(q-1))^{\log 4/\log|A|} \\ &= 158.03(2|A|k)^{\frac{\log 4}{\log|A|}} \leq 633(2k)^{\frac{\log 4}{\log|A|}}, \end{split}$$

completing the proof of Theorem 2.

We cannot do quite as well for
$$\mathbb{F}_q$$
 as for \mathbb{F}_p because we do not have a good lower bound on $|2A|$. For \mathbb{F}_p we were able to use the bound [9, Theorem 5.2], $|2A| \geq \min\{\frac{1}{4}|A|^{3/2}, \frac{p}{2}\}$. We do not know if such a bound holds in \mathbb{F}_q .

6. Proof of Theorem 4

For small |A| we use the method of Bovey [4] to bound $\delta(A, q)$ and $\gamma(A, q)$. We start by generalizing [4, Lemma 3]. For any *n*-tuple $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$ let $||u||_1 = \sum_{i=1}^n |u_i|$.

Lemma 19. Let \mathbb{F}_q be any finite field and $u_1, u_2, \ldots, u_n \in \mathbb{F}_q$. Let $T : \mathbb{Z}^n \to \mathbb{F}_q$ be the linear function $T(x_1, \ldots, x_n) = \sum_{i=1}^n x_i u_i$. Suppose that $v_1, \ldots, v_n \in \mathbb{Z}^n$ are linearly independent vectors over \mathbb{R} with $T(v_i) = 0$, $1 \leq i \leq n$. Then for any value a in the range of T there exists a vector $u \in \mathbb{Z}^n$ with T(u) = a and $\|u\|_1 \leq \frac{1}{2} \sum_{i=1}^n \|v_i\|_1$.

Proof. Let $w \in \mathbb{Z}^n$ with T(w) = a. Write $w = \sum_{i=1}^n y_i v_i$ for some $y_i \in \mathbb{R}$, $1 \le i \le n$. Say $y_i = x_i + \epsilon_i$ for some $x_i \in \mathbb{Z}$ and $\epsilon_i \in \mathbb{R}$ with $|\epsilon_i| \le 1/2, 1 \le i \le n$. Put $u = \sum_{i=1}^n \epsilon_i v_i = w - \sum_{i=1}^n x_i v_i$. Then $u \in \mathbb{Z}^n$, T(u) = a and $||u||_1 \le \frac{1}{2} \sum_{i=1}^n ||v_i||_1$. \Box

Proof of Theorem 4. By Theorem 9 (d), $\gamma(k,q) \leq (t-1)\delta(k,q)$, where t = |A|, and so it suffices to prove the statement of Theorem 4 for $\delta(k,q)$. Put $r = \phi(t)$. Let R be a primitive t-th root of unity in \mathbb{F}_q , $\Phi_t(x)$ be the t-th cyclotomic polynomial over \mathbb{Q} of degree r and ω be a primitive t-th root of unity over \mathbb{Q} . In particular, $\Phi_t(R) = 0$ and the set of nonzero k-th powers in \mathbb{F}_q is just $\{1, R, R^2, \ldots, R^{t-1}\}$. Let $f : \mathbb{Z}^r \to \mathbb{Z}[\omega]$ be given by

$$f(x_1, x_2, \dots, x_r) = x_1 + x_2\omega + \dots + x_r\omega^{r-1}.$$

Then f is a one-to-one \mathbb{Z} -module homomorphism.

Let $T: \mathbb{Z}^r \to \mathbb{F}_q$ be the linear map $T(x_1, \ldots, x_r) = \sum_{i=1}^r x_i R^{i-1}$ and \mathcal{L} be the lattice of points satisfying $T(x_1, \ldots, x_r) = 0$. Since the set of k-th powers $1, R, \ldots, R^{r-1}$ spans all of \mathbb{F}_q we have $Vol(\mathcal{L}) = q$. Thus by Minkowski's fundamental theorem there is a nonzero vector $v_1 = (a_1, a_2, \ldots, a_r)$ in \mathcal{L} with $|a_i| \leq q^{1/r}$, $1 \leq i \leq r$. For $2 \leq i \leq r$ set $v_i = f^{-1}(\omega^{i-1}f(v_1))$. Then v_1, \ldots, v_r form a set of linearly independent points in \mathcal{L} and so, by Lemma 19, for any $a \in \mathbb{F}_q$ there is an r-tuple of integers $u = (u_1, \ldots, u_r)$ such that

$$u_1 + u_2 R + u_3 R^2 + \dots + u_r R^{r-1} = a,$$

and $\sum_{i=1}^{r} |u_i| \leq \frac{1}{2} \sum_{i=1}^{r} ||v_i||_1$. Thus $\delta(k,q) \leq \frac{1}{2} \sum_{i=1}^{r} ||v_i||_1$. Now plainly $||v_i||_1 \ll_t q^{1/r}$, (indeed, as shown in [4], $||v_i||_1 \leq r(A(t)+1)^r p^{n/r}$, where A(t) is the maximal absolute value of the coefficients of $\Phi_t(x)$). Thus $\delta(k,q) \ll_t q^{1/r}$. \Box

7. Proof of Lemma 7(a)

Let $m \geq 3$ be a positive integer, $A, B \subseteq \mathbb{F}_q$, $A' = A - \{0\}$, $a \in \mathbb{F}_q$ and N denote the number of 2m-tuples $(x_1, \ldots, x_m, y_1, \ldots, y_m)$ with $x_1, x_2 \in A', x_3, \ldots, x_m \in A$, $y_i \in B, 1 \leq i \leq m$, and $x_1y_1 + \cdots + x_my_m = a$. Let ψ denote the additive character on $\mathbb{F}_q, \psi(z) = e^{2\pi i Tr(z)/p}$. Then

$$qN = |A'|^2 |A|^{m-2} |B|^m + \sum_{\lambda \neq 0} \sum_{x_1, x_2 \in A'} \sum_{x_3, \dots, x_m \in A} \sum_{y_i \in B} \psi(\lambda(x_1 y_1 + \dots + x_m y_m - a))$$

= $|A'|^2 |A|^{m-2} |B|^m + Error,$ (20)

with

$$Error = \sum_{\lambda \neq 0} \psi(-\lambda a) \left(\sum_{x \in A} \sum_{y \in B} \psi(\lambda xy) \right)^{m-2} \left(\sum_{x \in A'} \sum_{y \in B} \psi(\lambda xy) \right)^2.$$

Now, by the Cauchy-Schwarz inequality,

$$\left|\sum_{x \in A} \sum_{y \in B} \psi(\lambda xy)\right| \leq \sum_{y \in B} \left|\sum_{x \in A} \psi(\lambda xy)\right| \leq |B|^{1/2} \left(\sum_{y \in B} \left|\sum_{x \in A} \psi(\lambda xy)\right|^2\right)^{1/2}$$
$$\leq |B|^{1/2} \left(\sum_{y \in \mathbb{F}_q} \left|\sum_{x \in A} \psi(\lambda xy)\right|^2\right)^{1/2} = |B|^{1/2} (q|A|)^{1/2}.$$

Also,

$$\begin{split} &\sum_{\lambda \in \mathbb{F}_q} \left| \sum_{x \in A'} \sum_{y \in B} \psi(\lambda(xy)) \right|^2 = \sum_{x_1, x_2 \in A'} \sum_{y_1, y_2 \in B} \sum_{\lambda \in \mathbb{F}_q} \psi(\lambda(x_1y_1 - x_2y_2)) \\ &= q |\{(x_1, x_2, y_1, y_2) : x_1, x_2 \in A', y_1, y_2 \in B, x_1y_1 = x_2y_2\}| \le q |A'|^2 |B|, \end{split}$$

the latter following since $0 \notin A'$, so $x_1y_1 = x_2y_2$ can be written $y_1 = x_1^{-1}x_2y_2$. Thus,

$$\begin{split} |Error| &\leq |A|^{\frac{m-2}{2}} |B|^{\frac{m-2}{2}} q^{\frac{m-2}{2}} \sum_{\lambda \neq 0} \left| \sum_{x \in A'} \sum_{y \in B} \psi(\lambda(xy)) \right|^2 \\ &= |A|^{\frac{m-2}{2}} |B|^{\frac{m-2}{2}} q^{\frac{m-2}{2}} \left(\sum_{\lambda \in \mathbb{F}_q} \left| \sum_{x \in A'} \sum_{y \in B} \psi(\lambda(xy)) \right|^2 - |A'|^2 |B|^2 \right) \\ &\leq |A|^{\frac{m-2}{2}} |B|^{\frac{m-2}{2}} q^{\frac{m-2}{2}} \left(q|A'|^2 |B| - |A'|^2 |B|^2 \right) \\ &= |A|^{\frac{m-1}{2}} |A'|^2 |B|^{\frac{m}{2}} q^{\frac{m}{2}} \left(1 - \frac{|B|}{q} \right), \end{split}$$

and we see that the main term in (20) exceeds the error term provided that

$$|A|^{\frac{m}{2}-1}|B|^{\frac{m}{2}} > q^{\frac{m}{2}} \left(1 - \frac{|B|}{q}\right).$$

References

- M. Bhaskaran, Sums of m-th powers in algebraic and abelian number fields, Arch. Math. (Basel) 17 (1966), 497-504; Correction, ibid. 22 (1972), 370-371.
- [2] J. Bourgain, Mordell's exponential sum estimate revisited, J. Amer. Math. Soc. 18, no. 2 (2005), 477-499.
- [3] J. Bourgain, A.A. Glibichuk and S.V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. (2) 73 (2006), 380-398.

- [4] J. D. Bovey, A new upper bound for Waring's problem (mod p), Acta Arith. 32 (1977), 157-162.
- [5] A. Cauchy, Recherches sur les nombres, J. Ecole Polytechnique 9 (1813), 99-116.
- [6] J.A. Cipra, Waring's number in a finite field, Integers 9 (2009), 435-440.
- [7] J.A. Cipra, Waring's Number over Finite Fields, Ph.D. Thesis, Kansas State University, 2009.
- [8] J. A. Cipra, T. Cochrane and C. Pinner, Heilbronn's conjecture on Waring's number (mod p), J. Number Theory 125 (2007), no. 2, 289-297.
- [9] T. Cochrane and C. Pinner, Sum-product estimates applied to Waring's problem mod p, Integers 8 (2008), 1-18.
- [10] M. M. Dodson, On Waring's problem in GF[p], Acta Arith. 19 (1971), 147-173.
- [11] M. M. Dodson and A. Tietäväinen, A note on Waring's problem in GF[p], Acta Arith. 30 (1976), 159-167.
- [12] A.A. Glibichuk, Combinatorial properties of sets of residues modulo a prime and the Erdös-Graham problem, Mat. Zametki 79, no. 3, (2006), 384-395. Translated in Math. Notes 79, no. 3, (2006), 356-365.
- [13] A.A. Glibichuk, Additive properties of products of subsets in the field \mathbb{F}_{p^2} , (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2009, , no. 1, 3-8, 71; translation in Moscow Univ. Math. Bull. 64 (2009), no. 1, 1-6.
- [14] A.A. Glibichuk, Sums of powers of subsets of an arbitrary finite field, Izvestiya Math 75 (2011), no. 2, 253-285.
- [15] A.A. Glibichuk and S.V. Konyagin, Additive properties of product sets in fields of prime order, Additive combinatorics, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007, 279-286.
- [16] A.A. Glibichuk and M. Rudnev, On additive properties of product sets in an arbitrary finite field, (English summary) J. Anal. Math. 108 (2009), 159170.
- [17] H. Heilbronn, Lecture Notes on Additive Number Theory mod p, California Institute of Technology (1964).
- [18] S. V. Konyagin, On estimates of Gaussian sums and Waring's problem for a prime modulus, Trudy Mat. Inst. Steklov 198 (1992), 111-124; translation in Proc. Steklov Inst. Math. 1994, 105-107.
- [19] M.B. Nathanson, Additive Number Theory, Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer, New York, 1996.
- [20] A. Tietäväinen, Proof of a conjecture of S. Chowla, J. Number Theory 7 (1975), 353-356.
- [21] L. Tornheim, Sums of n-th powers in fields of prime characteristic, Duke Math J. (1938), 359-362.
- [22] A. Winterhof, On Waring's problem in finite fields, Acta Arith. 87 (1998), 171-177.
- [23] A. Winterhof, A note on Waring's problem in finite fields, Acta Arith. 96 (2001), 365-368.