SUM-PRODUCT ESTIMATES APPLIED TO WARING'S PROBLEM OVER FINITE FIELDS

Todd Cochrane ${ }^{1}$
Department of Mathematics, Kansas State University, Manhattan, Kansas
cochrane@math.ksu.edu
James Cipra
Department of Mathematics, Kansas State University, Manhattan, Kansas
cipra@math.ksu.edu

Received: 5/13/11, Accepted: 10/31/11, Published: 11/2/11

Abstract

Let A be the set of nonzero k-th powers in \mathbb{F}_{q} and $\gamma^{*}(k, q)$ denote the minimal n such that $n A=\mathbb{F}_{q}$. We use sum-product estimates for $|n A|$ and $|n A-n A|$, following the method of Glibichuk and Konyagin to estimate $\gamma^{*}(k, q)$. In particular, we obtain $\gamma^{*}(k, q) \leq 633(2 k)^{\log 4 / \log |A|}$ for $|A|>1$ provided that $\gamma^{*}(k, q)$ exists.

1. Introduction

Let \mathbb{F}_{q} be a finite field in $q=p^{f}$ elements and k be a positive integer. The smallest s such that the equation

$$
\begin{equation*}
x_{1}^{k}+x_{2}^{k}+\cdots+x_{s}^{k}=a \tag{1}
\end{equation*}
$$

is solvable for all $a \in \mathbb{F}_{q}$ (should such an s exist) is called Waring's number for \mathbb{F}_{q}, denoted $\gamma(k, q)$. Similarly, the smallest s such that

$$
\begin{equation*}
\pm x_{1}^{k} \pm x_{2}^{k} \pm \cdots \pm x_{s}^{k}=a \tag{2}
\end{equation*}
$$

is solvable for all $a \in \mathbb{F}_{q}$ is denoted $\delta(k, p)$. If $d=(k, q-1)$ then clearly $\gamma(d, q)=$ $\gamma(k, q)$ and so we may assume $k \mid(q-1)$. If A is the multiplicative subgroup of k-th powers in \mathbb{F}_{q}^{*} then we write

$$
\gamma(A, q)=\gamma(k, q), \quad \delta(A, q)=\delta(k, q)
$$

Also, we let $\gamma^{*}(A, q), \delta^{*}(A, q)$ denote the minimal s such that every element of \mathbb{F}_{q} is the sum (\pm sum) of exactly s nonzero k-th powers, that is, (1), (2) resp. are

[^0]solvable with all $x_{i} \neq 0$. It is well-known that $\gamma(A, q), \delta(A, q), \gamma^{*}(A, q), \delta^{*}(A, q)$ exist if and only if A contains a set of f linearly independent points over \mathbb{F}_{p}; see Lemma 6.

For any subsets S, T of \mathbb{F}_{q} and positive integer n, let

$$
\begin{gathered}
S+T=\{s+t: s \in S, t \in T\}, \quad S-T=\{s-t: s \in S, t \in T\} \\
n S=S+S+\cdots+S \text { (n-times), } \quad S T=\{s t: s \in S, t \in T\}, \quad S^{n}=S S \cdots S \text { (n-times). }
\end{gathered}
$$

Note that $(n S) T \subseteq n(S T)$. We let $n S T$ denote the latter, $n(S T)$. Also, for any $a \in \mathbb{F}_{q}$ we let $a S=\{a s: s \in S\}$.

If A is a multiplicative subgroup of \mathbb{F}_{q}^{*} then $\gamma^{*}(A, q)$ (if it exists) is the minimal s such that $s A=\mathbb{F}_{q}$, while $\gamma(A, q)$ is the minimal s such that $s A_{0}=\mathbb{F}_{q}$, where $A_{0}=A \cup\{0\}$. It is well-known that $\gamma(k, q) \leq k$ with equality if $k=q-1$ or $(q-1) / 2$. This was first observed by Cauchy [5] for the case $q=p$. Our first result is the analogue for $\gamma^{*}(k, q)$. The proof makes use of Kneser's lower bound for $|A+B|$.

Theorem 1. If A is the multiplicative subgroup of k-th powers in $\mathbb{F}_{q}^{*},|A|>2$ and $\gamma^{*}(A, q)$ exists, then $\gamma^{*}(A, q) \leq k+1$. When $|A|=2$ (that is, q is an odd prime and $A=\{ \pm 1\}$) then $\gamma^{*}(A, q)=2 k$.

For $|A|>2$ it was established by Tietäväinen [20], for odd q, and by Winterhof [22], [23, Lemma 1], for even q, that $\gamma(A, q) \leq[k / 2]+1$. It is an open question whether the same improvement holds for $\gamma^{*}(A, q)$. For the case of prime fields Heilbronn [17] formulated two conjectures, which in the more general setting of \mathbb{F}_{q} can be stated as follow:

1. If $|A|>2$ then $\gamma(A, q) \ll \sqrt{k}$.
2. For any $\epsilon>0$ there exists a constant $c(\epsilon)$ such that if $|A|>c(\epsilon)$ then $\gamma(A, q) \ll_{\epsilon} k^{\epsilon}$.

The second conjecture was proven by Konyagin [18] for prime fields. Cipra, Cochrane and Pinner [8] established the first conjecture for prime fields, and the explicit bound $\gamma(A, p) \leq 83 \sqrt{k}$ was obtained in [9]. Cipra [6, Theorem 4] proved the first conjecture for the general finite field \mathbb{F}_{q}, obtaining

$$
\gamma(A, q) \leq \begin{cases}16 \sqrt{k+1}, & \text { for } q=p^{2} \tag{3}\\ 10 \sqrt{k+1}, & \text { for } q=p^{f}, f \geq 3\end{cases}
$$

whenever $\gamma(A, q)$ is defined.
Next, let $A^{\prime}=A \cap \mathbb{F}_{p}$, so that $\left|A^{\prime}\right|=(|A|, p-1)$. Cipra [6], sharpening the work of Winterhof [22], established the bound

$$
\begin{equation*}
\gamma(k, q) \leq 8 f\left\lceil\frac{(k+1)^{1 / f}-1}{\left|A^{\prime}\right|}\right\rceil \tag{4}
\end{equation*}
$$

whenever $\gamma(k, q)$ exists. He also established the bound

$$
\begin{equation*}
\gamma(k, q) \ll f k^{\frac{\log 4}{f \log \left|A^{\top}\right|}} \log \log (k) \tag{5}
\end{equation*}
$$

which resolved the second Heilbronn conjecture provided $\left|A^{\prime}\right|^{f}$ is sufficiently large.
For prime fields Glibichuk and Konyagin [15] used methods of additive combinatorics to obtain

$$
\begin{equation*}
\gamma^{*}(A, p) \leq 400 k^{\frac{\log 4}{\log |A|}} \tag{6}
\end{equation*}
$$

for any multiplicative subgroup A with $|A|>1$. Cochrane and Pinner [9, Corollary 7.1] obtained a similar bound for $q=p$, and Glibichuk [13] established the same type of bound for $q=p^{2}$. The main result of this paper is a generalization of (6) to arbitrary \mathbb{F}_{q}, thus resolving the second Heilbronn conjecture for any finite field.

Theorem 2. If A is a multiplicative subgroup of \mathbb{F}_{q}^{*} for which $\gamma^{*}(A, q)$ is defined and $|A|>1$, then with $k=(q-1) /|A|$, we have

$$
\gamma^{*}(A, q) \leq 633(2 k)^{\frac{\log 4}{\log |A|}}
$$

After submitting this work, the author's learned that Glibichuk [14, Corollary 1] recently proved a similar result, albeit with weaker constants. In particular, if $|A|=$ p^{ϵ}, then our result gives $\gamma^{*}(A, q) \ll 4^{1 / \epsilon}$, whereas his result gives $\gamma^{*}(A, q) \ll 6^{1 / \epsilon}$.

For $\delta^{*}(A, q)$ we establish the stronger bound,
Theorem 3. If A is a multiplicative subgroup of \mathbb{F}_{q}^{*} for which $\delta^{*}(A, q)$ is defined and $|A|>1$, then with $k=(q-1) /|A|$, we have

$$
\delta^{*}(A, q) \leq(40 / 3) k^{\frac{\log 4}{\log |A|}}
$$

As noted in Theorem 9, if q is even or $|A|$ is even then $\gamma^{*}(A, q)=\delta^{*}(A, q)$ and thus the stronger bound in Theorem 3 applies to $\gamma^{*}(A, q)$ as well. Further relations between $\delta(A, q)$ and $\gamma(A, q)$ are given in Theorem 9 . The exponent on k in the theorem improves on (5) when $|A|>(|A|, p-1)^{f}$ and on (4) when $|A|>4^{f}$. For small $|A|(|A|=O(1)$ as $p \rightarrow \infty)$ one can obtain a stronger result by employing the lattice method of Bovey. In this manner we prove,

Theorem 4. For any positive integer there is a constant $c_{1}(t)$ such that if A is a multiplicative subgroup of \mathbb{F}_{q}^{*} with $|A|=t$, and such that $\gamma(A, q)$ is defined, then

$$
\gamma(A, q) \leq c_{1}(t) k^{1 / \phi(t)}
$$

The constant $c_{1}(t)$, estimated in [4] for prime fields, depends on the size of the coefficients of the cyclotomic polynomial of order t.

Corollary 5. For any positive integer l there is a constant $c(l)$ such that if A is a multiplicative subgroup of \mathbb{F}_{q}^{*} of order t such that $\phi(t) \geq l$ and $\gamma(A, q)$ exists, then $\gamma(A, q) \leq c(l) k^{1 / l}$.

Proof. Suppose that $\phi(t) \geq l$. Put $c=\max _{t \leq 4^{l}} c_{1}(t), c(l)=\max \left\{c, 2^{1 / l} 633\right\}$, with $c_{1}(t)$ as defined in Theorem 4. If $t>4^{l}$ then, by Theorem $2, \gamma(k, q) \leq 633 \cdot 2^{1 / l} k^{1 / l} \leq$ $c(l) k^{1 / l}$. If $t \leq 4^{l}$ then, by Theorem $4, \gamma(k, q) \leq c k^{1 / \phi(t)} \leq c(l) k^{1 / l}$.

2. Preliminary Lemmas

The first lemma gives equivalent conditions for the existence of $\gamma(k, q)$. It is wellknown, and follows from the fact that the set of all sums of k-th powers is a multiplicatively closed set and therefore a subfield of \mathbb{F}_{q}; see Tornheim [21, Lemma 1], or Bhaskaran [1].

Lemma 6. Let A be the set of nonzero k-th powers in \mathbb{F}_{q}. The following are equivalent.
(i) $\gamma(k, q)$ exists, that is, every element of \mathbb{F}_{q} is a sum of k-th powers.
(ii) A is not contained in any proper subfield of \mathbb{F}_{q}; that is, A contains a set of f linearly independent points over \mathbb{F}_{p}.
(iii) $|A|$ does not divide $p^{j}-1$ for any $j \mid f, j<f$, that is, $\frac{p^{f}-1}{p^{j}-1}$ does not divide k for any $j \mid f, j<f$.

It is also not hard to show that $\gamma^{*}(A, q)$ exists if and only if $|A|>1$ and $\gamma(A, q)$ exists.

An important tool needed throughout this paper is Rusza's triangle inequality (see, e.g., Nathanson [19, Lemma 7.4]),

$$
\begin{equation*}
|S+T| \geq|S|^{1 / 2}|T-T|^{1 / 2} \tag{7}
\end{equation*}
$$

for any $S, T \subseteq \mathbb{F}_{q}$, and its corollary

$$
\begin{equation*}
|n S| \geq|S|^{\frac{1}{2^{n-1}}}|S-S|^{1-\frac{1}{2^{n-1}}} \geq|S-S|^{1-\frac{1}{2^{n}}} \tag{8}
\end{equation*}
$$

for any positive integer n. The first inequality in (8) follows by induction on n, and the second from the trivial bound $|S-S| \leq|S|^{2}$.

The following is a key lemma for showing that a sum-product set fills up \mathbb{F}_{q}.
Lemma 7. Let A, B be subsets of \mathbb{F}_{q} and $m \geq 3$ be a positive integer.
(a) If $|B \| A|^{1-\frac{2}{m}}>q\left(1-\frac{|B|}{q}\right)^{2 / m}$ then $m A B=\mathbb{F}_{q}$.
(b) If $|B||A| \geq 2 q$ then $8 A B=\mathbb{F}_{q}$.
(c) If $|B||A|>q$ and either A or B is symmetric $(A=-A)$ or antisymmetric $(A \cap-A=\emptyset)$ then $8 A B=\mathbb{F}_{q}$.

A slightly weaker form of part (a) was proven by Bourgain [2, Lemma 1] for $q=p$ and $m=3$ and by Cochrane and Pinner [9, Lemma 2.1] for $q=p$ and general m. A similar proof works for \mathbb{F}_{q} and is provided in Section 7. In the earlier versions of this statement, an extra hypothesis, $0 \notin A$, was included, and the factor $\left(1-\frac{|B|}{q}\right)^{2 / m}$ was excluded.

Part (b) is due to Glibichuk and Konyagin [15, Lemma 2.1] for prime fields and to Glibichuk and Rudnev [16] for general \mathbb{F}_{q}. Part (c) is due to Glibichuk [12] for prime fields and to Glibichuk and Rudnev [16] as well as Cipra [7] for general \mathbb{F}_{q}. In particular, if A is a multiplicative subgroup, then applying (c) with $B=A$ we see that $\gamma^{*}(A, q) \leq 8$ provided that $|A|>\sqrt{q}$.

In the cases where $|A|=3,4$ or 6 one can actually evaluate $\gamma(A, q)$. This was done in [8] for the case of prime moduli.

Theorem 8. Let A is a multiplicative subgroup of \mathbb{F}_{q} of order 3,4 or 6 for which $\gamma(A, q)$ exists. Then $q=p$ or p^{2}. If $q=p^{2}$ then $\gamma(A, q)=p-1$. If $q=p$ then

$$
\gamma(A, p)= \begin{cases}a+b-1, & \text { if }|A|=3 \\ c-1, & \text { if }|A|=4, \\ \left\lfloor\frac{2}{3} a+\frac{1}{3} b\right\rfloor, & \text { if }|A|=6\end{cases}
$$

where, if $|A|=3$ or 6 , then a, b are the unique positive integers with $a>b$ and $a^{2}+b^{2}+a b=p$, while if $|A|=4$ then c, d are the unique positive integers with $c>d$ and $c^{2}+d^{2}=p$.

In particular, for $|A|=3,4$ or 6 we have

$$
\begin{array}{cl}
\sqrt{3 k+1}-1 \leq \gamma(A, q) \leq 2 \sqrt{k}, & \text { if }|A|=3 \\
\sqrt{2 k}-1 \leq \gamma(A, q) \leq 2 \sqrt{k}-1, & \text { if }|A|=4 \\
\sqrt{2 k}-\frac{1}{2} \leq \gamma(A, q) \leq \frac{2}{3} \sqrt{6 k}, & \text { if }|A|=6
\end{array}
$$

Proof. Since $|A|=3,4$ or 6 , every element of A is of degree 1 or 2 over \mathbb{F}_{p} and therefore $A \subset \mathbb{F}_{p^{2}}$. Thus, in order for $\gamma(k, q)$ to exist we must have $q=p$ or p^{2}. The case $q=p$ is just Theorem 2 of [8] and the case $q=2^{2}$ is trivial, so we shall assume $q=p^{2}$ with p an odd prime and that A is not contained in \mathbb{F}_{p}.

Case i: $|A|=3$. Say $A=\left\{1, T, T^{2}\right\}$ where $T \in \mathbb{F}_{p^{2}}-\mathbb{F}_{p}$ satisfies $T^{2}+T+1=0$. In particular, $p \equiv 2(\bmod 3)$. We claim that $\gamma(A, q)=p-1$ and consequently, since $3 k=p^{2}-1, \gamma(k, q)=\sqrt{3 k+1}-1$. Let $w=x+y T$ denote a typical element of \mathbb{F}_{q} where $0 \leq x, y \leq p-1$ and let $\gamma(w)$ denote the minimal number of elements of A required to represent w. First note that $\gamma(0)=3$ since $1+T+T^{2}=0$ so we assume that $w \neq 0$. Suppose that $x \leq y$. If $x+y<p$ then trivially $\gamma(w)<p$. If $x \leq y<2 x$ then we write $w=(y-x) T+(p-x) T^{2}$ and get $\gamma(w) \leq p+y-2 x<p$. If $y \geq 2 x$ and $y>\frac{2}{3} p$ then we write $w=(x-y+p) \cdot 1+(p-y) T^{2}$
and get $\gamma(w) \leq(x-2 y+2 p) \leq 2 p-\frac{3}{2} y<p$. If $y \geq 2 x$ and $y<\frac{2}{3} p$, then $x+y \leq \frac{3}{2} y<p$. A similar argument holds for $x \geq y$. Finally, one can check that $\gamma\left(\frac{1}{3}(p+1)+\frac{2}{3}(p+1) T\right)=p-1$.

Case ii: $|A|=4$. Say $A=\{ \pm 1, \pm T\}$, with $T^{2}=-1, T \in \mathbb{F}_{p^{2}}-\mathbb{F}_{p}$. In particular, $p \equiv 3(\bmod 4)$. Any element of \mathbb{F}_{q} may be written $x+y T$ with $|x|,|y| \leq \frac{p-1}{2}$, and so $\gamma(A, q) \leq p-1$. Also, it is plain that $\gamma\left(\frac{p-1}{2}+\frac{p-1}{2} T\right)=p-1$. Thus, $\gamma(A, q)=p-1$.

Case iii: $|A|=6$. Say $A=\left\{ \pm 1, \pm T, \pm T^{2}\right\}$ with $T^{2}-T+1=0$. As in case ii, any element of \mathbb{F}_{q} may be written $x+y T$ with $|x|,|y| \leq \frac{p-1}{2}$, and so $\gamma(A, q) \leq p-1$. Also, with just a little work one again sees that $\gamma\left(\frac{p-1}{2}+\frac{p-1}{2} T\right)=p-1$. Thus, $\gamma(A, q)=p-1$.

The precise relationship between $\gamma(k, q)$ and $\delta(k, q)$ is an important unresolved problem. It is not known whether $\gamma(k, q) \leq C \delta(k, q)$ for some constant C. Bovey [4, Lemma 2] established $\gamma(k, p) \leq\left(\log _{2} p+1\right) \delta(k, p)$ for prime moduli, and improvements were given in [8]. Here we prove the analogue of [8, Theorem 4.1] for general finite fields.

Theorem 9. Let A be the set of nonzero k-th powers in \mathbb{F}_{q} with $k \mid(q-1)$, such that $\gamma(k, q)$ is defined. Then,
(a) $\gamma(k, q) \leq 3\left\lceil\log _{2}\left(\frac{3 \log q}{\log |A|}\right)\right] \delta(k, q)$.
(b) $\gamma(k, q) \leq 3\left\lceil\log _{2}(4 \delta(k, q))\right\rceil \delta(k, q)$
(c) $\gamma(k, q) \leq 2\left\lceil\log _{2}\left(\log _{2}(q)\right)\right\rceil \delta(k, q)$.
(d) $\gamma(k, q) \leq\left(p_{\text {min }}-1\right) \delta(k, q)$, where $p_{\text {min }}$ is the minimal prime divisor of $|A|$.
(e) If q is even or $|A|$ is even then $\delta(k, q)=\gamma(k, q)$. If $|A|$ is odd and p is odd, then $\delta(k, q)=\gamma\left(\frac{k}{2}, q\right)$.

Proof. a) Put $A_{0}=A \cup\{0\}, \delta=\delta(k, q)$. Since $\delta A_{0}-\delta A_{0}=\mathbb{F}_{q}$ we obtain from (8), (observing that this inequality is strict for $|S|>1$),

$$
\begin{equation*}
\left|j \delta A_{0}\right|>\left|\delta A_{0}-\delta A_{0}\right|^{1-1 / 2^{j}}=q^{1-1 / 2^{j}} \tag{9}
\end{equation*}
$$

for any positive integer j. Hence if $j \geq \log _{2}\left(\frac{3 \log q}{\log |A|}\right)$ we have $\left|j \delta A_{0}\right||A|^{\frac{1}{3}} \geq q$, and so by Lemma 7 (a) with $m=3,3\left(j \delta A_{0}\right) A=\mathbb{F}_{q}$, that is, $3 j \delta A_{0}=\mathbb{F}_{q}$.
b) This follows from part (a) and the trivial bound $(2|A|+1)^{\delta} \geq q$, when $|A| \geq 11$. Indeed, in this case,

$$
\frac{\log q}{\log |A|} \leq \delta \frac{\log (2|A|+1)}{\log |A|}<\frac{4}{3} \delta
$$

For $|A|<11$, the result follow from part (d) of this theorem, since $p_{\text {min }} \leq 7$ for such $|A|$.
c) We repeat the proof given by Cipra [6]. If $j \geq \log _{2}\left(\log _{2}(q)\right)$ then $q^{1 / 2^{j}} \leq 2$ and so by (9), $|j \delta A|>q / 2$. Thus, $2 j \delta A=\mathbb{F}_{q}$. (Here we have used the fact that if S is a subset of a finite group G with $|S|>|G| / 2$ then $S+S=G$.)
d) Let ℓ be the minimal prime divisor of $|A|$. Then A has a subgroup G of order ℓ and $\sum_{x \in G} x=0$ so that -1 is a sum of $\ell-1$ elements of A.
e) If q is even then $1=-1$, and so trivially $\delta(k, q)=\gamma(k, q)$. If $|A|$ is even then -1 is a k-th power, and so again $\gamma(k, q)=\delta(k, q)$. If $|A|$ is odd then k must be even (for $p \neq 2$) and $A \cup(-A)$ is the set of $k / 2$-th powers.

3. Proof of Theorem 1

Let $k \mid(q-1), A$ be the set of nonzero k-th powers in \mathbb{F}_{q} and $A_{0}=A \cup\{0\}$. Before addressing Theorem 1, which is concerned with representing elements as sums of nonzero k-th powers, we start by reviewing the proof of Cauchy's theorem, $\gamma(k, q) \leq k$, which allows for some terms to be zero. For any positive integer n,

$$
n A_{0}=\{0\} \cup A x_{1} \cdots \cup A x_{l}
$$

for some distinct cosets $A x_{i}$ of $A, 1 \leq i \leq l$. If $n A_{0} \neq \mathbb{F}_{q}$ then $(n+1) A_{0}$ contains $n A_{0}$ and, assuming that $\gamma(k, q)$ exists, must be strictly larger. Therefore, $\left|(n+1) A_{0}\right| \geq$ $\left|n A_{0}\right|+|A|$. By induction we get a Cauchy-Davenport type inequality,

$$
\begin{equation*}
\left|n A_{0}\right| \geq \min \{q, 1+n|A|\} \tag{10}
\end{equation*}
$$

for $n \geq 1$, and in view of the equality $k|A|=q-1$, deduce that $\gamma(k, q) \leq k$ whenever $\gamma(k, q)$ exists. To estimate $\gamma^{*}(k, q)$ we have to work a little harder since $(n+1) A$ doesn't contain $n A$ in general, so it is not immediate that it has larger cardinality. However, we are able to recover the following analogue of (10), and Theorem 1 is an immediate consequence.

Lemma 10. If A is a multiplicative subgroup of \mathbb{F}_{q}^{*} containing f linearly independent points over \mathbb{F}_{p} and $|A|>2$, then for any positive integer $n,|n A| \geq$ $\min \{q, n|A|\}$.

Proof. Let A be a multiplicative subgroup of \mathbb{F}_{q} containing f linearly independent points over \mathbb{F}_{p}. We first show that if B is any subset of \mathbb{F}_{q} such that $A B \subset B$ then either $A+B=\mathbb{F}_{q}$ or $|A+B| \geq|A|+|B|-1$. This follows from Kneser's inequality (see [19, Theorem 4.1]): $|A+B| \geq|A|+|B|-|\operatorname{stab}(A+B)|$, where $\operatorname{stab}(A+B)=\left\{x \in \mathbb{F}_{q}: A+B+x=A+B\right\}$, an additive subgroup of \mathbb{F}_{q}, that is, an \mathbb{F}_{p} subspace of \mathbb{F}_{q}. We need only establish that if $\operatorname{stab}(A+B) \neq\{0\}$ then $A+B=\mathbb{F}_{q}$. Suppose x is a nonzero element of $\operatorname{stab}(A+B)$. Then $A+B+x=A+B$. Since $A B \subset B$ and $A A=A$ we get $A+B+A x \subset A+B$. Thus $A x \subset \operatorname{stab}(A+B)$, but
$A x$ contains f linearly independent points over \mathbb{F}_{p}. Thus $\operatorname{stab}(A+B)$ is of dimension f over \mathbb{F}_{p}, and so $\operatorname{stab}(A+B)=\mathbb{F}_{q}$. Plainly, we must also have $A+B=\mathbb{F}_{q}$ since for any point $c \in A+B, c+\operatorname{stab}(A+B) \subset A+B$.

Now let n be any positive integer and $B=n A$. Then $A B \subset B$ and so either $(n+1) A=\mathbb{F}_{q}$ or $|(n+1) A| \geq|n A|+|A|-1$. The proof now follows by induction on n. Suppose $|n A| \geq n|A|$ for a given n and that $(n+1) A \neq \mathbb{F}_{q}$. Then $|(n+1) A| \geq$ $(n+1)|A|-1$, but $(n+1) A$ is a union of cosets of A together (possibly) with 0 . If $|A|>2$, this forces $(n+1) A$ to be a union of at least $(n+1)$ cosets of A together (possibly) with 0 . Thus $|(n+1) A| \geq(n+1)|A|$.

When $|A|=2$; that is, $q=p$ and $A=\{ \pm 1\}$, then $|n A|=n+1$ for $n<p$. Thus $\gamma^{*}(A, q)=p-1=2 k$.

4. Estimating $\delta^{*}(A, q)$ and Proof of Theorem 3

Following the method of Glibichuk and Konyagin [15], for any subsets X, Y of \mathbb{F}_{q} let

$$
\frac{X-X}{Y-Y}=\left\{\frac{x_{1}-x_{2}}{y_{1}-y_{2}}: x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y, y_{1} \neq y_{2}\right\}
$$

The key lemma is a generalization of a lemma of Glibichuk and Konyagin [15, Lemma 3.2] to finite fields.
Lemma 11. Let $q=p^{f}, X, Y \subseteq \mathbb{F}_{q}$ and $a_{1}, a_{2}, \ldots, a_{f} \in \mathbb{F}_{q}$ be a set of f linearly independent points over \mathbb{F}_{p}. If $\frac{X-X}{Y-Y} \neq \mathbb{F}_{q}$ then for some a_{i} we have

$$
\left|2 X Y-2 X Y+a_{i} Y^{2}-a_{i} Y^{2}\right| \geq|X||Y|
$$

Proof. Let $S=\frac{X-X}{Y-Y}$. Assume $S \neq \mathbb{F}_{q}$ and that a_{1}, \ldots, a_{f} are linearly independent values in \mathbb{F}_{q}. We claim that for some $a_{i}, S+a_{i} \nsubseteq S$, for otherwise $S+k_{1} a_{1}+k_{2} a_{2}+$ $\cdots+k_{f} a_{f} \subseteq S$ for all nonnegative integers k_{1}, \ldots, k_{f}, implying that $S=\mathbb{F}_{q}$. Say $\frac{x_{1}-x_{2}}{y_{1}-y_{2}}+a_{i} \notin S$, for some $x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y$. Then the mapping from $X \times Y$ into $2 X Y-2 X Y+a_{i} Y^{2}-a_{i} Y^{2}$ given by

$$
(x, y) \rightarrow\left(y_{1}-y_{2}\right) x+\left(x_{1}-x_{2}+a_{i} y_{1}-a_{i} y_{2}\right) y
$$

is one-to-one and the lemma follows.
Applying the lemma to a multiplicative subgroup A of \mathbb{F}_{q}^{*} containing a set a_{1}, \ldots, a_{f} of linearly independent points, we immediately obtain,

Lemma 12. Let A be a multiplicative subgroup of \mathbb{F}_{q}^{*} containing f linearly independent points over \mathbb{F}_{p} and X be any subset of \mathbb{F}_{q} such that $A X \subseteq X$ and $\frac{X-X}{A-A} \neq \mathbb{F}_{q}$. Then

$$
|2 X-2 X+A-A| \geq|X||A|
$$

We also need the following elementary result.
Lemma 13. Let A be a multiplicative subgroup of \mathbb{F}_{q}^{*} and X, Y be subsets of \mathbb{F}_{q} such that $A X \subseteq X, A Y \subseteq Y$. If $|X-X||Y-Y| \leq q|A|$ then $\frac{X-X}{Y-Y} \neq \mathbb{F}_{q}$.

Proof. If $c=\left(x_{1}-x_{2}\right) /\left(y_{1}-y_{2}\right)$ for some $x_{1}, x_{2} \in X, y_{1} \neq y_{2} \in Y$, then $c=$ $\left(a x_{1}-a x_{2}\right) /\left(a y_{1}-a y_{2}\right)$ for any $a \in A$. Thus

$$
\left|\frac{X-X}{Y-Y}\right| \leq \frac{|X-X|(|Y-Y|-1)}{|A|}
$$

Since the right-hand side is less than q by assumption, the result follow.
For $l \in \mathbb{N}$, let $n_{1}=1$ and $n_{l}=\frac{5}{24} 4^{l}-\frac{1}{3}$, for $l \geq 2$, so that $n_{2}=3, n_{3}=13$, $n_{4}=53, n_{5}=213$ and

$$
\begin{equation*}
n_{l+1}=4 n_{l}+1, \quad \text { for } l \geq 2 \tag{11}
\end{equation*}
$$

Put $A_{1}=A$ and, for $l \geq 2, A_{l}=\left(n_{l} A-n_{l} A\right)$ so that, for $l \geq 2$,

$$
\begin{equation*}
2 A_{l-1}-2 A_{l-1}+A-A=A_{l} \tag{12}
\end{equation*}
$$

Lemma 14. Let A be a multiplicative subgroup of \mathbb{F}_{q}^{*} containing f linearly independent points over \mathbb{F}_{p}. Then for $l \geq 1$,
(a) If $\quad\left|A_{l-1}-A_{l-1}\right||A-A|<q|A|$ then $\left|A_{l}\right| \geq|A|^{l}$.
(b) In all cases, $\left|A_{l}\right| \geq \min \left\{|A|^{l}, q /|A|\right\}$.

One can compare the above result with Lemma 5.2 of [15] where it is shown for \mathbb{F}_{p} that $\left|A_{l}\right| \geq \frac{3}{8} \min \left\{|A|^{l}, \frac{p-1}{2}\right\}$.

Proof. The proof of (a) is by induction on l, the statement being trivial for $l=1$. For $l>1$, put $X=A_{l-1}, Y=A$. If $\left|A_{l-1}-A_{l-1}\right||A-A|<q|A|$ then by Lemma 13, $\frac{X-X}{Y-Y} \neq \mathbb{F}_{q}$. Also, by (12) we have $2 X-2 X+A-A=A_{l}$. Thus by Lemma $12,\left|A_{l}\right| \geq\left|A_{l-1}\right||A|$ and so by the induction assumption, $\left|A_{l}\right| \geq|A|^{l}$. If $\left|A_{l-1}-A_{l-1}\right||A-A| \geq q|A|$ then since $|A-A| \leq|A|^{2}$ we have $\left|A_{l-1}-A_{l-1}\right| \geq$ $q /|A|$. Since $\left|A_{l}\right|=\left|n_{l} A-n_{l} A\right| \geq\left|2 n_{l-1} A-2 n_{l-1} A\right|=\left|A_{l-1}-A_{l-1}\right|$, we obtain $\left|A_{l}\right| \geq\left|A_{l-1}-A_{l-1}\right| \geq q|A| /|A-A| \geq q /|A|$.

Lemma 15. Let A be a multiplicative subgroup of \mathbb{F}_{q}^{*} containing f linearly independent points over \mathbb{F}_{p}. Set $l=\lfloor\log (q-1) / \log |A|\rfloor$. Then $\delta^{*}(A, q) \leq 16 n_{l}$.

Proof. For such l we have $l+1>\log (q-1) / \log |A|$ and so $|A|^{l+1} \geq q$. Thus, by Lemma $14(\mathrm{~b}),\left|A_{l}\right||A| \geq \min \left\{|A|^{l+1}, q\right\}=q$. Since $(|A|, q)=1$ we must in fact have $\left|A_{l}\right||A|>q$. Since A is symmetric $(-1 \in A)$ or antisymmetric $(-1 \notin A)$, it follows from Lemma 7 (c) that $8 A_{l} A=\mathbb{F}_{q}$, that is, $8 n_{l} A-8 n_{l} A=\mathbb{F}_{q}$.

Proof of Theorem 3. With l as in Lemma 15 we have using $k|A|=(q-1)$,

$$
l=\left\lfloor\frac{\log (q-1)}{\log |A|}\right\rfloor \leq 1+\frac{\log k}{\log |A|}
$$

Thus by Lemma $15, \delta^{*}(A, q) \leq 16 n_{l} \leq 16 \frac{5}{24} 4^{l} \leq \frac{40}{3} 4^{\log k / \log |A|}$, thereby finishing the proof.

5. Estimating $\gamma^{*}(A, q)$ and Proof of Theorem 2

Let A be a multiplicative subgroup of \mathbb{F}_{q}^{*} containing f linearly independent points. We start by obtaining growth estimates for $|n A|$. If $|A|=1$ then $q=p$ and $|n A|=1$ for any n. If $|A|=2$ then $q=p, A= \pm 1$ and $|n A|=\min \{p, n+1\}$. Next we note that

$$
|4 A| \geq \begin{cases}|A|^{3 / 2} & \text { if } \quad|A-A|^{2}<q|A| \tag{13}\\ q^{1 / 2}|A|^{3 / 8}, & \text { otherwise }\end{cases}
$$

Indeed, by (7) and Lemma 14 (a) we have

$$
|4 A| \geq|A|^{1 / 2}|3 A-3 A|^{1 / 2}=|A|^{1 / 2}\left|A_{2}\right|^{1 / 2} \geq|A|^{3 / 2}, \quad \text { if } \quad|A-A|^{2}<q|A|
$$

Otherwise, $|A-A| \geq(q|A|)^{1 / 2}$. In particular, $|A|^{2}>(q|A|)^{1 / 2}$, and so $|A| \geq q^{1 / 3}$. Thus, by (8), $|4 A| \geq|A-A|^{15 / 16} \geq(q|A|)^{15 / 32} \geq q^{15 / 32}|A|^{3 / 32}|A|^{12 / 32} \geq q^{1 / 2}|A|^{3 / 8}$.

For $l \in \mathbb{N}$ set

$$
m_{l}=\frac{5}{18} 4^{l}-\frac{l}{3}+\frac{2}{9}
$$

so that $m_{1}=1, m_{2}=4, m_{3}=17, m_{4}=70, m_{5}=283$ and $m_{l}=m_{l-1}+n_{l}$ for $l \geq 2$, with n_{l} as defined in the previous section.

Lemma 16. Let A be a multiplicative subgroup of \mathbb{F}_{q}^{*} containing f linearly independent points over \mathbb{F}_{p}. Then for $l \geq 1$ we have

$$
\left|m_{l} A\right| \geq \begin{cases}|A|^{l-1+\frac{1}{2^{l-1}}}, \quad \text { if } l=1, \text { or } l \geq 2 \text { and } & \left|A_{l-1}-A_{l-1}\right||A-A|<q|A| \tag{14}\\ \max \left\{\left(\frac{|A|}{|A-A|}\right)^{3 / 4} q^{3 / 4},|A|^{1 / 4} q^{1 / 2}\right\}, & \text { otherwise. }\end{cases}
$$

Proof. The result is trivial when $l=1$. Assume that the theorem holds for $l-1$ with $l \geq 2$. Suppose that $\left|A_{l-1}-A_{l-1}\right||A-A|<q|A|$. In particular, if $l \geq 3$ then $\left|A_{l-2}-A_{l-2}\right||A-A|<q|A|$. Then using $m_{l}=n_{l}+m_{l-1}$, inequality (7), the induction assumption and Lemma 14, we have

$$
\left|m_{l} A\right| \geq\left|m_{l-1} A\right|^{1 / 2}\left|n_{l} A-n_{l} A\right|^{1 / 2} \geq|A|^{\left(l-2+\frac{1}{2^{l-2}}\right) \frac{1}{2}}|A|^{l / 2}=|A|^{l-1+\frac{1}{2^{l-1}}}
$$

Suppose next that

$$
\begin{equation*}
\left|A_{l-1}-A_{l-1}\right||A-A| \geq q|A| \tag{15}
\end{equation*}
$$

Then, since $m_{l}>n_{l}>4 n_{l-1}$, we have by inequality (8) that
$\left|m_{l} A\right| \geq\left|2\left(2 n_{l-1} A\right)\right| \geq\left|2 n_{l-1} A-2 n_{l-1} A\right|^{3 / 4}=\left|A_{l-1}-A_{l-1}\right|^{3 / 4} \geq\left(\frac{q|A|}{|A-A|}\right)^{3 / 4}$.
To prove the second inequality, $\left|m_{l} A\right| \geq|A|^{1 / 4} q^{1 / 2}$, under the assumption of (15), more work is required. A stronger result was established (13) for $l=2$, so we assume $l \geq 3$. First observe that by Lemma 12 , with $X=A-A$, if $|2 A-2 A||A-A|<q|A|$, (so that by Lemma $13,(X-X) /(A-A) \neq \mathbb{F}_{q}$), then

$$
|5 A-5 A|=|2(A-A) A-2(A-A) A+A-A| \geq|A-A||A|
$$

and so by (15),
$|5 A-5 A|\left|2 n_{l-1} A-2 n_{l-1} A\right|=|5 A-5 A|\left|A_{l-1}-A_{l-1}\right| \geq|A-A||A|\left|A_{l-1}-A_{l-1}\right| \geq q|A|^{2}$.
Since $2 n_{l-1}>5$ for $l \geq 3$, it follows that

$$
\begin{equation*}
\left|2 n_{l-1} A-2 n_{l-1} A\right|>|5 A-5 A|^{1 / 2}\left|2 n_{l-1} A-2 n_{l-1} A\right|^{1 / 2} \geq q^{1 / 2}|A| \tag{16}
\end{equation*}
$$

Also, since for any set $B,|B-B| \leq|B|^{2}$, using (15),

$$
\left|2 n_{l-1} A\right|^{2}|A|^{2} \geq\left|2 n_{l-1} A-2 n_{l-1} A\right||A-A|=\left|A_{l-1}-A_{l-1}\right||A-A| \geq q|A|
$$

and so

$$
\begin{equation*}
\left|2 n_{l-1} A\right|^{2}|A| \geq q \tag{17}
\end{equation*}
$$

Thus since $m_{l}>n_{l}>4 n_{l-1}$ we obtain from (7), (16) and (17),

$$
\begin{aligned}
\left|m_{l} A\right| & \geq\left|4 n_{l-1} A\right| \geq\left|2 n_{l-1} A\right|^{1 / 2}\left|2 n_{l-1} A-2 n_{l-1} A\right|^{1 / 2} \geq\left|2 n_{l-1} A\right|^{1 / 2} q^{1 / 4}|A|^{1 / 2} \\
& =\left(\left|2 n_{l-1} A\right|^{1 / 2}|A|^{1 / 4}\right) q^{1 / 4}|A|^{1 / 4} \geq q^{1 / 4} q^{1 / 4}|A|^{1 / 4}=q^{1 / 2}|A|^{1 / 4}
\end{aligned}
$$

There remains the case $|2 A-2 A||A-A| \geq q|A|$. In this case $|2 A-2 A| \geq$ $q^{1 / 2}|A|^{1 / 2}$ and $|2 A|^{2}|A| \geq q$. The latter implies $|2 A| \geq(q /|A|)^{1 / 2}$. Thus, by (7),

$$
|4 A| \geq|2 A|^{1 / 2}|2 A-2 A|^{1 / 2} \geq q^{1 / 4}|A|^{-1 / 4} q^{1 / 4}|A|^{1 / 4}=q^{1 / 2}
$$

and

$$
\left|m_{l} A\right| \geq|6 A| \geq|4 A|^{1 / 2}|2 A-2 A|^{1 / 2} \geq q^{1 / 4} q^{1 / 4}|A|^{1 / 4}=q^{1 / 2}|A|^{1 / 4}
$$

which finishes the proof.
Lemma 17. Let A be a multiplicative subgroup of \mathbb{F}_{q}^{*} containing f linearly independent points over \mathbb{F}_{p}. Then for $l \geq 1$ we have

$$
\begin{equation*}
\left|m_{l} A\right| \geq \min \left\{|A|^{l-1+\frac{1}{2^{l-1}}}, \sqrt{2 q}\right\} \tag{18}
\end{equation*}
$$

Proof. If $l=1$ or $|A|=1$ the statement is trivial. For $|A|=2$,

$$
\left|m_{l} A\right| \geq \min \left\{m_{l}+1, q\right\}=\min \left\{\frac{5}{18} 4^{l}-\frac{l}{3}+\frac{11}{9}, q\right\} \geq \min \left\{2^{l}, \sqrt{2 q}\right\}
$$

For $|A| \geq 4$ the result follows from Lemma 16 , since $q^{1 / 2}|A|^{1 / 4} \geq \sqrt{2 q}$ in this case. For $|A|=3$ and $l=2$ the result follows from (13) in a similar manner. Suppose that $|A|=3$ and $l \geq 3$. Then $A=\left\{1, \alpha, \alpha^{2}\right\}=\{1, \alpha,-1-\alpha\}$, where α is a primitive cube root of 1 , and $A-A=\{0, \pm(1-\alpha), \pm(2+\alpha), \pm(2 \alpha+1)\}$, whence $|A-A|=7$. Then, by Lemma $16,\left|m_{l} A\right| \geq q^{3 / 4}|A|^{3 / 4}|A-A|^{-3 / 4} \geq(3 / 7)^{3 / 4} q^{3 / 4} \geq \sqrt{2 q}$, provided that $q \geq 4(7 / 3)^{3}=50.8$.., and so the result follows from Lemma 16 when $q \geq 51$. We are left with testing the prime powers less than 50 . If q is a prime then we can use the Cauchy-Davenport inequality to get $\left|m_{k} A\right| \geq|17 A| \geq \min \{q, 35\} \geq \sqrt{2 q}$. The prime powers remaining with $3 \mid q-1$ are $4,16,25,49$. We can't have $q=16$ or 49 since $3 \mid\left(2^{2}-1\right)$ and $3 \mid(7-1)$, implying that A does not contain a set of f linearly independent points. For $q=4, A=\mathbb{F}_{4}^{*}, 2 A=\mathbb{F}_{4}$ and trivially $|2 A| \geq \sqrt{2 q}$. For $q=25$ one can check that $|3 A|=10 \geq \sqrt{50}$.

Applying Lemma 7 (b) with $A=B=m_{l} A$ we immediately obtain,
Lemma 18. Let A be a multiplicative subgroup of \mathbb{F}_{q}^{*} containing f linearly independent points over \mathbb{F}_{p}. If $|A| \geq(2 q)^{\frac{1}{2}\left(l-1+\frac{1}{2^{l-1}}\right)^{-1}}$, then $8 m_{l}^{2} A=\mathbb{F}_{q}$.

In particular,

$$
\begin{aligned}
8 A=\mathbb{F}_{q} & \text { for }|A|>q^{1 / 2} \\
128 A=\mathbb{F}_{q} & \text { for }|A|>1.26 q^{1 / 3} \\
2312 A=\mathbb{F}_{q} & \text { for }|A|>1.17 q^{2 / 9} \\
39200 A=\mathbb{F}_{q} & \text { for }|A|>1.12 q^{4 / 25} \\
640712 A=\mathbb{F}_{q} & \text { for }|A|>1.09 q^{8 / 65}
\end{aligned}
$$

In comparison, for \mathbb{F}_{p} Cochrane and Pinner [9] obtained

$$
\begin{aligned}
8 A=\mathbb{F}_{p} & \text { for }|A|>p^{1 / 2} \\
32 A=\mathbb{F}_{p} & \text { for }|A|>3.91 p^{1 / 3}, \\
392 A=\mathbb{F}_{p} & \text { for }|A|>2.78 p^{1 / 4} \\
2888 A=\mathbb{F}_{p} & \text { for }|A|>3.19 p^{1 / 5} \\
12800 A=\mathbb{F}_{p} & \text { for }|A|>2.28 p^{1 / 6} \\
56448 A=\mathbb{F}_{p} & \text { for }|A|>2.43 p^{1 / 7} \\
228488 A=\mathbb{F}_{p} & \text { for }|A|>1.91 p^{1 / 8}
\end{aligned}
$$

We cannot do quite as well for \mathbb{F}_{q} because we do not have a lower bound on $|2 A|$. For \mathbb{F}_{p} it was shown in $\left[9\right.$, Theorem 5.2] that $|2 A| \geq \min \left\{\frac{1}{4}|A|^{3 / 2}, \frac{p}{2}\right\}$. We do not know if such a bound holds in \mathbb{F}_{q}.

Proof of Theorem 2. An integer l satisfies the hypothesis of Lemma 18 provided that

$$
\begin{equation*}
l+\frac{1}{2^{l-1}} \geq \frac{\log 2 q}{2 \log |A|}+1 \tag{19}
\end{equation*}
$$

We claim that the value

$$
l=\left\lceil\frac{\log (2(q-1))}{2 \log |A|}+1\right\rceil
$$

suffices. To see this, first observe that for this choice of $l, l<\log _{2}(4(q-1))$, that is, $q-1>2^{l-2}$, and so using the inequality

$$
\log (2 q)-\log (2(q-1))=\log (q /(q-1))<\frac{q}{q-1}-1=\frac{1}{q-1}
$$

we have

$$
\frac{\log (2 q)}{2 \log |A|}-\frac{\log (2(q-1))}{2 \log |A|}<\frac{1}{2(q-1) \log |A|}<\frac{1}{2^{l-1} \log |A|}<\frac{1}{2^{l-1}}
$$

Thus (19) is satisfied, and so by Lemma $18, \gamma^{*}(A, q) \leq 8 m_{l}^{2}$. Since $m_{l} \leq \frac{5}{18} 4^{l}$, we have

$$
\begin{aligned}
\gamma^{*}(A, q) & \leq 8(5 / 18)^{2} 4^{2\left\lceil\frac{\log 2(q-1)}{2 \log |A|}+1\right\rceil}<158.03 \cdot 4^{\frac{\log 2(q-1)}{\log |A|}}=158.03(2(q-1))^{\log 4 / \log |A|} \\
& =158.03(2|A| k)^{\frac{\log 4}{\log |A|}} \leq 633(2 k)^{\frac{\log 4}{\log |A|}}
\end{aligned}
$$

completing the proof of Theorem 2 .
We cannot do quite as well for \mathbb{F}_{q} as for \mathbb{F}_{p} because we do not have a good lower bound on $|2 A|$. For \mathbb{F}_{p} we were able to use the bound [9, Theorem 5.2], $|2 A| \geq \min \left\{\frac{1}{4}|A|^{3 / 2}, \frac{p}{2}\right\}$. We do not know if such a bound holds in \mathbb{F}_{q}.

6. Proof of Theorem 4

For small $|A|$ we use the method of Bovey [4] to bound $\delta(A, q)$ and $\gamma(A, q)$. We start by generalizing [4, Lemma 3]. For any n-tuple $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$ let $\|u\|_{1}=\sum_{i=1}^{n}\left|u_{i}\right|$.
Lemma 19. Let \mathbb{F}_{q} be any finite field and $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{F}_{q}$. Let $T: \mathbb{Z}^{n} \rightarrow \mathbb{F}_{q}$ be the linear function $T\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} u_{i}$. Suppose that $v_{1}, \ldots, v_{n} \in \mathbb{Z}^{n}$ are linearly independent vectors over \mathbb{R} with $T\left(v_{i}\right)=0,1 \leq i \leq n$. Then for any value a in the range of T there exists a vector $u \in \mathbb{Z}^{n}$ with $T(u)=a$ and $\|u\|_{1} \leq \frac{1}{2} \sum_{i=1}^{n}\left\|v_{i}\right\|_{1}$.

Proof. Let $w \in \mathbb{Z}^{n}$ with $T(w)=a$. Write $w=\sum_{i=1}^{n} y_{i} v_{i}$ for some $y_{i} \in \mathbb{R}, 1 \leq i \leq n$. Say $y_{i}=x_{i}+\epsilon_{i}$ for some $x_{i} \in \mathbb{Z}$ and $\epsilon_{i} \in \mathbb{R}$ with $\left|\epsilon_{i}\right| \leq 1 / 2,1 \leq i \leq n$. Put $u=$ $\sum_{i=1}^{n} \epsilon_{i} v_{i}=w-\sum_{i=1}^{n} x_{i} v_{i}$. Then $u \in \mathbb{Z}^{n}, T(u)=a$ and $\|u\|_{1} \leq \frac{1}{2} \sum_{i=1}^{n}\left\|v_{i}\right\|_{1}$.

Proof of Theorem 4. By Theorem $9(\mathrm{~d}), \gamma(k, q) \leq(t-1) \delta(k, q)$, where $t=|A|$, and so it suffices to prove the statement of Theorem 4 for $\delta(k, q)$. Put $r=\phi(t)$. Let R be a primitive t-th root of unity in $\mathbb{F}_{q}, \Phi_{t}(x)$ be the t-th cyclotomic polynomial over \mathbb{Q} of degree r and ω be a primitive t-th root of unity over \mathbb{Q}. In particular, $\Phi_{t}(R)=0$ and the set of nonzero k-th powers in \mathbb{F}_{q} is just $\left\{1, R, R^{2}, \ldots, R^{t-1}\right\}$. Let $f: \mathbb{Z}^{r} \rightarrow \mathbb{Z}[\omega]$ be given by

$$
f\left(x_{1}, x_{2}, \ldots, x_{r}\right)=x_{1}+x_{2} \omega+\cdots+x_{r} \omega^{r-1}
$$

Then f is a one-to-one \mathbb{Z}-module homomorphism.
Let $T: \mathbb{Z}^{r} \rightarrow \mathbb{F}_{q}$ be the linear map $T\left(x_{1}, \ldots, x_{r}\right)=\sum_{i=1}^{r} x_{i} R^{i-1}$ and \mathcal{L} be the lattice of points satisfying $T\left(x_{1}, \ldots, x_{r}\right)=0$. Since the set of k-th powers $1, R, \ldots, R^{r-1}$ spans all of \mathbb{F}_{q} we have $\operatorname{Vol}(\mathcal{L})=q$. Thus by Minkowski's fundamental theorem there is a nonzero vector $v_{1}=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ in \mathcal{L} with $\left|a_{i}\right| \leq q^{1 / r}$, $1 \leq i \leq r$. For $2 \leq i \leq r$ set $v_{i}=f^{-1}\left(\omega^{i-1} f\left(v_{1}\right)\right)$. Then v_{1}, \ldots, v_{r} form a set of linearly independent points in \mathcal{L} and so, by Lemma 19, for any $a \in \mathbb{F}_{q}$ there is an r-tuple of integers $u=\left(u_{1}, \ldots, u_{r}\right)$ such that

$$
u_{1}+u_{2} R+u_{3} R^{2}+\cdots+u_{r} R^{r-1}=a
$$

and $\sum_{i=1}^{r}\left|u_{i}\right| \leq \frac{1}{2} \sum_{i=1}^{r}\left\|v_{i}\right\|_{1}$. Thus $\delta(k, q) \leq \frac{1}{2} \sum_{i=1}^{r}\left\|v_{i}\right\|_{1}$. Now plainly $\left\|v_{i}\right\|_{1}<_{t}$ $q^{1 / r}$, (indeed, as shown in [4], $\left\|v_{i}\right\|_{1} \leq r(A(t)+1)^{r} p^{n / r}$, where $A(t)$ is the maximal absolute value of the coefficients of $\left.\Phi_{t}(x)\right)$. Thus $\delta(k, q) \ll_{t} q^{1 / r}$.

7. Proof of Lemma 7(a)

Let $m \geq 3$ be a positive integer, $A, B \subseteq \mathbb{F}_{q}, A^{\prime}=A-\{0\}, a \in \mathbb{F}_{q}$ and N denote the number of $2 m$-tuples $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots y_{m}\right)$ with $x_{1}, x_{2} \in A^{\prime}, x_{3}, \ldots, x_{m} \in A$, $y_{i} \in B, 1 \leq i \leq m$, and $x_{1} y_{1}+\cdots+x_{m} y_{m}=a$. Let ψ denote the additive character on $\mathbb{F}_{q}, \psi(z)=e^{2 \pi i \operatorname{Tr}(z) / p}$. Then

$$
\begin{align*}
q N & =\left|A^{\prime}\right|^{2}|A|^{m-2}|B|^{m}+\sum_{\lambda \neq 0} \sum_{x_{1}, x_{2} \in A^{\prime}} \sum_{x_{3}, ., x_{m} \in A} \sum_{y_{i} \in B} \psi\left(\lambda\left(x_{1} y_{1}+\cdots+x_{m} y_{m}-a\right)\right) \\
& =\left|A^{\prime}\right|^{2}|A|^{m-2}|B|^{m}+\text { Error }, \tag{20}
\end{align*}
$$

with

$$
\text { Error }=\sum_{\lambda \neq 0} \psi(-\lambda a)\left(\sum_{x \in A} \sum_{y \in B} \psi(\lambda x y)\right)^{m-2}\left(\sum_{x \in A^{\prime}} \sum_{y \in B} \psi(\lambda x y)\right)^{2}
$$

Now, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left|\sum_{x \in A} \sum_{y \in B} \psi(\lambda x y)\right| & \leq \sum_{y \in B}\left|\sum_{x \in A} \psi(\lambda x y)\right| \leq|B|^{1 / 2}\left(\sum_{y \in B}\left|\sum_{x \in A} \psi(\lambda x y)\right|^{2}\right)^{1 / 2} \\
& \leq|B|^{1 / 2}\left(\sum_{y \in \mathbb{F}_{q}}\left|\sum_{x \in A} \psi(\lambda x y)\right|^{2}\right)^{1 / 2}=|B|^{1 / 2}(q|A|)^{1 / 2}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \sum_{\lambda \in \mathbb{F}_{q}}\left|\sum_{x \in A^{\prime}} \sum_{y \in B} \psi(\lambda(x y))\right|^{2}=\sum_{x_{1}, x_{2} \in A^{\prime}} \sum_{y_{1}, y_{2} \in B} \sum_{\lambda \in \mathbb{F}_{q}} \psi\left(\lambda\left(x_{1} y_{1}-x_{2} y_{2}\right)\right) \\
& =q\left|\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right): x_{1}, x_{2} \in A^{\prime}, y_{1}, y_{2} \in B, x_{1} y_{1}=x_{2} y_{2}\right\}\right| \leq q\left|A^{\prime}\right|^{2}|B|
\end{aligned}
$$

the latter following since $0 \notin A^{\prime}$, so $x_{1} y_{1}=x_{2} y_{2}$ can be written $y_{1}=x_{1}^{-1} x_{2} y_{2}$. Thus,

$$
\begin{aligned}
\mid \text { Error } \mid & \leq|A|^{\frac{m-2}{2}}|B|^{\frac{m-2}{2}} q^{\frac{m-2}{2}} \sum_{\lambda \neq 0}\left|\sum_{x \in A^{\prime}} \sum_{y \in B} \psi(\lambda(x y))\right|^{2} \\
& =|A|^{\frac{m-2}{2}}|B|^{\frac{m-2}{2}} q^{\frac{m-2}{2}}\left(\sum_{\lambda \in \mathbb{F}_{q}}\left|\sum_{x \in A^{\prime}} \sum_{y \in B} \psi(\lambda(x y))\right|^{2}-\left|A^{\prime}\right|^{2}|B|^{2}\right) \\
& \leq|A|^{\frac{m-2}{2}}|B|^{\frac{m-2}{2}} q^{\frac{m-2}{2}}\left(q\left|A^{\prime}\right|^{2}|B|-\left|A^{\prime}\right|^{2}|B|^{2}\right) \\
& =|A|^{\frac{m}{2}-1}\left|A^{\prime}\right|^{2}|B|^{\frac{m}{2}} q^{\frac{m}{2}}\left(1-\frac{|B|}{q}\right)
\end{aligned}
$$

and we see that the main term in (20) exceeds the error term provided that

$$
|A|^{\frac{m}{2}-1}|B|^{\frac{m}{2}}>q^{\frac{m}{2}}\left(1-\frac{|B|}{q}\right)
$$

References

[1] M. Bhaskaran, Sums of m-th powers in algebraic and abelian number fields, Arch. Math. (Basel) 17 (1966), 497-504; Correction, ibid. 22 (1972), 370-371.
[2] J. Bourgain,Mordell's exponential sum estimate revistited, J. Amer. Math. Soc. 18, no. 2 (2005), 477-499.
[3] J. Bourgain, A.A. Glibichuk and S.V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. (2) 73 (2006), 380-398.
[4] J. D. Bovey, A new upper bound for Waring's problem (mod p), Acta Arith. 32 (1977), 157-162.
[5] A. Cauchy, Recherches sur les nombres, J. Ecole Polytechnique 9 (1813), 99-116.
[6] J.A. Cipra, Waring's number in a finite field, Integers 9 (2009), 435-440.
[7] J.A. Cipra, Waring's Number over Finite Fields, Ph.D. Thesis, Kansas State University, 2009.
[8] J. A. Cipra, T. Cochrane and C. Pinner, Heilbronn's conjecture on Waring's number $(\bmod p)$, J. Number Theory 125 (2007), no. 2, 289-297.
[9] T. Cochrane and C. Pinner, Sum-product estimates applied to Waring's problem mod p, Integers 8 (2008), 1-18.
[10] M. M. Dodson, On Waring's problem in GF[p], Acta Arith. 19 (1971), 147-173.
[11] M. M. Dodson and A. Tietäväinen, A note on Waring's problem in GF[p], Acta Arith. 30 (1976), 159-167.
[12] A.A. Glibichuk, Combinatorial properties of sets of residues modulo a prime and the ErdösGraham problem, Mat. Zametki 79, no. 3, (2006), 384-395. Translated in Math. Notes 79, no. 3, (2006), 356-365.
[13] A.A. Glibichuk, Additive properties of products of subsets in the field $\mathbb{F}_{p^{2}}$, (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2009, , no. 1, 3-8, 71; translation in Moscow Univ. Math. Bull. 64 (2009), no. 1, 1-6.
[14] A.A. Glibichuk, Sums of powers of subsets of an arbitrary finite field, Izvestiya Math 75 (2011), no. 2, 253-285.
[15] A.A. Glibichuk and S.V. Konyagin, Additive properties of product sets in fields of prime order, Additive combinatorics, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007, 279-286.
[16] A.A. Glibichuk and M. Rudnev, On additive properties of product sets in an arbitrary finite field, (English summary) J. Anal. Math. 108 (2009), 159170.
[17] H. Heilbronn, Lecture Notes on Additive Number Theory mod p, California Institute of Technology (1964).
[18] S. V. Konyagin, On estimates of Gaussian sums and Waring's problem for a prime modulus, Trudy Mat. Inst. Steklov 198 (1992), 111-124; translation in Proc. Steklov Inst. Math. 1994, 105-107.
[19] M.B. Nathanson, Additive Number Theory, Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer, New York, 1996.
[20] A. Tietäväinen, Proof of a conjecture of S. Chowla, J. Number Theory 7 (1975), 353-356.
[21] L. Tornheim, Sums of n-th powers in fields of prime characteristic, Duke Math J. (1938), 359-362.
[22] A. Winterhof, On Waring's problem in finite fields, Acta Arith. 87 (1998), 171-177.
[23] A. Winterhof, A note on Waring's problem in finite fields, Acta Arith. 96 (2001), 365-368.

[^0]: ${ }^{1}$ Current address: Dept. of Mathematics, Georgia Institute of Technology, Atlanta, Georgia

