
#A69 INTEGERS 11 (2011)

ON 3-ADIC VALUATIONS OF GENERALIZED HARMONIC
NUMBERS

Ken Kamano
Department of Mathematics, Osaka Institute of Technology, Osaka, Japan

kamano@ge.oit.ac.jp

Received: 6/28/11, Revised: 8/26/11, Accepted: 10/31/11, Published: 11/2/11

Abstract
We investigate 3-adic valuations of generalized harmonic numbers H(m)

n . These
valuations are completely determined by the 3-adic expansion of n. Moreover, we
also give 3-adic valuations of generalized alternating harmonic numbers.

1. Introduction

Harmonic numbers Hn (n ≥ 1) are rational numbers defined by partial sums of
harmonic series:

Hn =
n∑

i=1

1
i
. (1)

These numbers appear in various areas in mathematics and have been investigated.
It is well known that Hn goes to infinity as fast as the logarithmic function when n
tends to infinity, i.e.,

lim
n→∞

Hn

log n
= 1.

This fact implies that the number Hn can be larger than any real numbers, but the
following theorem holds.

Theorem 1. The number Hn is never an integer for n ≥ 2.

It seems that this theorem was first proved by Theisinger [7], but there is a
simple proof using the 2-adic valuation, as stated below. For any prime p and
rational number x, we denote the p-adic order of x by vp(x) and use the notation
|x|p = p−vp(x). For n ≥ 2, let k be the unique integer such that 2k ≤ n < 2k+1.
Then the right-hand side of (1) has the term 1/2k and denominators of other terms
have 2-adic order less than k. Therefore we have |Hn|2 = 2k and this shows that
Hn is never an integer for n ≥ 2 (cf. [2, Theorem 1], [3, p. 258]).
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n |H(1)
n |3

1∗ · · · ∗ 3k

20∗ · · · ∗
22∗ · · · ∗ 3k−1

210∗ · · · ∗
212∗ · · · ∗ 3k−2

211∗ · · · ∗ 3k−3

Table 1: 3-adic valuations of H(1)
n

For a positive integer m, generalized harmonic numbers H(m)
n are defined as

follows:

H(m)
n :=

n∑

i=1

1
im

(e.g., [6]). It is clear that H(1)
n = Hn. By the same argument above, we can obtain

that |H(m)
n |2 = 2km where k is an integer satisfying 2k ≤ n < 2k+1. This means

that H(m)
n is never an integer for any m ≥ 1 and n ≥ 2.

In this paper we investigate 3-adic valuations of H(m)
n . The following is the main

theorem of this paper, which completely determines 3-adic valuations of H(m)
n . The

results of Theorem 2 (i) are summarized in Table 1.

Theorem 2. Let n be a positive integer with ak3k + ak−13k−1 + · · · + a1 · 3 + a0,
(0 ≤ ai ≤ 2, 0 ≤ i ≤ k) being the 3-adic expansion of n. The 3-adic valuations of
H(m)

n are determined as follows:

(i) For m = 1,

(a) if ak = 1, then |H(1)
n |3 = 3k (k ≥ 0).

(b) if ak = 2 and ak−1 = 0, 2, then |H(1)
n |3 = 3k−1 (k ≥ 1).

(c) if ak = 2, ak−1 = 1 and ak−2 = 0, 2, then |H(1)
n |3 = 3k−2 (k ≥ 2).

(d) if ak = 2, ak−1 = 1 and ak−2 = 1, then |H(1)
n |3 = 3k−3 (k ≥ 2).

(ii) For m ≥ 2 and k ≥ 0, we have

|H(m)
n |3 =

{
3km if m is even or ak = 1,
3km−v3(m)−1 if m is odd and ak = 2.

(2)

Here we explain relationships between this theorem and some known results.
Theorem 2 implies that |H(m)

n |3 goes to infinity as n tends to infinity for any fixed
m. This fact for m = 1 is stated in [2, p. 3] without proof. Eswarathasan and
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Levine [4, Sect. 4] showed that n = 1 ,2, 6, 7, 8, 21, 22, 23, 66, 67 and 68 are all the
numbers satisfying |Hn|3 ≤ 1. This fact can be also derived from Theorem 2 (i). In
general, for any prime p, the sets

I(p) = {n ≥ 1; |Hn|p ≤ 1} and J(p) = {n ≥ 1; |Hn|p < 1}

have been investigated (e.g., [1], [2] and [4]). The above example shows that I(3) =
{1, 2, 6, 7, 8, 21, 22, 23, 66, 67, 68} (we note that Eswarathasan et al. defined H0 = 1,
hence 0 ∈ I(3) in [4]). It is known that |J(3)| = 3, |J(5)| = 3, |J(7)| = 13 (cf. [4]
and [5, Prob. 6.52]) and |J(11)| = 638 (see [1]). It seems to be difficult to determine
I(p) and J(p) for general p, and it is conjectured that I(p) and J(p) are finite for
all primes p ([4, Conjecture A]).

The alternating harmonic series is a simple analogy of the harmonic series, and
it is well-known that this series converges to log 2:

∑∞
i=1

(−1)i−1

i = log 2. We also
define generalized alternating harmonic numbers A(m)

n as follows:

A(m)
n :=

n∑

i=1

(−1)i−1

im
(3)

for positive integers m and n. We can also give 3-adic valuations of A(m)
n , and we

note that the alternating case is simpler than the ordinary one:

Theorem 3. Let n be a positive integer and n = ak3k +ak−13k−1 + · · ·+a1 ·3+a0

be the 3-adic expansion of n. For m ≥ 1 and k ≥ 0, we have

|A(m)
n |3 =

{
3km if m is odd or ak = 1,
3km−v3(m)−1 if m is even and ak = 2.

(4)

2. Proof of Theorem 2

In this section we prove Theorem 2. We first give a proposition and lemmas, which
are used in the proof of our main theorems.

Proposition 4. Let p be a prime, and let k ≥ 0 and m ≥ 1 be integers.

(i) The following are equivalent (uk =
⌊
n/pk

⌋
where &·' is the floor function):

(a)
∣∣∣H(m)

uk

∣∣∣
p

= 1,

(b) |H(m)
n |p = pkm.

(ii) If pk ≤ n < 2pk, then |H(m)
n |p = pkm.
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Proof. (i) The number of multiples of pk less than or equal to n is uk. Hence we
obtain that

H(m)
n =

1
pkm

(
1

1m
+

1
2m

+ · · · + 1
um

k

)
+

∑

1≤i≤n
pk!i

1
im

=
1

pkm
H(m)

uk
+

∑

1≤i≤n
pk!i

1
im

.

The second term satisfies ∣∣∣∣∣∣∣∣

∑

1≤i≤n
pk!im

1
im

∣∣∣∣∣∣∣∣
p

< pkm

because of the property |x + y|p ≤ max{|x|p, |y|p}. Therefore we obtain |H(m)
n |p =

pkm|H(m)
uk + α|p, where α is a rational number with |α|p < 1. By the property

|x + y|p = max{|x|p, |y|p} if |x|p (= |y|p, the conditions |H(m)
uk |p = 1 and |H(m)

n |p =
pkm are equivalent.

(ii) If pk ≤ n < 2pk, then uk = &n/pk' = 1. We note that H(m)
1 = 1 for any m ≥ 1.

Hence we obtain |H(m)
n |p = pkm by the statement (i).

Remark 5. The same statement of Proposition 4 holds for generalized alternating
harmonic numbers A(m)

n . This will be used in the proof of Theorem 3.

Lemma 6. Let x be a positive integer such that x ≡ 2, 5 (mod 9). Then

v3(x3m

+ 1) = m + 1 (5)

for any integer m ≥ 0.

Proof. We prove the lemma by induction on m. First we assume m = 0. Since
x1 + 1 ≡ 3, 6 (mod 9), we get v3(x1 + 1) = 1. Next we assume (5) holds for some
m, i.e., assume v3(x3m

+ 1) = m + 1. We put x3m
= y. Then the assumption says

that v3(y + 1) = m + 1. We have

v3(x3m+1
+ 1) = v3((x3m

)3 + 1) = v3(y3 + 1) = v3(y + 1) + v3(y2 − y + 1)
= m + 1 + v3(y2 − y + 1).

We note that y ≡ 2 (mod 3) because x ≡ 2, 5 (mod 9). Hence we can write y =
3u + 2 (u ∈ Z). Then

y2 − y + 1 = (3u + 2)2 − (3u + 2) + 1 = 9u2 + 9u + 3 = 3(3u2 + 3u + 1)

and we have v3(y2 − y + 1) = 1. Therefore v3(y3 + 1) = m + 2. Then equation (5)
holds for m + 1 and this completes the proof.
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Lemma 7. For an integer m ≥ 0, we have

v3(2m + 1) =

{
0 if m is even,
v3(m) + 1 if m is odd.

Proof. First we assume that m is even, say m = 2t (t ∈ Z≥0). Since 22 ≡ 1 (mod 3),
we have 2m + 1 = (22)t + 1 ≡ 2 (mod 3). This implies that v3(2m + 1) = 0.

Next we assume that m is odd. Then we can write m = 3v3(m)q where q is an
integer satisfying q ≡ 1, 5 (mod 6). Since 26 ≡ 1 (mod 9), we see that 2q ≡ 2, 5
(mod 9). Therefore, by Lemma 6, we obtain that

v3(2m + 1) = v3

(
(2q)3

v3(m)
+ 1

)
= v3(m) + 1,

which completes the proof.

Proof of Theorem 2. (i) For n = ak3k + ak−13k−1 + · · · + a1 · 3 + a0, we have
⌊ n

3k−j

⌋
= ak3j + ak−13j−1 + · · · + ak−j

for any j ≥ 0. In the case (a), therefore, the value
⌊
n/3k

⌋
is equal to 1. In a similar

way, we obtain the following values for each case:

(a)
⌊

n
3k

⌋
= ak = 1.

(b)
⌊

n
3k−1

⌋
= ak · 3 + ak−1 = 6, 8.

(c)
⌊

n
3k−2

⌋
= ak · 32 + ak−1 · 3 + ak−2 = 21, 23.

(d)
⌊

n
3k−3

⌋
= ak · 33 + ak−1 · 32 + ak−2 · 3 + ak−3 = 66, 67, 68.

Therefore, by Proposition 4, we only have to show that |Hn|3 = 1 for n = 1, 6, 8,
21, 23, 66, 67 and 68. This can be checked by numerical calculations. We give the
values of Hn below. These numbers satisfy |Hn|3 = 1 and this proves (i).

n Hn

1 1
6 49

20

8 761
280

21 18858053
5173168

23 444316699
118982864

66 209060999005535159677640233
43787662374178602500420800

67 14050874595745034300902316411
2933773379069966367528193600

68 14094018321907827923954201611
2933773379069966367528193600
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(ii) First we assume that ak = 1. Then pk ≤ n < 2pk. By Proposition 4 (ii), we
have |H(m)

n |3 = 3km for all m ≥ 1.
Next we assume that ak = 2. Then we have

H(m)
n =

1
(3k)m

+
1

(2 · 3k)m
+

n∑

i=1
3k!i

1
im

=
(

1 +
1

2m

)
1

3km
+

r

3(k−1)m
,

where r is a rational number such that |r|3 ≤ 1.
Now we see ∣∣∣∣

1
3(k−1)m

∣∣∣∣
3

= 3km−m.

On the other hand, by Lemma 7, we see

v3

(
1 +

1
2m

)
= v3(2m + 1) =

{
0 if m is even,

v3(m) + 1 if m is odd.

Hence ∣∣∣∣

(
1 +

1
2m

)
1

3km

∣∣∣∣
3

=

{
3km if m is even,

3km−v3(m)−1 if m is odd.

Because v3(m) + 1 < m for m ≥ 2, we obtain that
∣∣∣∣

(
1 +

1
2m

)
1

3km

∣∣∣∣
3

>
∣∣∣

r

3(k−1)m

∣∣∣
3
.

As a consequence, it follows that

|H(m)
n |3 =

{
3km if m is even,

3km−v3(m)−1 if m is odd.

The theorem follows.

3. Generalized Alternating Harmonic Numbers

In this section, we prove Theorem 3. We first give the following lemma which is an
analogue of Lemma 7. This lemma can be proved in the same way as the proof of
Lemma 7, but we give another proof using Lemma 7.

Lemma 8. For an integer m ≥ 1, we have

v3(2m − 1) =

{
0 if m is odd.
v3(m) + 1 if m is even

.
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Proof. First we assume that m is odd, say m = 2t + 1 (t ∈ Z≥0). Since 22 ≡ 1
(mod 3), we have 2m−1 = 2·(22)t−1 ≡ 1 (mod 3). This implies that v3(2m−1) = 0.

Next we assume that m is even, say m = 2tu where u is an odd integer. Then
we have 2m − 1 = 22tu − 1 = (2u − 1)(2u + 1)(22u + 1) · · · (22t−1u + 1). We have
v3(2u−1) = 0 from the odd case above. Moreover, we have v3(22u +1) = v3(222u +
1) = · · · = v3(22t−1u + 1) = 0 and v3(2u + 1) = v3(u) + 1 by Lemma 7. Therefore
we have v3(2m − 1) = v3(u) + 1. By definition of u, it follows that v3(u) = v3(m).
Hence we obtain that v3(2m − 1) = v3(m) + 1 and this completes the proof.

Now we prove Theorem 3. This theorem can be proved by exactly the same way
as the proof of Theorem 2 (ii), but we give its proof to make the paper self-contained.

Proof of Theorem 3. First we assume that ak = 1. As stated in Remark 5, Propo-
sition 4 hods for A(m)

n . Hence we have |A(m)
n |3 = 3km for all m ≥ 1.

Next we assume that ak = 2. Then we have

A(m)
n =

(−1)3
k−1

(3k)m
+

(−1)2·3k−1

(2 · 3k)m
+

n∑

i=1
3k!i

(−1)i−1

im
=

(
1− 1

2m

)
1

3km
+

r

3(k−1)m
,

where r is a rational number such that |r|3 ≤ 1.
Now we see ∣∣∣∣

1
3(k−1)m

∣∣∣∣
3

= 3km−m.

On the other hand, by Lemma 8, we see

v3

(
1− 1

2m

)
= v3(2m − 1) =

{
0 if m is odd,

v3(m) + 1 if m is even.

Therefore ∣∣∣∣

(
1− 1

2m

)
1

3km

∣∣∣∣
3

=

{
3km if m is odd,

3km−v3(m)−1 if m is even.

Because v3(m) + 1 < m for m ≥ 2, we obtain that
∣∣∣∣

(
1− 1

2m

)
1

3km

∣∣∣∣
3

>
∣∣∣

r

3(k−1)m

∣∣∣
3

for any m ≥ 1. As a consequence, we have

|A(m)
n |3 =

{
3km if m is odd,

3km−v3(m)−1 if m is even,

and this completes the proof.
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