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Abstract
Independently, Pirillo and Varricchio, Halbeisen and Hungerbühler and Freedman
considered the following problem, open since 1992: Does there exist an infinite word
w over a finite subset of Z such that w contains no two consecutive blocks of the
same length and sum? We consider some variations on this problem in the light of
van der Waerden’s theorem on arithmetic progressions.

1. Introduction

Avoidability problems play a large role in combinatorics on words (see, e.g., [11]).
By a square we mean a nonempty word of the form xx, where x is a word; an
example in English is murmur. A classical avoidability problem is the following:
Does there exist an infinite word over a finite alphabet that contains no squares?
It is easy to see that no such word exists if the alphabet size is 2 or less, but if the
alphabet size is 3, then such a word exists, as proven by Thue [15, 16] more than a
century ago.

An abelian square is a nonempty word of the form xx′ where |x| = |x′| and x′

is a permutation of x. An example in English is reappear. In 1961, Erdős [3]
asked: Does there exist an infinite word over a finite alphabet containing no abelian
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squares? Again, it is not hard to see that this is impossible over an alphabet of
size less than 4. Evdokimov [4] and Pleasants [14] gave solutions for alphabet size
25 and 5, respectively, but it was not until 1992 that Keränen [9] proved that an
infinite word avoiding abelian squares does indeed exist over a 4-letter alphabet.

Independently, Pirillo and Varricchio [13], Halbeisen and Hungerbühler [7], and
Freedman [5] suggested yet another variation. Let a sum-square be a factor of the
form xx′ with |x| = |x′| and

∑
x =

∑
x′, where by

∑
x we mean the sum of the

entries of x. Is it possible to construct an infinite word over a finite subset of Z that
contains no sum-squares? This very interesting question has been open for 18 years.
Freedman [5] showed that the answer is “no” in the case when the infinite word is
over 4 real numbers {a, b, c, d} such that a+d = b+ c. Halbeisen and Hungerbühler
observed that the answer is also “no” if we omit the condition |x| = |x′|. Their
tool was a famous one from combinatorics: namely, van der Waerden’s theorem on
arithmetic progressions [17].

Theorem 1. (van der Waerden) Suppose N is colored using a finite number of
colors. Then there exist arbitrarily long monochromatic arithmetic progressions.

In this note we consider several variations on this problem (the sum-square prob-
lem, for short). In Section 2, we show there is no infinite abelian squarefree word
in which the difference between the frequencies of any two letters is bounded above
by a constant. Section 3 deals with the problem of avoiding sum-squares, modulo
k. While it is known there is no infinite word with this property (for any k), we
show that there is an infinite word over {−1, 0, 1} that is squarefree and avoids all
sum-squares in which the sum of the entries is non-zero.

In Section 4, we provide upper and lower bounds on the length of any word over
Z that avoids sum-squares (and higher-power-equivalents) modulo k. We conclude
with some computational results in Section 5.

2. First Variation

We start with an infinite word w already known to avoid abelian squares (such
as Keränen’s, or other words found by Evdokimov [4] or Pleasants [14]) over some
finite alphabet Σk = {0, 1, . . . , k − 1}. We then choose an integer base b ≥ 2 and
replace each occurrence of i in w with bi, obtaining a new word x. If there were
no “carries” from one power of b to another, then x would avoid sum-squares.
We can avoid problematic “carries” if and only if, whenever xx′ is a factor with
|x| = |x′|, then the number of occurrences of each letter in x and x′ differs by less
than b. In other words, we could solve the sum-square problem if we could find
an abelian squarefree word such that the difference in the number of occurrences
between the most-frequently-occurring and least-frequently-occurring letters in any
prefix is bounded. As we will see, though, this is impossible.
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More generally, we consider the frequencies of letters in abelian power-free words.
By an abelian r-power we mean a factor of the form x1x2 · · ·xr, where |x1| = |x2| =
· · · = |xr| and each xi is a permutation of x1. For example, the English word deeded
is an abelian cube.

We introduce some notation. For a finite word w, we let |w| be the length
of w and let |w|a be the number of occurrences of the letter a in w. Let Σ =
{a1, a2, . . . , ak} be a finite ordered alphabet. Then for w ∈ Σ∗, we let ψ(w) denote
the vector (|w|a1 , |w|a2 , . . . , |w|ak). The map ψ is sometimes called the Parikh map.
For example, if Σ = {v, l, s, e}, then ψ(sleeveless) = (1, 2, 3, 4).

For a vector u, we let ui denote the (i+1)st entry, so that u = (u0, u1, . . . , uk−1).
If u and v are two vectors with real entries, we define their L∞ distance µ(u, v) to
be

max
0≤i<k

|ui − vi|.

If w = b1b2 · · · is an infinite word, with each bi ∈ Σ, then by w[i] we mean the
symbol bi and by w[i..j] we mean the word bibi+1 · · · bj . Note that if i = j +1, then
w[i..j] = ε, the empty word.

Theorem 2. Let w be an infinite word over the finite alphabet {0, 1, . . . , k − 1} for
some k ≥ 1. If there exist a vector v ∈ Qk and a positive integer M such that

µ(ψ(w[1..i]), iv) ≤ M (1)

for all i ≥ 0, then w contains an abelian α-power for every integer α ≥ 2.

Proof. First, note that ∑

0≤i<k

vi = 1. (2)

For otherwise we have
∑

0≤i<k vi = c %= 1, and then µ(ψ(w[1..i]), iv) is at least
|c− 1| i

k , and hence unbounded as i →∞.
For i ≥ 0, define X(i) = ψ(w[1..i])− iv. Then

X(i+j) −X(i) = (ψ(w[1..i + j])− (i + j)v)− (ψ(w[1..i])− iv)
= ψ(w[i + 1..i + j])− jv (3)

for integers i, j ≥ 0. For i ≥ 0, define Γ(i) to be the vector with
(k
2

)
entries given

by X(i)
l −X(i)

m for 0 ≤ l < m < k.
From (1), we know that Γ(i) ∈ [−M,M ](

k
2). Let L be the least common multiple

of the denominators of the (rational) entries of v. Then the entries of LΓ(i) are
integers, and lie in the interval [−LM,LM ]. It follows that {Γ(i) : i ≥ 0} is a
finite set of cardinality at most (2LM + 1)(

k
2).

Consider the map that sends i to Γ(i) for all i ≥ 0. Since this is a finite coloring
of the positive integers, we know by van der Waerden’s theorem that there exist
n, d ≥ 1 such that Γ(n) = Γ(n + d) = . . . = Γ(n + αd).
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Now Γ(n + id) = Γ(n + (i + 1)d) for 0 ≤ i < α, so

X(n+id)
l −X(n+id)

m = X(n+(i+1)d)
l −X(n+(i+1)d)

m ,

for 0 ≤ l < m < k and hence

X(n+(i+1)d)
l −X(n+id)

l = X(n+(i+1)d)
m −X(n+id)

m . (4)

for 0 ≤ l < m < k. Actually, it is easy to see that Eq. (4) holds for all l,m with
0 ≤ l,m < k.

Using Eq. (3), we can rewrite Eq. (4) as

(ψ(w[n + id + 1..n + (i + 1)d])− dv)l = (ψ(w[n + id + 1..n + (i + 1)d])− dv)m

for 0 ≤ l,m < k. It follows that

|w[n + id + 1..n + (i + 1)d] |l − dvl = |w[n + id + 1..n + (i + 1)d] |m − dvm

and hence

|w[n + id + 1..n + (i + 1)d] |l − |w[n + id + 1..n + (i + 1)d] |m = d(vl − vm) (5)

for 0 ≤ l,m < k.
Now let z = w[n + id + 1..n + (i + 1)d]. Then Eq. (5) can be rewritten as

|z|l − |z|m = d(vl − vm) (6)

for 0 ≤ l,m < k. Note that

|z|0 + |z|1 + · · · + |z|k−1 = |z| = d. (7)

Fixing l and summing Eq. (6) over all m %= l, we get

(k − 1)|z|l −
∑

m&=l

|z|m = d(k − 1)vl − d
∑

m&=l

vm

and hence by (2) and (7) we get

(k − 1)|z|l − (d− |z|l) = d(k − 1)vl − d(1− vl).

Simplifying, we have k|z|l − d = dkvl − d, and so |z|l = dvl.
We therefore have ψ(w[n + id + 1..n + (i + 1)d]) = dv, for 0 ≤ i < α. Hence

w[n + 1..n + αd] is an abelian α-power.

The following special case of Theorem 2 is of particular interest.

Corollary 3. Suppose w is an infinite word over a finite alphabet such that in any
prefix of w, the difference of the number of occurrences of the most frequent letter
and that of the least frequent letter is bounded by a constant. Then w contains an
abelian α-power for every α ≥ 2.
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Proof. Given w, let p(i) (resp., q(i)) denote the number of occurrences of the most
frequent (resp., least frequent) letter in w[1..i]. Notice that q(i) ≤ i

k ≤ p(i) for all
i.

Suppose there exists T such that p(i) − q(i) < T for all i ≥ 1. Then if we let
v := ( 1

k , 1
k , . . . , 1

k ), we have

µ(φ(w[1..i]), iv) = max{|p(i)− i
k
|, |q(i)− i

k
|} < T,

and Theorem 2 applies.

3. Second Variation

Our second variation is based on the following trivial idea: We could avoid sum-
squares if we could avoid them (mod k) for some integer k ≥ 2. That is, instead
of trying to avoid factors with blocks that sum to the same value, we could try to
avoid blocks that sum to the same value modulo k. The following result shows this
is impossible, even if we restrict our attention to blocks that sum to 0 (mod k).
More general results are known (e.g., [8]; [11, Chap. 4]), but we give the proof for
completeness.

Theorem 4. For all infinite words w over the alphabet Σk = {0, 1, ..., k − 1} and
all integers r ≥ 2 we have that w contains a factor of the form x1x2 · · ·xr, where
|x1| = |x2| = · · · = |xr| and

∑
x1 ≡

∑
x2 ≡ · · · ≡

∑
xr ≡ 0 (mod k).

Proof. For i ≥ 0 define y[i] =
(∑

1≤j≤i w[i]
)

mod k; note that y[0] = 0. Then y
is an infinite word over the finite alphabet Σk, and hence by van der Waerden’s
theorem there exist indices n, n + d, . . . , n + rd such that

y[n] = y[n + d] = · · · = y[n + rd].

Hence y[n + (i + 1)d]− y[n + id] = 0 for 0 ≤ i < r. But

y[n + (i + 1)d]− y[n + id] ≡
∑

w[n + id + 1..n + (i + 1)d] (mod k),

so
∑

w[n + id + 1..n + (i + 1)d] ≡ 0 (mod k) for 0 ≤ i < r.

Theorem 4 shows that for all k we cannot avoid xx′ with |x| = |x′| and
∑

x ≡∑
x′ ≡ 0 (mod k). This raises the natural question, can we avoid xx′ with |x| = |x′|

and
∑

x ≡
∑

x′ ≡ a (mod k) for all a %≡ 0 (mod k)? As phrased, the question is not
so interesting, since the word 0ω = 000 · · · satisfies the conditions. If we also impose
the condition that the avoiding word be not ultimately periodic, or even squarefree,
however, then it becomes more interesting. As we will see, we can even avoid both
squares and factors xx′ with

∑
x ≡

∑
x′ ≡ a (mod k) for all a %≡ 0 (mod k) (with

no condition on the length of x and x′).
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Theorem 5. Let the morphism ϕ be defined by

0 → 0 1 0′−1
1 → 0 1−1 1
0′ → 0′−1 0 1
−1 → 0′−1 1−1

and let τ be the coding defined by

0, 0′ → 0
1 → 1

−1 → −1.

Then the infinite word w = τ(ϕω(0)) avoids both squares and factors of the form
xx′ where

∑
x =

∑
x′ %= 0.

Proof. The fact that ϕω(0) exists follows from 0 → 0 1 0′−1, so that τ(ϕω(0)) is a
well-defined infinite word.

To make things a bit easier notationally, we may write 1 for −1.
First, let us show that w avoids squares. Assume, to get a contradiction, that

there is such a square xx′ in w, with x = x′, and without loss of generality assume
|x| is as small as possible. Let n = |x|, and write x = x[1..n], x′ = x′[1..n].

We call 4 consecutive symbols of w that are aligned, that is, of the form w[4i +
1..4i + 4], a block. Note that a block B can be uniquely expressed as τ(ϕ(a)) for a
single symbol a. We call a the inverse image of B.

Case 1: |xx′| ≤ 25. It is easy to verify by exhaustive search that all subwords of
length 25 of w are squarefree. (There are only 82 such subwords.)

Case 2: |x| ≥ 13. Then there is a block that begins at either x[5], x[6], x[7], or
x[8]. Such a block y has at least 4 symbols of x to its left, and ends at an index
at most 11. Thus there are at least 2 symbols of x to the right of y. We call such
a block (with at least 4 symbols to the left, and at least 2 to the right) a centered
block.

Case 2a: |x| ≡ 1, 3 (mod 4). Then x contains a centered block y. Hence x′

contains an occurrence of y (call it y′) starting at the same relative position. Since
|x| ≡ 1, 3 (mod 4), y′ overlaps a block z starting at 1 or 3 positions to its left. Since
y is centered, z lies entirely within x′. But this is impossible, since y is a block, and
hence starts with 0, while the second and fourth symbol of every block z′ is ±1.
See Figure 1.
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y y′

z

x x′

Figure 1: Case 2a

Case 2b: |x| ≡ 2 (mod 4). By the same reasoning, x contains a centered block y,
so x′ contains an occurrence of y (called y′) starting at the same relative position.
Since |x| ≡ 2 (mod 4), y′ overlaps a block z starting at 2 positions to its left, and
z lies entirely within x′. But by inspection, this can only occur if

(i) y starts with 01 and z ends with 01; or

(ii) y starts with 01 and z ends with 01.

In case (i), y is either 0111 or 0101, and z = 0101. If y = 0111, then consider the
block z′ that follows z in y′. It must begin 11, a contradiction. Hence y = 0101.

Now the first two symbols of z precede y′ in x′ and hence must also precede
y′ = y in x. Thus the block y′′ that precedes y in x must end in 01; it is entirely
contained in x because y is centered. Hence y′′ = 0101, and y′′y is a shorter square
in w, a contradiction. See Figure 2.

x x′

yy′′ y′

z z′

Figure 2: Case 2b(i)

In case (ii), y is either 0111 or 0101, and z = 0101. If y = 0111, then consider
the block z′ that follows z in y′. It must begin 11, a contradiction. Hence y = 0101.

Now the first two symbols of z precede y′ in x′ and hence must also precede y′

in x. Thus the block y′′ that precedes y in x must end in 01; it is entirely contained
in x because y is centered. Hence y′′ = 0101. Hence y′′y is a shorter square in w,
a contradiction.

Case 2c: |x| ≡ 0 (mod 4). Then we can write x = rx1x2 · · ·xjl′, x′ = r′x′1x
′
2 · · ·x′jl′′,

where lr = x0 (this defines l), l′r′ = x′0, l′′r′′ = x′j+1, and x1, . . . , xj , x′0, . . . x
′
j+1

are all blocks. Furthermore, since x = x′ and τ ◦ ϕ is injective, we have r = r′,
x1 = x′1, . . . , xj = x′j , and l′ = l′′. See Figure 3. There are several subcases,
depending on the index i in w in which x begins.
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x x′

x1 x2 xj x′
0 x′

2 · · ·· · · x′
j x′

j+1

rl l′ r′ l′′ r′′
x′

1x0

Figure 3: Case 2c

Subcase (i): i ≡ 1, 2 (mod 4). Then |r| = |r′| = |r′′| = 2 or 3. Since any block is
uniquely determined by a suffix of length 2, we must have r = r′ and so x0 = x′0.
Hence x0 · · ·xjx0 · · ·xj corresponds to a shorter square in w, by taking the inverse
image of each block, a contradiction.

Subcase (ii): i ≡ 3 (mod 4). Then |l| = |l′| = |l′′| = 3. Again, any block
is uniquely determined by a prefix of length 3, so l′ = l′′. Thus x′0 = x′j+1 and
x1 · · ·xjx′0x

′
1 · · ·x′j+1 is a square. But each of these terms is a block, so this cor-

responds to a shorter square in w, by taking the inverse image of each block, a
contradiction.

Subcase (iii): i ≡ 0 (mod 4). In this case both x and x′ can be factored into
identical blocks, and hence correspond to a shorter square in w, by taking the
inverse image of each block, a contradiction.

This completes the proof that w is squarefree.
It remains to show that if xx′ are consecutive factors of w, then

∑
x cannot

equal
∑

x′ unless both are 0.
First, we prove a lemma.

Lemma 6. Let ζ be the morphism defined by

0, 0′ → 0 1 0′−1
1 → 0 1−1 1 0′−1

−1 → 1−1.

Then

(a) ϕn ◦ ζ = ζn+1 for all n ≥ 0.

(b) ϕn(0) = ζn(0) for n ≥ 0.

Proof. (a): The claim is trivial for n = 0. For n = 1, it becomes ϕ ◦ ζ = ζ2, a claim
that can easily be verified by checking that ϕ(ζ(a)) = ζ2(a) for all a ∈ {−1, 0, 1, 0′}.
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Now assume the result is true for some n ≥ 1; we prove it for n + 1:

ϕn+1 ◦ ζ = (ϕ ◦ ϕn) ◦ ζ

= ϕ ◦ (ϕn ◦ ζ)
= ϕ ◦ ζn+1 (by induction)
= ϕ ◦ (ζ ◦ ζn)
= (ϕ ◦ ζ) ◦ ζn

= ζ2 ◦ ζn

= ζn+2.

(b): Again, the result is trivial for n = 0, 1. Assume it is true for some n ≥ 1;
we prove it for n + 1. Then

ζn+1(0) = ϕn(ζ(0)) (by part (a))
= ϕn(ϕ(0))
= ϕn+1(0).

*

Now let β : {0, 1,−1}∗ → {0, 1,−1}∗ be defined as follows:

0 → 0 1 0−1
1 → 0 1−1 1 0−1

−1 → 1−1

Note that β is the map obtained from ζ by equating 0 and 0′, which is meaningful
because ζ(0) = ζ(0′). Then from Lemma 6 we get

τ(ϕn(0)) = βn(0) (8)

for all n ≥ 0.
Now form the word v from w by taking the running sum. More precisely, define

v[i] =
∑

0≤j≤i w[j]. We first observe that v takes its values over the alphabet
{0, 1}: From Eq. (8) we see that w = βω(0). But the image of each letter under β
sums to 0, and furthermore, the running sums of the image of each letter are always
either 0 or 1. From this the statement about the values of v follows.

Let xx′ be a factor of w beginning at position i, with |x| = n, |x′| = n′. Then
w[i..i+ n− 1] has the same sum s as w[i + n..i+ n + n′− 1] if and only if v[i + n +
n′− 1]−v[i+n− 1] = v[i+n− 1]−v[i− 1] = s. In other words, w[i..i+n− 1] has
the same sum s as w[i+n..i+n+n′−1] if and only if v[i],v[i+n], and v[i+n+n′]
form an arithmetic progression with common difference s. However, since v takes
its values in {0, 1}, this is only possible if s = 0.
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Corollary 7. For every k ≥ 3, there exists a squarefree infinite word over {0, 1, . . . ,
k − 1} avoiding all factors of the form xx′ with

∑
x =

∑
x′ = a for all a %≡

0 (mod k).

Proof. Take the word w = βω(0) constructed above, and map −1 to k − 1.

4. Upper and Lower Bounds

We call a word of the form x1x2 · · ·xr where |x1| = |x2| = · · · = |xr| and
∑

x1 ≡∑
x2 ≡ · · · ≡

∑
xr (mod k) a congruential r-power (modulo k). As we have seen,

the lengths of words on {0, 1, . . . , k− 1} avoiding congruential r-powers, modulo k,
are bounded. We now consider estimating how long they can be, as a function of r
and k.

Our first result uses some elementary number theory to get an explicit lower
bound for congruential 2-powers.

Theorem 8. If p is a prime, there is a word on {0, 1, . . . , p− 1} of length at least
p2 − p− 1 avoiding congruential 2-powers (modulo p).

Proof. All arithmetic is done modulo p. Let c be an element of order (p − 1)/2 in
(Z/(p))∗. If p ≡ 5, 7 (mod 8), let a be any quadratic residue of p. If p ≡ 1, 3 (mod 8),
let a be any quadratic non-residue of p. Let e(k) = ck +ak2 for 1 ≤ k ≤ p2−p, and
define f as the first difference of the sequence of e’s; that is, f(k) = e(k + 1)− e(k)
for 1 ≤ k ≤ p2 − p− 1. Then we claim that the word f = f(1)f(2) · · · f(p2 − p− 1)
avoids congruential squares (mod p).

To see this, assume that there is a congruential square in f . Then the sequence
e would have three terms where the indices and values are both in arithmetic
progression, say k, k + r, and k + 2r. Then (ck+r + a(k + r)2) − (ck + ak2) =
(ck+2r + a(k + 2r)2)− (ck+r + a(k + r)2). Simplifying, we get

ck(cr − 1)2 = −2ar2. (9)

If cr %≡ 1 (mod p), then

ck/(−2a) ≡ (r/(cr − 1))2 (mod p). (10)

Now the right-hand side of (10) is a square (mod p), so the left-hand side must also
be a square. But ck is a square, since c = g2 for some generator g. So −2a must
be a square. But if p ≡ 1, 3 (mod 8), then −2 is a square mod p, so −2a is not a
square. If p ≡ 5, 7 (mod 8), then −2 is a nonsquare mod p, so −2a is again not a
square.

Hence it must be that cr ≡ 1 (mod p). Since we chose c = g2 for some generator
g, this means that r is a multiple of (p−1)/2, say r = j(p−1)/2. Then the left-hand
side of (9) is 0 (mod p), while the right hand side is −aj2(p − 1)2/2. If this is 0
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(mod p), we must have j ≡ 0 (mod p). So j ≥ p. Then 2r is ≥ p(p− 1). This gives
the lower bound.

We now turn to some asymptotic results. For the remainder of this section, as
is typical in the Ramsey theory literature [10], we use the language of colorings:
instead of saying the ith letter of a string x is j, we’ll intepret it as coloring the
integer i with color j.

We first investigate the growth rate, as k → ∞, of the minimum integer n such
that every word of length n over {0, 1, . . . , k−1} has a congruential 2-power modulo
k.

We start with some definitions. Let Ω(3, k) be the smallest integer n such that
every set {x1, x2, . . . xn} with xi ∈ [(i − 1)k + 1, ik] contains a 3-term arithmetic
progression. Let L(k) be the minimum integer n such that every k-coloring of [1, n]
that uses the colors 0, 1, . . . , k − 1 admits a congruential 2-power (modulo k). Let
w(k, r) be the classical van der Waerden number, that is, the least positive integer
w such that for all n ≥ w, every r-coloring of {1, 2, . . . , n} has an monochromatic
arithmetic progression of length k. Finally, let w1(3, k) be the minimum integer n
such that every 2-coloring of [1, n] admits either a 3-term arithmetic progression of
the first color, or k consecutive integers all with the second color.

Lemma 9. For any k ∈ N, we have L(k) ≥ Ω
(
3,

⌊
k
2

⌋)
− 1.

Proof. Consider a maximally valid set of size n = Ω
(
3,

⌊
k
2

⌋)
− 1, i.e., a largest set

that avoids 3-term arithmetic progressions. Let S = {s1 < s2 < · · · < sn} be this
set. Construct the difference set D = {d1, d2, . . . , dn−1} = {s2−s1, s3−s2, . . . , sn−
sn−1} so that |D| = n− 1. Note that for any d ∈ D we have d ∈ [1, k − 1] (so that
0 is not used in this construction). We claim that D has no congruential 2-power.
Assume, for a contradiction, that it does. Let

∑y
i=x di ≡

∑2y−x+1
y+1 di (mod k).

Then, by construction of D, we have
y∑

i=x

di = sy+1 − sx and
2y−x+1∑

y+1

di = s2y−x+2 − sy+1.

Hence,
2sy+1 ≡ s2y−x+2 + sx (mod k). (11)

Since x, y + 1, 2y − x + 2 are in arithmetic progression, the number of intervals
between sx and sy+1 is the same as the number of intervals between sy+1 and
s2y−x+2. Hence,

y∑

i=x

di = sy+1 − sx ∈
[
(y − x)

⌊
k

2

⌋
+ 1, (y − x + 2)

⌊
k

2

⌋
− 1

]

and
2y−x+1∑

y+1

di = s2y−x+2 − sy+1 ∈
[
(y − x)

⌊
k

2

⌋
+ 1, (y − x + 2)

⌊
k

2

⌋
− 1

]
.
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Since the length of each of these intervals is the same and is at most k−1, we see
that (11) is satisfied as an equality. Hence, sx, sy+1, s2y−x+2 is a 3-term arithmetic
progression in S, a contradiction. Thus, L(k) > |D| = n− 1 = Ω(3, k)− 2 and we
are done.

Continuing, we investigate the growth rate of L(k) through Ω(3, k). We have the
following result.

Lemma 10. For all k ∈ N, w1(3, k) ≤ kΩ(3, k).

Proof. Let m = Ω(3, k) and let n = km. Let χ be any (red, blue)-coloring of [1, n].
Assume there are no k consecutive blue integers. So, for each i, 1 ≤ i ≤ m, the
interval [(i− 1)k + 1, ik] contains a red element, say ai. Then, by the definition of
Ω(3, k), there is a 3-term arithmetic progression among the ai’s.

Recently, Ron Graham [6] has shown the following.

Theorem 11. (Graham) There exists a constant c > 0 such that, for k sufficiently
large, w1(3, k) > kc log k.

As a corollary, using Lemma 10, we have

Corollary 12. There exists a constant c > 0 such that, for k sufficiently large,
Ω(3, k) > kc log k.

Proof. From Theorem 11 and Lemma 10 we have, for some d > 0,

Ω(3, k) ≥ w1(3, k)
k

> kd log k−1 > k
d
2 log k.

Taking c = d
2 gives the result.

We now apply Corollary 12 to Lemma 9 to yield the following theorem, which
states that L(k) grows faster than any polynomial in k.

Theorem 13. There exists a constant c > 0 such that, for k sufficiently large,
L(k) > kc log k.

Proof. We have (suppressing constant terms)

L(k) ≥ Ω
(

3,
⌊

k

2

⌋)
>

(
k

2

)d log k
2

for some d > 0, provided k is sufficiently large. Since k
2 >

√
k for k > 4 this gives,

for sufficiently large k,
L(k) > k

d
2 log k

2 > k
d
4 log k.

Taking c = d
4 yields the result.
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We now turn from congruential 2-powers to the more general case of congruential
t-powers. To this end, define L(k, t) to be the minimum integer n such that every
k-coloring of [1, n] using the colors 0, 1, . . . , k − 1 admits a congruential t-power
modulo k.

Adapting the proof of Lemma 9 to this setting, we immediately get

Lemma 14. For any k, t ∈ N, we have L(k, t) ≥ Ω
(
t + 1,

⌊
k
2

⌋)
− 1.

Now, a result due to Nathanson [12] gives us the following result.

Theorem 15. For any k, t ∈ N, we have

Ω
(

t + 1,
⌊k

2

⌋)
≥ w

(⌈2t
k

⌉
+ 1;

⌊k

2

⌋)
.

When k = 4, this gives us the following.

Corollary 16. For any t ∈ N we have L(4, t) ≥ w
(⌈

t
2

⌉
+ 1; 2

)
− 1.

Hence, this says, roughly, that L(4, 2*) serves as an upper bound for the classical
van der Waerden number w(*, *).

A recent result of Bourgain [1] implies the bound w(3; k) = o(kck3/2
) for some

constant c > 0.
Hence, for sufficiently large k, there exist constants c, d > 0 such that

kc log k < L(k) < kdk3/2

so that we have a very rough idea of the growth rate.

5. Computational Results

As we have seen, the known upper bounds on van der Waerden numbers provide
upper bounds for the length of the longest word avoiding congruential powers. We
also did some explicit computations. We computed the length l(r, k) of the longest
word over Σk avoiding congruential r-powers (modulo k), for some small values
of k and r, and the lexicographically least such longest word xr,k. The data are
summarized below.
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r k l(r, k) xr,k

2 2 3 010
2 3 7 0102010
2 4 16 0130102013101201
2 5 33 010214243213143040102142432131430
2 6 35 01024021240241402401024021240241402
2 7 47 01021614636032312426404301021614636032312426404
3 2 9 001101100
3 3 67 001021011202120010202212101120212001020101210112021200102

1002210112

4 2 88 001100011000100111001000110001100010011100100011000110001

0011100100011000110001001110011

It remains an interesting open problem to find better upper and lower bounds
on the length of the longest word avoiding congruential powers.

Note added in proof (November 10, 2010): Recently, Cassaigne, Richomme, Saari,
& Zamboni [2] have found results similar to, but stronger than, our Theorem 2.

Acknowledgments We thank Thomas Stoll for a helpful observation. Theorem 8
was inspired by some related empirical calculations by Richard (Yang) Peng.
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