#A71 INTEGERS 11 (2011)

Tanbir Ahmed
Department of Computer Science and Software Engineering, Concordia
University, Montréal, Canada
ta_ahmed@cs.concordia.ca

Received: 1/30/11, Revised: 9/14/11, Accepted: 11/23/11, Published: 12/7/11

Abstract

The van der Waerden number w(k;to,ta,...,tp—1) is the smallest integer m such
that in every partition Py U Py U--- U Py_ of the set {1,2,...,m}, there is al-
ways a block P; that contains an arithmetic progression of length ¢;. In this paper,
we report the exact value of the previously unknown van der Waerden number
w(2;4,9), some lower bounds of w(2;5,t), and polynomial upper-bound conjec-
tures for w(2;4,t) and w(2;5,t). We also present an efficient SAT-encoding of
w(k;to,t1,...,tg—1) for k > 3 using which we have computed the exact value of
w(3;3,3,6) and some lower bounds of w(3;tg, t1,t2).

1. Introduction

Van der Waerden’s theorem [18] can be formulated (as in Chvétal [5]) as follows:
Given any positive integer k and positive integers tg,t1,...,tx_1, there is an integer
m such that given any partition

{1,2,...,m}:P()UPlU"'UPk_l (1)

there is always a class P; containing an arithmetic progression of length ¢;. Let
us denote the least m with this property by w(k;to,1,...,tk—1). We say the van
der Waerden number w(k;to, ..., t,—1) classical if and only if tg =t; = -+ = tx_;.
Only six such non-trivial numbers are known: w(2;3,3) =9 [5], w(2;4,4) = 35 [5],
w(3;3,3,3) = 27 [5], w(2;5,5) = 178 [16], w(4;3,3,3,3) = 76 [3], and w(2;6,6) =
1132 [12]. We denote partitions as strings; for example, 00110011 means Py, =
{1,2,5,6} and P, = {3,4,7,8}. By a good partition, we mean a partition of the
form (1) such that no P; contains an arithmetic progression of ¢; terms. We have
recently published some previously unknown van der Waerden numbers in [1, 2].

To make this article self-contained, we repeat some definitions that we provided in
[2]. We construct an instance F' of the satisfiability problem (described in the follow-
ing paragraph) with n variables for the van der Waerden number w(k;to, ..., tx—1)
such that F' is satisfiable if and only if n < w(k;to, ..., tk—1).

INTEGERS 11 (2011) 2

To describe the satisfiability problem, we require a few other definitions. A truth
assignment is a mapping f that assigns each variable in {z1,zs,...,z,} a value
in {0,1}. The complement Z; of each variable z; is defined by f(Z;) =1 — f(x;)
for all truth assignments f. Both xz; and Z; are called literals: a clause is a set of
(distinct) literals and a formula is a family of (not necessarily distinct) clauses. A
truth assignment satisfies a clause if and only if it maps at least one of its literals
to 1; the assignment satisfies a formula if and only if it satisfies each of its clauses.
A formula is called satisfiable if it is satisfied by at least one truth assignment,
otherwise, it is called unsatisfiable. The problem of recognizing satisfiable formulas
is known as the satisfiability problem, or SAT for short. The definitions given in
this paragraph are adapted from Chvéatal and Reed [6].

To check the satisfiability of the generated instance, we need to use an algorithm
that either solves the instance providing a satisfying assignment, or says that the
formula is unsatisfiable. We have, at our disposal, two kinds of algorithms: complete
and incomplete. A complete algorithm like DPLL [7] finds a satisfying assignment
if one exists, otherwise, correctly says that no satisfying assignment exists and the
formula is unsatisfiable. A local-search based incomplete algorithm (see Ubcsat-suit
[17] for examples) is generally faster (as we can control the number of iterations,
runs, and several other parameters) than a DPLL-like algorithm, but may fail to
deliver a satisfying assignment when there exists one. A good partition is a proof
of a lower bound for a certain van der Waerden number irrespective of its means
of achievement. So incomplete algorithms are handy for obtaining good partitions
and improving lower bounds of van der Waerden numbers. When they fail to im-
prove the lower bound any further, we may turn to a complete algorithm. Surely,
determining the exact value of a van der Waerden number involves proving the
instance corresponding to w(k;tg,t1,...,tx—1) to be unsatisfiable. We have devel-
oped and used an efficient stand-alone implementation of the DPLL [7] algorithm
in this purpose. Our implementation is engineered to run faster on unsatisfiable
instances corresponding to van der Waerden numbers. For a brief description on
this implementation, see Section 3 of [2].

We have also described a distributed application of our stand-alone implemen-
tation by splitting the search-space into independent parts (no message-passing
between processes). For a brief description, see Section 4 of [2]. In [2], we have
reported the exact values of w(2;3,17) and w(2;3,18) to be 279 and 312, respec-
tively. In Section 2 of this article, we report the exact value of w(2;4,9) and lower
bounds of w(2;5,t1) with 7 < ¢; < 11.

In Section 3.1, we describe an efficient SAT-encoding of w(k;tg,t1,...,tx—1) for
k > 3. Using this encoding, as well as the implementation and distribution tech-
niques mentioned above, we have computed a previously unknown van der Waerden
number w(3;3,3,6) and provided some lower bounds of w(3;tg,t1,t2).

For computation, we have used 2.2 GHz AMD Opteron processors of the cirrus

INTEGERS 11 (2011) 3

cluster at Concordia University and 2.8 GHz Intel Xeon E5462 processors at Univer-
sité de Sherbrooke (under Quebec High Performance Computing Network, RQCHP).
The lower bounds™ are computed using some combinations of local-search based al-
gorithms and our implementation of DPLL. The exact values are determined using
our implementation of DPLL.

2. On w(2;tg,t1)

In this section, we report that the exact value of the previously unknown van der
Waerden number w(2;4,9) is 309. We also provide new lower bounds for w(2; 5, t1),
with 7 < ¢; < 11. Based on the experimental data, we provide conjectures for upper
bounds of w(2;4,¢) and w(2;5,1).

2.1. A New Number: w(2;4,9) = 309

In [1], we provided the lower bound w(2;4,9) > 254. The lower bound was improved
to w(2;4,9) > 309 by Kullmann [13] using local search based algorithms. We have
proved the exact value of w(2;4,9) to be 309 using our implementation of the DPLL
algorithm. A good partition of the set {1,2,...,308} corresponding to w(2;4,9) is
as follows:

11111111 01110101 10001100 10111010 10011111 01101110 11111111
00111111 11011101 10111110 01010111 01001100 01101011 11111010
11000110 01011101 01001111 10110111 01111111 10011111 11101110
11011111 00101011 10100110 00110101 11A11101 01100011 00101110
10100111 11011011 10111111 11001111 11110111 01101111 10010101
11010011 00011010 11101111 1111 (A is arbitrary).

It took us 176.28 years of CPU-time (roughly 330 days of run-time using 200
processors) to prove that there is no good partition of the set {1,2,...,309} corre-
sponding to w(2;4,9). We split (see [2] for the splitting technique and the branching
rule) the DPLL-tree into 16 independent parts, each of which were split further into
1024 independent parts.

In such a large computation where thousands of distributed branches of the
DPLL-tree have run on hundreds of processors for almost a year, we hope we have
not fallen into the trap of an undetected hardware failure (an electricity failure
is natural and every detected hardware-failure was re-run from the last state of
the search) or a file-manipulation error on a particular branch which unfortunately
could contain a good partition of the set {1,2,...,309}. We welcome interested
readers with proper resources to conduct another search to verify our result.

*Examples of good partitions corresponding to the lower bounds can be found at
http://users.encs.concordia.ca/ ta_ahmed/vdw.html

INTEGERS 11 (2011) 4

2.2. Some New Lower Bounds of w(2;5,t)

In this section, we provide the following new lower bounds of w(2;5,¢) for 7 < ¢ < 11:
w(2:5,7) > 260, w(25,8) =331, w(259)>473, w(25,10) > 557, and
w(2;5,11) > 736.

2.3. Two Conjectures on the Upper Bounds of w(2;4,t) and w(2;5,t)

We propose the following polynomial bounds as conjectures for w(2; 4,t) and w(2; 5, t):

Conjecture 1. There exists a constant ¢; > 1 such that w(2;4,t) < cit3.

Based on the known values (18, 35, 55, 73, 109, 146, 309) of w(2;4,¢) for ¢t > 3,
we obtain the following recursion with d > (309 — 146)/92 ~ 2:

w(2;4,t) <w(2;4,t—1) +d-t2 w(2;4,3) +d (4> +5% + - +t?)
18+2(1°+2° 4 +1°) — 28

5. (WHWHU) < o,

NN

6
Conjecture 2. There exists a constant co > 1 such that w(2;5,t) < cot™.

Based on the known values and bounds of w(2;5,t) for ¢ > 3, we obtain the
following recursion with d > 1:

w(2;5,t) Sw(25,t—1)+d-t* < w(2;5,3)+d (43 +5%+ + %)
< 24113428+ +4%) 36

2
(L;D) <0.25-4-t* =1t

3. On W(k;to,tl, . e atk—l) for k > 3
3.1. A New Encoding

For any partition PyUP;U---UPj_; of the set {1,2,...,n}, we want to prohibit the
existence of arithmetic progressions of length ¢; in block P; (0 < j < k —1). Here,
we present a simple but useful idea of binary-encoding® of the blocks of partition
for SAT-encoding of van der Waerden numbers. Instead of taking nk variables z; ;
with 1 <i<mand 0<j<k-—1 (as described in [1]), we take nr variables x, ,
with 1 <p<nand0<qg<r—1, where r = [logy(k)].

§ The idea of using binary variables to represent the bits of a binary representation of a non-
negative integer is not new. This formulation is well-known in integer linear programming (see
Garfinkel and Nemhauser [9]); but the idea was never used before in the current context.

INTEGERS 11 (2011))

To prove that an instance with n variables is unsatisfiable, the DPLL algorithm
implicitly enumerates all the 2™ solutions, that is, systematically evaluates all pos-
sible solutions without explicitly evaluating all of them. As we have fewer variables
in the proposed encoding, we have less number of solutions to enumerate.

Let a block P; for 0 < 7 < k — 1 be represented in binary such that j =
Z;;é b;.429, where b; 4 is the g-th bit in the r-bit binary representation of j.

Aninteger ¢in {1,2,...,n} belongs to a block P; if and only if j equals Z;;é z; 429,
that is, x; 4 has the same truth-value as b; 4. To prohibit the existence of arithmetic
progressions a,a+d,...,a+d(t; — 1), witha > 1,d > 1,a+d(t; — 1) < n in block
P;, we add the following clauses:

{ua,rfla ceoy Ug 0y Uatd,r—15 - - -y Ua+d,05 - - - vua+d(tj—l),r—1 cee 7ua+d(tj—1)70}7

where literal u; , (for i € {a,a+d,...,a+d(t; —1)}) is defined as follows:

N { Tiq ifbjq=1,
v x;q otherwise.
The above clauses are added for each j in {0,1,...,k — 1}. The clauses are long,
but can be handled efficiently as described in Section 3 of [2].

To ensure that an integer 7 is not placed in a block P; with k£ < j < 2" -1 (since
there is no such block in the partition of {1,2,...,n}), we add the following clauses:
{Vir—1,Vip—2,...,0i1,v0} (1 =1,2,...,n), where literal v; 4 is defined as follows:

v — { Ziq if bj)q =1,
e xiq oOtherwise.

The double-subscript variables z,, with 1 < p < nand 0 < ¢ < r—1 can
be converted to single-subcript variables y(,—1),4+¢+1- In the following example, we
write j and —j to mean the literals y; and ; respectively. An instance corresponding
to w(3;2,3,3) for n = 5 can be constructed with 10 variables 1,2,...,10 and the
following 23 clauses:

(%) {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,2,9,10}, {3,4,5,6}, {3,4,7,8}, {3,4,9,10},
{5,6,7,8}, {5,6,9,10}, {7,8,9,10},

(@) {1,-2,3,-4,5,-6}, {1,-2,5,-6,9,-10}, {3,-4,5,-6,7,-8}, {5,-6,7,-8,9,-10},

(@) {-1,2,-3,4,-5,6}, {-1,2,-5,6,-9,10}, {-3,4,-5,6,-7,8}, {-5,6,-7,8,-9,10},

(i) {-1,-2}, {-3,-4}, {-5,-6}, {-7,-8}, {-9,-10}.

Clauses (i), (i), and (iii) prohibit the existence of arithmetic progressions of
lengths 2 (in block Py), 3 (in block Py), and 3 (in block P») respectively. Clauses
(iv) prohibit the placement of any integer in block Ps.

3.2. A New Number: w(3;3,3,6) = 107

Tt took 992 days of CPU-time (roughly 17 days of run-time) using 64 processors to
prove that the instance corresponding to 107 is unsatisfiable, that is, there is no

INTEGERS 11 (2011) 6

good partition of the set {1,2,...,107}. A good partition of the set {1,2,...,106}
corresponding to w(3;3,3,6) is as follows:

22122112 22212222 00220021 22102021 22200220 22220202 11221222
22110122 02022002 20222122 12202210 11022220 22022221 22.

3.3. Some New Lower Bounds of w(3;tg,t1,t2)

In this section, we provide the following new lower bounds of w(3;tg,t1,t2):

w(3:2,4,8) > 155, w(3;3,3,7) > 149, w(3;3,3,8) > 185,
w(3:3,3,9) > 221, w(3;3,3,10) > 265, w(3;3,4,5) > 163, and
w(3;3,5,5) > 243.

3.4. An Observation

We observe that the more blocks in the partition, the better the performance of
the encoding. Here, we present two previously unknown van der Waerden num-
bers w(7;2,2,2,2,2,3,5) and w(8;2,2,2,2,2,2,3,4). For both these numbers, the
encoding in [1, 8] takes more than a couple of months to prove the corresponding
instances unsatisfiable.

w(k;to, ..., th—1) = | Example of a Good Partition CPU-time
w(7,2,2,2,2,2,3,5) 55 | 77776777 66767717 66766777 37777477 | 21 days
76267776 76676777 757767
w(8:2,2,2,2,2,2,3,4) | 40 | 88787738 88787782 67888488 51778887 | 16 days
8778887

Table 1: Van der Waerden numbers with more partitions

4. Concluding Remarks

The encoding proposed in Section 3.1 may be useful (though may not be ade-
quate) to determine some classical van der Waerden numbers like w(3;4,4,4) and
w(5;3,3,3,3,3). Rabung [15] showed w(3;4,4,4) > 292 by constructing an exam-
ple of a good partition (following an observation of Berlekamp [4] and using power
residues) of the set {1,2,...,292}. Dransfield et al.[8] showed w(5;3,3,3,3,3) >
125. Heule and van Maaren recently (2009) improved the bound to w(5; 3,3, 3, 3,3) >
170 [11]. They have used clauses to force symmetry (see Herwig et al. [10]) in ad-
dition to the usual clauses (as described in [1, 8]).

Though we do not have enough data points to generalize upper-bound conjectures
given in Section 2.3, it might be possible that for ¢t > 3 and fixed s > 3, there exists
¢ > 1 such that w(2;s,t) < ct* L.

INTEGERS 11 (2011) 7

Acknowledgements The author is grateful to Vasek Chvatal and Clement Lam
for their support. He would also like to thank the anonymous referee for his or her
valuable suggestions, and Andalib Parvez for carefully reading the manuscript.

References

(1]
(2]
(3]
[4]
[5]
[6]
[7]
(8]
[9]
(10]
(11]
(12]

(13]
14]

(15]
(16]

(17]

(18]

T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers,
Integers, 9 (2009), A06, 65-76.

T. Ahmed, Two new van der Waerden numbers: w(2;3,17) and w(2;3,18), Integers 10
(2010), A32, 369-377.

M. Beeler, P. O’Neil, Some new van der Waerden numbers, Discrete Math. 28 (1979), 135-
146.

E. R. Berlekamp, A construction for partitions which avoid long arithmetic progressions,
Canadian Math. Bull. 11 (1968), 409-414.

V. Chvétal, Some unknown van der Waerden numbers, Combinatorial Structures and Their
Applications (R.Guy et al.,eds.), 31-33, Gordon and Breach, New York, 1970.

V. Chvétal, B. Reed, Mick Gets Some (The Odds Are on His Side), Proceedings of the 33rd
Annual Symposium on FOCS, 1992, 620-627.

M. Davis, G. Logemann, D. Loveland, A machine program for theorem-proving, Comm.
ACM, 5 (1962), 394-397.

M. R. Dransfield, L. Liu, V. Marek, M. Truszczynski, Satisfiability and Computing van der
Waerden numbers, The Electronic Journal of Combinatorics 11(1) (2004), R41.

R. S. Garfinkel, G. L. Nemhauser, Integer Programming, Wiley-Interscience (John Wiley &
Sons): New York, (1972), Series in Decision and Control.

P. R. Herwig, M. J. H. Heule, P. M. van Lambalgen, H. van Maaren, A new method to con-
struct lower bounds for van der Waerden numbers, The Electronic Journal of Combinatorics
14 (2007).

SAT@Delft, van der Waerden numbers, http://www.st.ewi.tudelft.nl/sat/waerden.php.

M. Kouril, J. L. Paul, The van der Waerden number W(2,6) is 1132, Ezperimental Mathe-
matics 17(1) (2008), 53-61.

O. Kullmann, Green-Tao Numbers and SAT, SAT 2010 (2010), 352-362.

B. Landman, A. Robertson, C. Culver, Some new exact van der Waerden numbers, Integers:
Electronic J. Combinatorial Number Theory 5(2) (2005), A10.

J. R. Rabung, Some progression-free partitions constructed using Folkman’s method, Cana-
dian Mathematical Bulletin 22 (1979) 87-91.

R. Stevens, R. Shantaram, Computer-generated van der Waerden partitions, Math. Compu-
tation 32 (1978), 635-636.

Dave A.D. Tompkins, Holger H. Hoos, UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In Holger H. Hoos and David G.
Mitchell, editors, Theory and Applications of Satisfiability Testing of 2004, Lecture Notes
in Computer Science, Springer 3542 (2005), 306—-320.

B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde
15 (1927), 212-216.

