FIRST REMARK ON A $\boldsymbol{\zeta}$-ANALOGUE OF THE STIRLING NUMBERS

M. Dziemiańczuk
Institute of Informatics, University of Gdańsk, Poland
mdziemia@inf.ug.edu.pl

Received: 1/12/10, Revised: 10/9/10, Accepted: 12/9/10, Published: 1/31/11

Abstract

The so-called ζ-analogues of the Stirling numbers of the first and second kind are considered. These numbers cover ordinary binomial and Gaussian coefficients, p, q Stirling numbers and other combinatorial numbers studied with the help of object selection, Ferrers diagrams and rook theory.

Our generalization includes these and now also the p, q-binomial coefficients. This special subfamily of F-nomial coefficients encompasses among others, Fibonomial ones. The recurrence relations with generating functions of the ζ-analogues are delivered here. A few examples of ζ-analogues are presented.

1. Introduction

Let $\mathbf{w}=\left\{w_{i}\right\}_{i \geq 1}$ be a vector of complex numbers w_{i}. The generalized Stirling numbers of the first kind $C_{k}^{n}(\mathbf{w})$ and the second kind $S_{k}^{n}(\mathbf{w})$ are defined as follows:

$$
\begin{align*}
C_{k}^{n}(\mathbf{w}) & =\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}} \tag{1}\\
S_{k}^{n}(\mathbf{w}) & =\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}}
\end{align*}
$$

If the elements of the weight vector \mathbf{w} are positive integers then the coefficients are interpreted as a selection of k objects from k of n boxes without and with box repetition allowed, respectively. In this case the number of distinct objects in the s-th box is designated by the s-th element of the weight vector \mathbf{w}.

One shows that the numbers $C_{k}^{n}(\mathbf{w})$ and $S_{k}^{n}(\mathbf{w})$ cover among others, binomial coefficients, Gaussian coefficients and the Stirling numbers of the first and second kind, see for example Konvalina $[6,7]$. Indeed, if we fix $w_{i}=1$, we obtain ordinary
binomial coefficients:

$$
C_{k}^{n}(\mathbf{1})=\binom{n}{k}, \quad S_{k}^{n}(\mathbf{1})=\binom{n+k-1}{k}
$$

Setting $w_{i}=q^{i-1}$ gives us Gaussian coefficients:

$$
C_{k}^{n}(\mathbf{q})=q^{\binom{k}{2}}\binom{n}{k}_{q}, \quad S_{k}^{n}(\mathbf{q})=\binom{n+k-1}{k}_{q}
$$

In this note, the ordinary Stirling numbers of the first kind are defined in the following way

$$
(1-x)(1-2 x) \cdots(1-n x)=\sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{c}
n+1 \\
n+1-k
\end{array}\right] x^{k}
$$

and the second kind

$$
\frac{1}{(1-x)(1-2 x) \cdots(1-n x)}=\sum_{k=0}^{n}\left\{\begin{array}{c}
n+k \\
n
\end{array}\right\} x^{k}
$$

Letting $\mathbf{i}=\langle 1,2,3, \ldots\rangle$, i.e., $w_{i}=i$, gives

$$
C_{k}^{n}(\mathbf{i})=\left[\begin{array}{c}
n+1 \\
n-k+1
\end{array}\right], \quad S_{k}^{n}(\mathbf{i})=\left\{\begin{array}{c}
n+k \\
n
\end{array}\right\}
$$

Furthermore, if $\mathbf{i}_{p, q}=\left\langle[1]_{p, q},[2]_{p, q}, \ldots\right\rangle$ where $[i]_{p, q}=\sum_{s=1}^{i} p^{i-s} q^{s-1}$, then we obtain p, q-Stirling numbers considered by Wachs and White [12]

$$
p^{\binom{n}{2}} S_{k}^{n}\left(\mathbf{i}_{p, q}\right)=\left\{\begin{array}{c}
n+k \\
n
\end{array}\right\}_{p, q},
$$

which satisfy the following recursive relation

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{p, q}=p^{k-1}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}_{p, q}+[k]_{p, q}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{p, q}
$$

We refer the reader also to Wagner [13], Médicis and Leroux [11].
Notice, that the weight vector \mathbf{w} in the definition of the coefficients $C_{k}^{n}(\mathbf{w})$ and $S_{k}^{n}(\mathbf{w})$ is constant and independent of the number n. The ζ-analogue of the Stirling numbers introduced in the next section do not require this assumption. We define the weight vector $\mathbf{w}_{n}(\zeta)$ dependent on the number n and a complex number ζ.

We show that our approach covers the well-known combinatorial numbers mentioned above and contains, e.g., Fibonomial and more general p, q-binomial coefficients [2, 3, 4] relevant with cobweb posets' partitions and hyper-boxes tilings considered by Kwaśniewski [9] and the present author [5].

2. A ζ-analogue of the Stirling Numbers

Take a vector $\mathbf{w}_{n}(\zeta)$ of n complex numbers $w_{i} \zeta^{n-i}$, where $i=1,2, \ldots, n$, i.e.,

$$
\begin{equation*}
\mathbf{w}_{n}(\zeta)=\left\langle w_{1} \zeta^{n-1}, w_{2} \zeta^{n-2}, \ldots, w_{n-1} \zeta, w_{n}\right\rangle . \tag{2}
\end{equation*}
$$

We write it as $\hat{\mathbf{w}}_{n}$ for short and denote the i-th element of $\hat{\mathbf{w}}_{n}$ by $\hat{w}_{n, i}$ or just \hat{w}_{i} for fixed $n \in \mathbb{N}$. We assume $\mathbf{w}_{0}(\zeta)=\emptyset$ and $\hat{w}_{0}=0$.

It is important to notice, that the j-th element of $\mathbf{w}_{n}(\zeta)$ is not equal to the j-th element of $\mathbf{w}_{m}(\zeta)$ while $n \neq m$ in general. Indeed, $w_{j} \zeta^{n-j} \neq w_{j} \zeta^{m-j}$.

Definition 1. For any $n, k \in \mathbb{N} \cup\{0\}$ the ζ-analogues of the Stirling numbers of the first kind $\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$ and the second kind $\hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$ are defined as follows:

$$
\begin{align*}
& \hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \hat{w}_{i_{1}} \hat{w}_{i_{2}} \cdots \hat{w}_{i_{k}}, \tag{3a}\\
& \hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} \hat{w}_{i_{1}} \hat{w}_{i_{2}} \cdots \hat{w}_{i_{k}}, \tag{3b}
\end{align*}
$$

with $\hat{C}_{0}^{n}\left(\hat{\mathbf{w}}_{n}\right)=\hat{S}_{0}^{n}\left(\hat{\mathbf{w}}_{n}\right)=1$ due to the empty product.

2.1. Combinatorial Interpretation

If the \hat{w}_{i} are positive integers, the coefficients $\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$ and $\hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$ denote the number of ways to select k objects from k of n boxes without box repetition allowed and with box repetition allowed, respectively. In this case, the size of the i-th box is designated by the i-th element of $\mathbf{w}_{n}(\zeta)$ for $i=1,2, \ldots, n$. However, all the results in this note holds for any vector $\hat{\mathbf{w}}$ of complex numbers and can be proved algebraically.

Theorem 2. For any $n, k \in \mathbb{N}$ we have

$$
\begin{align*}
& \hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)=w_{n} \zeta^{k-1} \hat{C}_{k-1}^{n-1}\left(\hat{\mathbf{w}}_{n-1}\right)+\zeta^{k} \hat{C}_{k}^{n-1}\left(\hat{\mathbf{w}}_{n-1}\right), \tag{4a}\\
& \hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)=w_{n} \hat{S}_{k-1}^{n}\left(\hat{\mathbf{w}}_{n}\right)+\zeta^{k} \hat{S}_{k}^{n-1}\left(\hat{\mathbf{w}}_{n-1}\right), \tag{4b}
\end{align*}
$$

where $\hat{C}_{0}^{n}\left(\hat{\mathbf{w}}_{n}\right)=\hat{S}_{0}^{n}\left(\hat{\mathbf{w}}_{n}\right)=1$ and $\hat{C}_{s}^{n}\left(\hat{\mathbf{w}}_{n}\right)=0$ for $s>n, \hat{S}_{k}^{0}\left(\hat{\mathbf{w}}_{0}\right)=0$ for $k>0$.
Proof. The proof uses terms of the combinatorial interpretation of these coefficients, but still holds for any vector $\hat{\mathbf{w}}_{n}$ of complex numbers. In point of fact, we consider the sums (3a), (3b) and only play with its summations.

Fix a natural number n and take the weight vector $\hat{\mathbf{w}}_{n}=\left\langle w_{1} \zeta^{n-1}, \ldots, w_{n-1} \zeta, w_{n}\right\rangle$. (a) Consider a k-selection with the last n-th box being selected $\left(i_{k}=n\right)$ and not
selected $\left(i_{k}<n\right)$, respectively (repetition of boxes is not allowed)

$$
\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k}=n} \prod_{j=1}^{k} w_{i_{j}} \zeta^{n-i_{j}}+\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k}<n} \prod_{j=1}^{k} w_{i_{j}} \zeta^{n-i_{j}}
$$

Observe that we can rewrite the right-hand side of the above as follows:

$$
w_{n} \sum_{1 \leq i_{1}<\cdots<i_{k-1} \leq n-1} \prod_{j=1}^{k-1} w_{i_{j}} \zeta^{n-i_{j}}+\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n-1} \prod_{j=1}^{k} w_{i_{j}} \zeta^{n-i_{j}} .
$$

As we have already noticed, the vector $\hat{\mathbf{w}}_{n} \equiv \mathbf{w}_{n}(\zeta)$ is dependent on n, and the j-th element of $\mathbf{w}_{n}(\zeta)$ is ζ times as large as the j-th element of $\mathbf{w}_{n-1}(\zeta)$ for $j=$ $1,2, \ldots, n-1$. Hence

$$
\begin{aligned}
\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)= & w_{n} \zeta^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k-1} \leq n-1} \prod_{j=1}^{k-1} w_{i_{j}} \zeta^{n-1-i_{j}}+ \\
& +\zeta^{k} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-1} \prod_{j=1}^{k} w_{i_{j}} \zeta^{n-1-i_{j}} \\
= & w_{n} \zeta^{k-1} \hat{C}_{k-1}^{n-1}\left(\hat{\mathbf{w}}_{n-1}\right)+\zeta^{k} \hat{C}_{k}^{n-1}\left(\hat{\mathbf{w}}_{n-1}\right) .
\end{aligned}
$$

(b) In the same way we prove the case with box repetition allowed.

Notation 3. Let $n \in \mathbb{N}$ and $m \in \mathbb{N} \cup\{0\}$. Denote by $\hat{\mathbf{w}}_{n}^{(m)}$ the vector

$$
\hat{\mathbf{w}}_{n}^{(m)}=\left\langle w_{m+1} \zeta^{n-1}, w_{m+2} \zeta^{n-2}, \ldots, w_{m+n-1} \zeta, w_{m+n}\right\rangle .
$$

For $m=0$ we have $\hat{\mathbf{w}}_{n}^{(0)} \equiv \hat{\mathbf{w}}_{n}$.
Proposition 4. For any $n, m, k \in \mathbb{N}$ we have

$$
\begin{align*}
& \hat{C}_{k}^{n+m}\left(\hat{\mathbf{w}}_{n+m}\right)=\sum_{j=0}^{k} \zeta^{j \cdot m} \hat{C}_{j}^{n}\left(\hat{\mathbf{w}}_{n}\right) \hat{C}_{k-j}^{m}\left(\hat{\mathbf{w}}_{m}^{(n)}\right), \tag{5a}\\
& \hat{S}_{k}^{n+m}\left(\hat{\mathbf{w}}_{n+m}\right)=\sum_{j=0}^{k} \zeta^{j \cdot m} \hat{S}_{j}^{n}\left(\hat{\mathbf{w}}_{n}\right) \hat{S}_{k-j}^{m}\left(\hat{\mathbf{w}}_{m}^{(n)}\right) \tag{5b}
\end{align*}
$$

Proof. (a) We prove the first equation (5a). Consider the left-hand side, i.e., the sum

$$
\hat{C}_{k}^{n+m}\left(\hat{\mathbf{w}}_{n+m}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n+m} w_{i_{1}} \zeta^{n+m-i_{1}} \cdots w_{i_{k}} \zeta^{n+m-i_{k}}
$$

Take $j \in\{0,1, \ldots, k\}$. We only need to show that the above summation might be separated into $(k+1)$ disjoint sums where in the j-th one the first j variables
$i_{1}, i_{2}, \ldots, i_{j}$ take on values from the set $\{1,2, \ldots, n\}$ and the remaining $(k-j)$ variables from $\{n+1, \ldots, n+m\}$, i.e.,

$$
\begin{aligned}
\hat{C}_{k}^{n+m}\left(\hat{\mathbf{w}}_{n+m}\right)= & \sum_{j=0}^{k} \sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} w_{i_{1}} \zeta^{n+m-i_{1}} \cdots w_{i_{j}} \zeta^{n+m-i_{j}} \\
& \cdot \sum_{n+1 \leq i_{j+1}<\cdots<i_{k} \leq n+m} w_{i_{j+1}} \zeta^{n+m-i_{j+1}} \cdots w_{i_{k}} \zeta^{n+m-i_{k}} .
\end{aligned}
$$

Finally, we need to correct the powers of ζ 's as follows:

$$
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq n} w_{i_{1}} \zeta^{n+m-i_{1}} \cdots w_{i_{j}} \zeta^{n+m-i_{j}}=\zeta^{j \cdot m} \hat{C}_{j}^{n}\left(\hat{\mathbf{w}}_{n}\right)
$$

(b) The same proof remains valid for the coefficients $\hat{S}_{k}^{n+m}\left(\hat{\mathbf{w}}_{n+m}\right)$.

This result provides a more general form of the recurrence relation (4a) for the coefficients $\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$. Indeed, letting $n=n^{\prime}-1$ and $m=1$ in the equation (5a) gives (4a).

Proposition 5. For any $n, k \in \mathbb{N}$ we have

$$
\begin{align*}
\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right) & =\sum_{j=k}^{n} w_{j} \zeta^{k(n-j+1)-1} \hat{C}_{k-1}^{j-1}\left(\hat{\mathbf{w}}_{j-1}\right) \tag{6a}\\
\hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right) & =\sum_{j=1}^{n} w_{j} \zeta^{k(n-j)} \hat{S}_{k-1}^{j}\left(\hat{\mathbf{w}}_{j}\right) \tag{6b}
\end{align*}
$$

Proof. (a) Consider the sum (3a) from the definition of the coefficient $\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$ and separate it into $(n-k+1)$ sums where in the j-th one the last variable i_{k} is equal to $(k+j)$ for $j=0,1, \ldots, n-k$, i.e.,

$$
\begin{align*}
\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right) & =\sum_{j=0}^{n-k} \sum_{1 \leq i_{1}<\cdots<i_{k-1}<i_{k}=k+j} w_{i_{1}} \zeta^{n-i_{1}} \cdots w_{i_{k}} \zeta^{n-i_{k}} \tag{7}\\
& =\sum_{j=k}^{n} w_{j} \zeta^{n-j} \sum_{1 \leq i_{1}<\cdots<i_{k-1} \leq j-1} w_{i_{1}} \zeta^{n-i_{1}} \cdots w_{i_{k-1}} \zeta^{n-i_{k-1}} \tag{8}
\end{align*}
$$

Taking out the common factor $\zeta^{(n-j+1)}$ from $(k-1)$ factors $\left(w_{i} \zeta^{n-i}\right)$ gives

$$
\begin{aligned}
\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right) & =\sum_{j=k}^{n} w_{j} \zeta^{k(n-j+1)-1} \sum_{1 \leq i_{1}<\cdots<i_{k-1} \leq j-1} w_{i_{1}} \zeta^{j-1-i_{1}} \cdots w_{i_{k-1}} \zeta^{j-1-i_{k-1}} \\
& =\sum_{j=k}^{n} w_{j} \zeta^{k(n-j+1)-1} \hat{C}_{k-1}^{j-1}\left(\hat{\mathbf{w}}_{j-1}\right)
\end{aligned}
$$

(b) The second equation (6a) might be handled in much the same way. Observe only that the variable j takes on values from the set $\{1,2 \ldots, n\}$.

Proposition 6. For any $n, k \in \mathbb{N}$ we have

$$
\begin{align*}
& \hat{C}_{k}^{n+1}\left(\hat{\mathbf{w}}_{n+1}\right)=\sum_{j=0}^{k} \hat{C}_{k-j}^{n-j}\left(\hat{\mathbf{w}}_{n-j}\right) \zeta^{(j+1)(k-j)+\binom{j}{2}} \prod_{i=0}^{j-1} w_{n+1-i}, \tag{9a}\\
& \hat{S}_{k}^{n+1}\left(\hat{\mathbf{w}}_{n+1}\right)=\sum_{j=0}^{k} \hat{S}_{k-j}^{n}\left(\hat{\mathbf{w}}_{n}\right) \zeta^{(k-j)} w_{n+1}^{j} \tag{9b}
\end{align*}
$$

Proof. (a) Consider the sum (3a) of $\hat{C}_{k}^{n+1}\left(\hat{\mathbf{w}}_{n+1}\right)$ and observe that it may be separated into $(k+1)$ sums where in the j-th one $(j=0,1,2, \ldots, k)$ we have

$$
1 \leq i_{1}<\cdots<i_{k-j} \leq n-j ; \quad i_{k-j+1}=n+1-j+1, \ldots, i_{k}=n+1
$$

(b) In the case of the coefficient $\hat{S}_{k}^{n+1}\left(\hat{\mathbf{w}}_{n+1}\right)$ we may separate the sum (3b) into $(k+1)$ sums where in the j-th one $(j=0,1,2, \ldots, k)$ we have

$$
1 \leq i_{1} \leq \cdots \leq i_{k-j} \leq n ; \quad i_{k-j+1}=i_{k-j+2}=\cdots=i_{k}=n+1
$$

The rest of the proof is straightforward and goes in much the same way as the proofs of Proposition 4 and Proposition 5.

3. Generating Functions

Let $n \geq 0$ and define two generating functions:

$$
\begin{align*}
\mathcal{A}_{n}(x, y) & =\sum_{k \geq 0}(-1)^{k} \hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right) x^{k} y^{n-k} \tag{10a}\\
\mathcal{B}_{n}(x) & =\sum_{k \geq 0} \hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right) x^{k} \tag{10b}
\end{align*}
$$

Theorem 7. For $n \geq 1$ we have

$$
\begin{align*}
\mathcal{A}_{n}(x, y) & =\prod_{i=1}^{n}\left(y-w_{i} \zeta^{n-i} x\right) \tag{11a}\\
\mathcal{B}_{n}(x) & =\prod_{i=1}^{n} \frac{1}{\left(1-w_{i} \zeta^{n-i} x\right)} \tag{11b}
\end{align*}
$$

with $\mathcal{A}_{0}(x, y)=1$ and $\mathcal{B}_{0}(x)=1$.

Proof. Applying recurrences (4a) and (4b), respectively, shows that $\mathcal{A}_{n}(x, y)$ and $\mathcal{B}_{n}(x)$ satisfy

$$
\begin{gathered}
\mathcal{A}_{n}(x, y)=\left(y-w_{n} x\right) \mathcal{A}_{n-1}(\zeta x, y) \quad \text { with } \quad \mathcal{A}_{0}(x, y)=1 \\
\mathcal{B}_{n}(x)=\frac{1}{\left(1-w_{n} x\right)} \mathcal{B}_{n-1}(\zeta x) \quad \text { with } \quad \mathcal{B}_{0}(x)=1
\end{gathered}
$$

Solving these recurrence relations proves (11a) and (11b).
Corollary 8. For any $n, j \in \mathbb{N}$ the coefficients $\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$ and $\hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$ satisfy the following relations

$$
\begin{align*}
\sum_{k=0}^{j}(-1)^{k} \hat{C}_{k}^{n}(\hat{\mathbf{w}}) \hat{S}_{j-k}^{n}(\hat{\mathbf{w}}) & =0 \tag{12a}\\
\sum_{k=0}^{j} \hat{S}_{k}^{n}(\hat{\mathbf{w}})(-1)^{j-k} \hat{C}_{j-k}^{n}(\hat{\mathbf{w}}) & =0 \tag{12b}
\end{align*}
$$

Proof. Indeed, notice that $\mathcal{A}_{n}(x, 1) \mathcal{B}_{n}(x)=\mathcal{B}_{n}(x) \mathcal{A}_{n}(x, 1)=1$ for any $n \in \mathbb{N}$. Using the Cauchy product of power series with (11a) and (11b) finishes the proof.

Let $f(x)$ be a series in powers of x. Then by the symbol $\left[x^{n}\right] f(x)$ we will mean the coefficient of x^{n} in the series $f(x)$. For example we have

$$
\hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)=\left[x^{k}\right] \mathcal{B}_{n}(x)=\left[x^{k}\right] \prod_{i=1}^{n} \frac{1}{\left(1-w_{i} \zeta^{n-i} x\right)} .
$$

Proposition 9. Let $\hat{\mathbf{w}}=\left\langle\hat{w}_{1}, \hat{w}_{2}, \ldots, \hat{w}_{n}\right\rangle$ be the vector $\mathbf{w}_{n}(\zeta)$, such that $\hat{w}_{i} \neq \hat{w}_{j}$ for any $i \neq j$. Then for $n, k \in \mathbb{N}$ we have

$$
\begin{equation*}
\hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)=\sum_{i=1}^{n}(-1)^{n-i} \frac{\hat{w}_{i}^{(n+k-1)}}{\prod_{j=1}^{i-1}\left(\hat{w}_{i}-\hat{w}_{j}\right) \prod_{j=i+1}^{n}\left(\hat{w}_{j}-\hat{w}_{i}\right)}, \tag{13}
\end{equation*}
$$

where $\hat{w}_{i}=w_{i} \zeta^{n-i}$ for $i=1,2, \ldots, n$.
Proof. Let us consider the generating function (11b). From the partial fraction decomposition we get

$$
\hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)=\left[x^{k}\right] \prod_{i=1}^{n} \frac{1}{\left(1-w_{i} \zeta^{n-i} x\right)}=\left[x^{k}\right] \sum_{i=1}^{n} \frac{a_{i}}{\left(1-w_{i} \zeta^{n-i} x\right)}=\sum_{i=1}^{n} a_{i}\left(w_{i} \zeta^{n-i}\right)^{k}
$$

What is left is to find the coefficients $a_{1}, a_{2}, \ldots, a_{n}$. First, we multiply the above by the denominator of (11b), i.e., by $\prod_{j=1}^{n}\left(1-w_{j} \zeta^{n-j} x\right)$ to get

$$
1 \equiv \sum_{i=1}^{n} a_{i} \prod_{\substack{j=1 \\ j \neq i}}^{n}\left(1-w_{j} \zeta^{n-j} x\right)
$$

Observe that if we evaluate the above with $x=\left(w_{i} \zeta^{n-i}\right)^{-1}$, all summands except the i-th one vanish. Thus we obtain a_{i}, i.e.,

$$
1=a_{i} \prod_{\substack{j=1 \\ j \neq i}}\left(1-\frac{w_{j}}{w_{i}} \zeta^{i-j}\right) \Rightarrow a_{i}=\prod_{\substack{j=1 \\ j \neq i}} \frac{1}{\left(1-\frac{w_{j}}{w_{i}} \zeta^{i-j}\right)}=\frac{\left(w_{i} \zeta^{n-i}\right)^{n-1}}{\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(w_{i} \zeta^{n-i}-w_{j} \zeta^{n-j}\right)} .
$$

Replacing $w_{i} \zeta^{n-i}$ by \hat{w}_{i} for each $i=1,2, \ldots, n$, we can rewrite the above as

$$
\begin{aligned}
a_{i} & =\frac{\hat{w}_{i}^{n-1}}{\prod_{\substack{j=1 \\
j \neq i}}^{n}\left(\hat{w}_{i}-\hat{w}_{j}\right)}=\frac{\hat{w}_{i}^{n-1}}{\prod_{j=1}^{i-1}\left(\hat{w}_{i}-\hat{w}_{j}\right) \prod_{j=i+1}^{n}\left(\hat{w}_{i}-\hat{w}_{j}\right)} \\
& =(-1)^{n-i} \frac{\hat{w}_{i}^{n-1}}{\prod_{j=1}^{i-1}\left(\hat{w}_{i}-\hat{w}_{j}\right) \prod_{j=i+1}^{n}\left(\hat{w}_{j}-\hat{w}_{i}\right)}
\end{aligned}
$$

Example 10. Let i be the vector $\langle 1,2,3, \ldots\rangle$, i.e., $\hat{w}_{i}=i$ for $i \in \mathbb{N}$. Then by Proposition 9 we obtain the well-known identity for the Stirling numbers of the second kind:

$$
\hat{S}_{n-k}^{k}(\mathbf{i})=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{i=1}^{k}(-1)^{k-i} \frac{i^{n}}{i!(k-i)!}
$$

4. Remarks and Examples

It is clear that $\hat{C}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$ and $\hat{S}_{k}^{n}\left(\hat{\mathbf{w}}_{n}\right)$ generalize the Stirling numbers of the first kind $C_{k}^{n}(\mathbf{w})$ and the second kind $S_{k}^{n}(\mathbf{w})$ if $\zeta=1$, i.e., $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{k}, \ldots\right)$ and

$$
\begin{equation*}
\hat{C}_{k}^{n}\left(\mathbf{w}_{n}(1)\right) \equiv C_{k}^{n}(\mathbf{w}), \quad \hat{S}_{k}^{n}\left(\mathbf{w}_{n}(1)\right) \equiv S_{k}^{n}(\mathbf{w}) \tag{14}
\end{equation*}
$$

Fix $p, q \in \mathbb{C}$. A sequence $\left\{n_{p, q}\right\}_{n \geq 0}$ of the elements $n_{p, q}=\sum_{i=1}^{n} p^{n-i} q^{i-1}$ is called a (p, q)-sequence. In the literature, the elements of (p, q)-sequences are called (p, q)-analogues and are denoted by $n_{p, q} \equiv[n]_{p, q}$ (see Briggs and Remmel [1]).

Example 11. (p, q-binomial coefficients)
The p, q-binomial coefficients generalize binomial, Gaussian and Fibonomial coefficients $[2,3,4]$ and are defined as

$$
\binom{n}{k}_{p, q}=\frac{n_{p, q}!}{k_{p, q}!(n-k)_{p, q}!}=\frac{n_{p, q}(n-1)_{p, q} \cdots(n-k+1)_{p, q}}{k_{p, q}(k-1)_{p, q} \cdots 1_{p, q}}
$$

where $n_{p, q}!=n_{p, q}(n-1)_{p, q} \cdots 1_{p, q}$ and $0_{p, q}=1$.

Therefore, if the weight vector $\mathbf{w}_{n}(p)$ takes the form $\left\langle p^{n-1}, q p^{n-2}, \ldots, q^{n-2} p, q^{n-1}\right\rangle$, one covers the family of p, q-binomial coefficients $[2,3,4]$, i.e.,

$$
\begin{equation*}
\hat{C}_{k}^{n}\left(\mathbf{w}_{n}(p)\right)=p^{\binom{k}{2}} q^{\binom{k}{2}}\binom{n}{k}_{p, q}, \quad \hat{S}_{k}^{n}\left(\mathbf{w}_{n}(p)\right)=\binom{n+k-1}{k}_{p, q} \tag{15}
\end{equation*}
$$

Thus for any (p, q)-sequence with $p, q \in \mathbb{N}$, we have at least three different combinatorial interpretations of its p, q-binomial coefficients: expressed in the language of cobweb posets partitions [9], tilings of hyper-boxes [4] and now as an object selection from weighted boxes.

Example 12. (Fibonomial coefficients)
It is easy to show that the Fibonacci numbers define a (φ, ρ)-sequence where $\varphi=$ $(1+\sqrt{5}) / 2$ and $\rho=(1-\sqrt{5}) / 2$. Therefore, from the previous example, the ζ analogue also generalize the Fibonomial coefficients, i.e.,

$$
\begin{equation*}
\hat{C}_{k}^{n}\left(\boldsymbol{\varphi}_{n}\right)=(-1)^{\binom{k}{2}}\binom{n}{k}_{F i b}, \quad \hat{S}_{k}^{n}\left(\boldsymbol{\varphi}_{n}\right)=\binom{n+k-1}{k}_{F i b} \tag{16}
\end{equation*}
$$

with the weight vector $\varphi_{n}=\left\langle\varphi^{n-1}, \rho \varphi^{n-2}, \ldots, \rho^{n-2} \varphi, \rho^{n-1}\right\rangle$. However, the combinatorial interpretation in terms of object selection cannot be applied in this case vector $\boldsymbol{\varphi}_{n}$ does not consist of only nonnegative integers. Fixing $s, n \in \mathbb{N}$, from Corollary 8 we have also

$$
\sum_{k=0}^{s}(-1)^{\binom{k+1}{2}}\binom{n}{k}_{F i b}\binom{n+s-k-1}{s-k}_{F i b}=0
$$

Example 13. (p, q-Stirling numbers)
The ζ-analogue generalizes the p, q-Stirling numbers [12]. Indeed, let us consider the vector $\mathbf{i}_{n}(\zeta)=\left\langle[1]_{p, q} \zeta^{n-1},[2]_{p, q} \zeta^{n-2}, \ldots,[n]_{p, q}\right\rangle$, where $[i]_{p, q}=\sum_{s=1}^{i} p^{i-s} q^{s-1}$ for $i \in \mathbb{N}$ and $\zeta=1$. Then we have

$$
\hat{S}_{k}^{n}\left(\mathbf{i}_{n}(1)\right)=\left\{\begin{array}{c}
n+k \tag{17}\\
n
\end{array}\right\}_{p, q}, \quad \hat{S}_{n-k}^{k}\left(\mathbf{i}_{n}(1)\right)=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{p, q}
$$

Finally, by Theorem 2 we have that the ζ-analogues of p, q-Stirling numbers satisfy

$$
\left\{\begin{array}{l}
n \tag{18}\\
k
\end{array}\right\}_{\zeta}=p^{k-1} \zeta^{n-k}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}_{\zeta}+[k]_{p, q}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{\zeta}
$$

5. Final Remarks

The form of the weight vector $\mathbf{w}_{n}(\zeta)$ given by (2) is one possible choice and we expect that there might be many other useful forms that can be applied here, e.g.
$\hat{w}_{i, n}=w_{i}^{n-i}$, etc. We leave it for further investigation. Our choice is caused by unifying p, q-binomial coefficients and generalized Stirling numbers.

Acknowledgements This note was inspired by the paper of Professor Kwaśniewski [8] where he asked about relations between F-nomial and Konvalina coefficients. The author thanks the referee for useful suggestions and corrections of this note.

References

[1] Karen S. Briggs and Jeffrey B. Remmel, A p, q-analogue of a Formula of Frobenius, The Electronic Journal of Combinatorics 10 (2003) no. R9, 1-26.s
[2] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Annals of Mathematics 15 (1913), 30-70.
[3] Roberto B. Corcino, On p, q-Binomial Coefficients, Integers: Electronic Journal of Combinatorial Number Theory 8 (2008), 1-16.
[4] M. Dziemiańczuk, Generalization of Fibonomial coefficients, Preprint: ArXiv:0908.3248, Aug 2009.
[5] M. Dziemiańczuk, On cobweb posets and discrete F-boxes tilings, Preprint: ArXiv:0802.3473, Apr 2009.
[6] John Konvalina, Generalized binomial coefficients and the subset-subspace problem, Advances In Applied Mathematics 21 (1998), 228-240.
[7] John Konvalina, A unified interpretation of the binomial coefficients, the stirling numbers, and the gaussian coefficients, The American Mathematical Monthly 245 (2000), no. 107, 901-910.
[8] A. Krzysztof Kwaśniewski, Comments on combinatorial interpretation of Fibonomial coefficients - an e-mail style letter, Bulletin of the Institute of Combinatorics and its Applications 42 (2004), 10-11.
[9] A. Krzysztof Kwaśniewski, On cobweb posets and their combinatorially admissible sequences, Advanced Studies in Contemporary Mathematics 18 (2009), no. 1, 17-32.
[10] E. Lucas, Théorie des Fonctions Numériques Simplement Périodiques, American Journal of Mathematics 1 (1878) 184-240, Translated from the French by Sidney Kravitz, Edited by Douglas Lind Fibonacci Association 1969.
[11] A. De Médicis and P. Leroux, Generalized Stirling numbers. Convolution formulae and p, q analogues, Canadian Journal of Mathematics 47 (1995), 474-499.
[12] M. Wachs and D. White, p, q-Stirling numbers and set partition statistics, Journal of Combinatorial Theory 56 (1991), no. Series A, 27-46.
[13] Carl G. Wagner, Generalized Stirling and Lah numbers, Discrete Mathematics 160 (1996) 199-218.

