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Abstract
Two new versions of the so-called Maker-Breaker Positional Games are defined

by József Beck. He defines two players, Picker and Chooser. In each round, Picker
takes a pair of elements not already selected and Chooser keeps one and returns the
other to Picker. In the Picker-Chooser version Picker plays as Maker and Chooser
plays as Breaker, while the roles are swapped in the Chooser-Picker version. The
outcome of these games is sometimes very similar to that of the traditional Maker-
Breaker games. Here we show that both Picker-Chooser and Chooser-Picker games
are NP-hard, which gives support to the paradigm that the games behave similarly
while being quite different in definition. We also investigate the pairing strategies
for Maker-Breaker games, and apply these results to the game called “Snaky.”

1. Introduction

Let us start by defining Positional Games in general. Given an arbitrary hypergraph
H with vertex set V (H) and edge set E(H), we write H = (V,E) and the first and
second players take elements of V in turns. The goal of a player designated as a
Maker is to take every element of some edge A ∈ E. In the Maker-Maker version of
the game, the player who is first to take all elements of some edge A ∈ E wins the
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2The author’s research was partially supported by OTKA grant T049398 and K76099 and by the
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game. There are a number of beautiful and difficult theorems about Maker-Maker
games; for more details see Berlekamp, Conway and Guy, [7], or Beck, [5] or [6].

The so-called Maker-Breaker version of a Positional Game on a hypergraph H =
(V,E) was also investigated from the very beginning. Here each player takes an
unselected element in turn. One player is still Maker and wins by taking every
element of some A ∈ E. The other player is Breaker and wins if he can take at
least one vertex of every edge in E. Clearly, exactly one of Maker and Breaker
can win this game. In several cases Maker-Breaker games are more tractable than
Maker-Maker games. On the other hand, these versions are closely related, since if
Breaker wins as a second player then the Maker-Maker game is a draw; that is, the
second player can ensure that the first does not have a winning strategy. On the
other hand, if the first player has a winning strategy for the Maker-Maker game,
then Maker also wins the Maker-Breaker version. This connection gives rise to very
useful applications; see [1, 2, 3, 13, 14].

In order to understand the so-called clique games, which are very difficult, Beck
introduced the Picker-Chooser and the Chooser-Picker version of Maker-Breaker
games in [4].

Definition 1. The positional game players Picker and Chooser are as follows:
Picker takes a pair of elements, neither of which had been selected previously, and
Chooser keeps one of these elements and gives the other to Picker. The designation
“Picker-Chooser” indicates that Picker plays as Maker (that is, wins by taking all
the elements in some edge) and Chooser plays as Breaker (that is, wins by taking
at least one element from each edge). The roles are swapped in the “Chooser-
Picker” version, in which Chooser plays as Maker and Picker plays as Breaker. If
|V | is odd, then the last element goes to Chooser.

Beck demonstrated in several cases that Picker may easily win the Picker-Chooser
game if Maker wins the corresponding Maker-Breaker game [4, 6].

A similar phenomenon must also hold for certain Chooser-Picker games; that
is, Picker is better off in the Chooser-Picker version than Breaker is in the corre-
sponding Maker-Breaker game. In fact, there is a duality between Maker-Breaker
games in which Maker wins and ones in which Breaker wins. Let H∗ = (V,E∗) be
the transversal hypergraph of H = (V,E). That is, E∗ consists of those minimal
sets B ⊂ V such that for all A ∈ E, A ∩ B $= ∅. Note that Breaker as a first
[second] player wins the Maker-Breaker game on (V,E) if and only if Maker as a
first [second] player wins the Maker-Breaker (V,E∗).

The general form of Beck’s conjecture is spelled out by Csernenszky, et al. [10].

Conjecture 2. [10] Picker wins a Picker-Chooser [Chooser-Picker] game on (V,E)
if Maker [Breaker] as a second player wins the corresponding Maker-Breaker game.

Note that this generalized Beck’s conjecture is settled only for some special cases.
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Even a partial solution3 would be desirable, since one could use Chooser-Picker
games as bounds for what is known as α− β pruning of Maker-Breaker games [9].

Even more importantly, Beck realized that the outcome of a Chooser-Picker
game coincides with the outcome of a Maker-Breaker game for some hypergraphs.
This correspondence turns out to be extremely fruitful; see [4]. The most striking
example is the clique game, where V (H) = E(Kn), and A ∈ E(H) if and only if A
is the collection of the edges of a q-element clique of Kn.

Since the Maker-Breaker (and the Maker-Maker) games are PSPACE-complete
(see [22]) it would support both Conjecture 2, and the above coincidence with
Chooser-Picker games to see that the Chooser-Picker or Picker-Chooser games are
not easy as well. To prove PSPACE-completeness for positional games is more
or less standard; see [21, 8]. Here we can prove something weaker because of the
asymmetric nature of these games.

Theorem 3. It is NP-hard to decide the winner in a Picker-Chooser game.

Theorem 4. It is NP-hard to decide the winner in a Chooser-Picker game.

In Section 3 we generalize the pairing strategies first formalized by Hales and
Jewett [14]. As an application, we show there is no pairing strategy for the game
“Snaky;” see [16, 17, 23]. Finally, we compare the actual complexity of these games
on a specific hypergraph, the 4× 4 torus, in Section 4.

2. Proofs of Theorems 3 and 4

Both proofs are based on the usual reduction method. We reduce 3 − SAT to
Chooser-Picker or Picker-Chooser games.

Proof of Theorem 3. Consider an arbitrary CNF formula φ(x1, . . . , xn) ∈ 3− SAT.
We denote φ = C1 ∧ · · · ∧ Ck, where Ci = $i1 ∨ $i2 ∨ $i3 and $ij is a literal for
i ∈ {1, . . . , k} and j = 1, 2, 3. With a slight abuse of notation, we use Ci also to
denote the set of literals in it. That is, if there exists a clause Ci = x2 ∨ x̄5 ∨ x6,
then we also denote the set Ci = {x2, x̄5, x6}.

We will exhibit a hypergraph Hφ = (V,E) such that the Picker-Chooser game is
a win for Chooser if and only if φ is satisfiable.

The vertex set will be V = {x1, . . . , xn, x̄1, . . . , x̄n}. Let B ⊂ 2V have the prop-
erty that B ∈ B if, for all i ∈ {1, . . . , n}, B contains either xi or x̄i but not both.
The edge set E consists of the sets A such that A = Ci ∪ B for some i and some
B ∈ B.

3E. g., for almost disjoint hypergraphs. A hypergraph (V, E) is disjoint if A, B ∈ E implies
|A ∩B| ≤ 1 when A $= B.



INTEGERS: 11 (2011) 4

Note that B, and consequently E, has a short (polynomial in φ) description even
though |E| ≥ |B| = 2n.

Claim 1 allows us to restrict our attention to games in which Picker has a specific
kind of strategy.

Claim 1: If Picker fails to select pairs of the form {xi, x̄i} in each round, then
Chooser has a winning strategy.
Proof of Claim 1. We assume to the contrary: Let {x, y} be the first pair selected
by Picker such that {x, y} $= {xi, x̄i} for any i ∈ {1, . . . , n}. In that case, Chooser
keeps, say, x, and waits until Picker offers up x̄ in a pair. In that round, Chooser
takes x̄, and wins the game, since Picker cannot take any B ∈ B. This proves
Claim 1. ,

First we show that if Picker-Chooser on Hφ is a win for Chooser, then φ is
satisfiable. According to Claim 1, we may assume that Picker’s strategy is to select
pairs of the form {xi, x̄i} resulting in the fact that such pairs are shared among
Picker and Chooser for all i. Assume that Chooser wins the game on Hφ, and set
x̂i = 1 if Chooser holds xi, and x̂i = 0 otherwise. Picker holds all elements of some
B ∈ B, so the assumption means that Chooser has an element in each of the Ci’s.
That is, φ(x̂1, . . . , x̂n) = 1.

Next we show that if φ is satisfiable, then Picker-Chooser on Hφ is a win for
Chooser. Since φ is satisfiable, there exist x̂1, . . . , x̂n, such that φ(x̂1, . . . , x̂n) = 1.
Consider the Picker-Chooser game on Hφ. By Claim 1, we may assume that, in
each round, Picker offers a pair of the form {xi, x̄i}. In that case, Chooser takes xi

if and only if x̂i = 1, and wins the game. This proves Theorem 3. !

Proof of Theorem 4. Let us use the same set-up and notation for the CNF formula
φ as in the proof of Theorem 3. We want to define a hypergraph Hφ = (V,E) such
that the Chooser-Picker game on Hφ = (V,E) is a Picker’s win if and only if φ is
satisfiable.

Let the vertex set be V = {ai, bi, ci, di}n
i=1. The edge set, E, consists of all edges

A such that

• A ⊂ {ai, bi, ci, di} and |A| = 3 for some i ∈ {1, . . . , n},

• A = {ai, aj , ak, bi, bj , bk} for a clause C = xi ∨ xj ∨ xk,

• A = {ai, aj , ak, bi, bj , ck} for a clause C = xi ∨ xj ∨ x̄k,

• A = {ai, aj , ak, bi, cj , ck} for a clause C = xi ∨ x̄j ∨ x̄k,

• A = {ai, aj , ak, ci, cj , ck} for a clause C = x̄i ∨ x̄j ∨ x̄k.

Claim 2 allows us to restrict our attention to games in which Chooser has a
specific kind of strategy.
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Claim 2:

• If Picker picks a pair (x, y) such that {x, y} $⊂ {ai, bi, ci, di} for some i ∈
{1, . . . , n}, then Chooser has a winning strategy.

• Chooser has an optimal strategy that results in always choosing ai and always
giving di to Picker.

In particular, this means that we may assume that for all i, Picker either picks
{(ai, bi), (ci, di)} or {(ai, ci), (bi, di)}. Moreover, Chooser will get ai and Picker will
get di and each player will get exactly one of (bi, ci).
Proof of Claim 2. Suppose Picker offers a pair (x, y) for which x ∈ {ai, bi, ci, di} but
y $∈ {ai, bi, ci, di}. Consider the first such instance. In that case, Chooser chooses x,
and ultimately wins by choosing at least two more elements from
{ai, bi, ci, di} \ {x}, giving Chooser every element of some A of size 3. So, for all
i, Picker will pick either {(ai, di), (bi, ci)} or {(ai, bi), (ci, di)} or {(ai, ci), (bi, di)}.
Hence, Chooser and Picker will have at least one member of each set of size 3.

However, no di appears in any of the sets of size 6 and so if Chooser wins by
choosing di, then he must also win by not choosing di. Finally, suppose Picker picks
the pair (ai, bi) or (ai, ci). Chooser will choose ai in either case because every A of
size 6 that contains either bi or ci will also contain ai. So, once again, Chooser can
only benefit by choosing ai over bi or ci. Summarizing, if Picker plays optimally;
i.e., always taking pairs with the same subscript, then for every winning strategy
in which Chooser chooses di, there exists a winning strategy in which he does not
and for every winning strategy in which Chooser does not choose ai, there exists a
winning strategy in which he does.

So, we may assume that Picker picks either {(ai, bi), (ci, di)} or {(ai, ci), (bi, di)}
for all i because if Picker picks {(ai, di), (bi, ci)}, then the outcome is the same
except that he cannot control which of {bi, ci} he will be given by Chooser. This
proves Claim 2. ,

Now let Picker’s {(ai, bi), (ci, di)} or {(ai, ci), (bi, di)} moves correspond to setting
the value of xi = 1 or xi = 0, respectively.

First we show that if Chooser-Picker on Hφ is a win for Picker, then φ is satisfi-
able. We may assume that Chooser plays according to the restrictions imposed by
Claim 2. At the end of the game, Picker has exactly one of {bi, ci}. Chooser has
ai for all i ∈ {1, . . . , n}. Let x̂i = 1 if Picker has bi and x̂i = 0 otherwise. By the
construction of Hφ, this means that φ(x̂1, . . . , x̂n) = 1.

Next we show that if φ is satisfiable, then Picker-Chooser on Hφ is a win for
Picker. Suppose that there is some assignment that φ = (x̂1, . . . , x̂n). Picker makes
sure to get bi (i.e., Picker picks {(ai, bi), (ci, di)}) if x̂i = 1, and makes sure to get ci

(i.e., Picker picks {(ai, ci), (bi, di)}) if x̂i = 0. Because of Claim 2, we may assume
that Chooser will always choose ai for all i ∈ {1, . . . , n}. As a result, Picker will get
at least one element from every A ∈ E, and wins the game. !
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Note that this theorem implies that Chooser-Picker games are NP-hard, even in
the case of hypergraphs (V,E), for which |A| ≤ 6 for all A ∈ E.

3. Pairing Strategies Revisited

3.1. Pairing Strategies in General

Pairing strategies appear in a plethora of games, see [7]. Certain kind of pairing
strategies were introduced to the theory of Positional Games by Hales and Jewett
in [14]. Based on these pairing strategies they proved the following theorem.

Theorem 5. [14] Breaker wins a Maker-Breaker game on the hypergraph (V,E) if
| ∪A∈G A| ≥ 2|G| for all G ⊂ E.

The idea is to use the celebrated Kőnig-Hall theorem4, and exhibit a “double”
system of distinct representatives (SDR), in the hypergraph (V,E). A set X ⊂ V
is an SDR if |X| = |E|, and there is a bijection φ : X → E such that for all x ∈ X,
x ∈ φ(x). If X and Y are SDR’s of (V,E) with the bijections φ and ψ where
X ∩ Y = ∅, then ρ = ψ−1φ is a bijection ρ : X → Y . Breaker, even as a second
player, wins by using ρ. That is, Breaker takes ρ(x) [takes ρ−1(y)] if Maker takes
an x ∈ X [a y ∈ Y ], and an arbitrary untaken element v ∈ V if Maker takes a
w ∈ V \ (X ∪ Y ).

While Theorem 5 works fine for some games, it has its drawbacks. It rarely
gives sharp results, which is not surprising considering the PSPACE-completeness
of those games. Another problem is that the Kőnig-Hall theorem (and consequently
Theorem 5) applies only to finite hypergraphs. A remedy for this is a lesser known
theorem of Marshall Hall Jr., that requires only the local finiteness of the hypergraph
(V,E). We say that (V,E) is locally finite if deg(x) := |{A : x ∈ A ∈ E}| < ∞ for
all x ∈ V .

Theorem 6. [15] There is a SDR in a locally finite hypergraph (V,E) if and only
if | ∪A∈G A| ≥ |G| for all G ⊂ E.

Still, Theorem 5 does not apply directly if |V | < 2|E|, for instance, one must use
other ideas to tackle the k-in-a-row games in two or in higher dimensions, see [20].

Definition 7. The bijection ρ : X → Y , where X ∩ Y = ∅ and X,Y ⊂ V , is
a winning pairing strategy for Breaker in the Maker-Breaker game on hypergraph
(V,E) if for all A ∈ E there is an x ∈ X such that {x, ρ(x)} ⊂ A.

Of course, we assume that both the function ρ and the decision problem that de-
termining whether any set Y ⊂ V has the property that Y ⊂ A ∈ E are computable

4A generalized form of this theorem will be spelled out in the next paragraph as Theorem 6.
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in polynomial time in the size of description of (V,E). (For the sake of simplicity
we consider only the case when both V and E are finite.) Having the bijection ρ,
Breaker wins by taking ρ(x) [taking ρ−1(y)] if Maker’s last move was x ∈ X [was
y ∈ Y ]. To decide the existence of ρ is not easy in general. Let us denote the class
of hypergraphs for which Breaker has a winning pairing strategy by B.

Theorem 8. Determining whether a hypergraph is in B is NP-complete.

Proof. Given a bijection ρ that witnesses a winning pairing strategy, one checks for
an A ∈ E if there is an x ∈ X such that {x, ρ(x)} ⊂ A. For any pair (A,x) it can
be done in polynomial time, and |E||V | is an upper bound on the number of such
pairs. Consequently, B ∈ NP.

To show that B is NP-hard one can use basically the same argument as in the
proof of Theorem 4. There is, however, a simpler reduction. Let φ be an arbitrary
CNF in 3-SAT. We construct a hypergraphHφ = (V,E) such that V = {ri, bi, pi}n

i=1

and the edge set, E, consists of all edges A such that

• A is {ri, bi, pi} for all i ∈ {1, . . . , n},

• A = {pi, ri, pj , rj , pk, rk} for a clause C = xi ∨ xj ∨ xk,

• A = {pi, ri, pj , rj , pk, bk} for a clause C = xi ∨ xj ∨ x̄k,

• A = {pi, ri, pj , bj , pk, bk} for a clause C = xi ∨ x̄j ∨ x̄k,

• A = {pi, bi, pj , bj , pk, bk} for a clause C = x̄i ∨ x̄j ∨ x̄k.

A winning pairing strategy for Breaker cannot contain both {pi, ri} or {pi, bi}
for 1 ≤ i ≤ n, because the strategy is a bijection. But such a strategy must contain
one of {pi, ri} or {pi, bi} in order to have at least one pair of the form {x, ρ(x)} in
each of the edges of size 3. Let xi = 1 if {pi, ri} is present, while xi = 0 otherwise.
As a result, a clause C associated to its corresponding set A of size 6 is satisfied if
and only if A contains a pair.

Remarks. If the hypergraph (V,E) is almost disjoint, then Breaker has a winning
pairing strategy if and only if | ∪A∈G A| ≥ 2|G| for all G ⊂ E, that is one gets back
the assumption of Theorem 5. This case can be decided in polynomial time in the
description of (V,E). As in Theorem 4, B is NP-complete for hypergraphs (V,E),
where |A| ≤ 6 for A ∈ E. A result of Hegyháti [18] implies that the existence of a
winning pairing strategy can be decided in polynomial time if |A| ≤ 3 for A ∈ E.
The cases when |A| ≤ 4 or |A| ≤ 5, to the best of our knowledge, are open.

3.2. Applications for k-in-a-Row and Snaky

Let d2 be the maximum pair degree in (V,E), that is d2 = maxx$=y d2(x, y), where
d2(x, y) = |{A : {x, y} ⊂ A ∈ E}|.
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Proposition 9. If Breaker has a winning pairing strategy then d2|X|/2 ≥ |G| must
hold for all X ⊂ V , where G = {A : A ∈ E,A ⊂ X}.

Proof. Simply locate the pairs in the winning pairing strategy. There are at most
|X|/2 such pairs, which are disjoint. Each pair will be a subset of at most d2 edges.
Since each edge of G must have a pair as a subset, the number of edges must be at
most d2|X|/2.

Now we can explain why pairing strategies can work for the game k-in-a-row
for sufficiently large n only if k ≥ 9, see [7]. In the k-in-a-row game, d2 = k − 1,
and if X is an n × n board, then |G| = 4n2 + O(kn). By Proposition 9, we have
(k − 1)n2/2 ≥ 4n2 + O(kn); that is, k ≥ 9 + o(n).

Another example in which we can use this ideas is the polyomino game Snaky,
which were examined by Harary [16], Harborth and Seeman [17], and Sieben [23].
This game is a Maker-Breaker game in which the board consists of the cells of the
infinite grid and Maker’s goal is to occupy all of the cells in an isomorphic copy of
the polyomino Snaky, shown in Figure 1.

Figure 1: The polyomino Snaky. The “head” is the pair of cells in the upper row.
The “body” is the set of four consecutive cells in the lower row.

Using a computer search, Harborth and Seeman [17] showed that there is no
pairing strategy for Breaker in this game. We give a computer-free proof for their
statement:

Theorem 10. [17] Breaker has no pairing strategy to avoid the isomorphic copies
of the polyomino “Snaky.”

Proof. Assume to the contrary that there is a winning pairing ρ for Breaker. Let
P" be the polyomino which consists of $ consecutive squares of the table.

First we show that ρ cannot be a pairing for the polyomino P4. Let us assume
that ρ is such a pairing, and consider an n × n board X such that the edges of G
consist of the P4’s on X. Since d2 = 3, Proposition 9 gives that 3n2/2 ≥ 2n2+O(n),
which is a contradiction if n is sufficiently large.

On the other hand, if ρ is a pairing for Snaky, then we will show that it must
be a pairing for P5. To see this, we assign labels to the cells such that cells receive
the same label if and only if they are paired by ρ. Let us take the longest set of
consecutive cells R such that no labels are repeated on R. We may assume that
either those labels are 1, . . . , $ for some $ ≥ 5, or R is infinite.
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? ? ?
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Figure 2: The cases $ = 5 and $ = 6.

We first consider the case $ = 5, and in doing so let us refer to a cell of the grid by
its lower left lattice point. If ρ is not a pairing for P5, then we may assume, without
loss of generality, that the set of cells L = {(1, 0), . . . , (5, 0)} contains no pairs.
These cells are labeled by 1, . . . , 5 on the left-hand side of Figure 2. Since $ = 5, the
both the cells (0, 0) and (6, 0) are in a pair with some cell of L. (We indicate the cells
that have indices which matching with an element of L by a diamond, otherwise by
capital letters.) This leaves only three elements of L that can be matched with a
cell the rows above and below of L.

Consider the Snakys that have four cells in L. The head of the snake will have
two cells in one of 4 disjoint sets of three consecutive cells in the row above or
the row below L. Without loss of generality, we may assume that the three con-
secutive cells {(4, 1), (5, 1), (6, 1)}. That is, no cell of L is matched by the cells
{(4, 1), (5, 1), (6, 1)}, labeled by “?” in Figure 2. But in that case ρ should contain,
as pairs, both {(4, 1), (5, 1)} and {(5, 1), (6, 1)}, which is impossible. So we may
assume that $ > 5.
Remark. In the case that $ > 5, or $ is infinite, we again have a set L containing no
pairs such that |L| = $. Every three consecutive cells in the rows above and below
L must contain at least one cell whose label is matched to a cell of L, otherwise
we finish the argument as in case $ = 5. Here by “the rows above and below L”
we mean sets that extend one cell longer than the end of L if L is finite or if L
terminates in one direction.

Second is the case of $ = 6 and we may assume that {(1, 0), . . . , (6, 0)} receive
distinct labels. We will show that the only possible pattern is shown in the right-
hand side of Figure 2. There are diamonds in the cells (0, 0) and (7, 0). Four
diamonds remain to be placed and each set of three consecutive cells above and
below L. The only possible locations do to so are (2,±1) and (5,±1). This ensures
that {(0, 1), (1, 1)} and {(0,−1), (1,−1)} form pairs, which we label with “A” and
“B”, respectively.

Note that neither diamonds above and below the cell “2” can also be labeled
by “2”, otherwise the diamond, its right neighbor, and the cells 3, 4, 5, 6 would be
a pairing-free Snaky. The cells above and below the cell “3” are labeled “C” and
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“D”, respectively. At this moment C could be equal to D. However, if we consider
a standing Snaky on the cells {(1, 2), (1, 1), (2, 1), (2, 0), (2,−1), (2,−2)}, the only
unpaired cells are those that are labeled with “E”. If we consider a standing Snaky
with the same body and the head towards the upper right, the only unpaired cells are
those labeled “C” in the right-hand side of Figure 2. Symmetrically, we may assign
labels “D” and “F” as shown in the figure. This, however, leads to a contradiction,
since there would be a pairing-free Snaky again. In particular, the upper E and F
cells make the head, and the body consists of the diamond above the cell “2”, the
cell of the lower C, the empty cell above “4” and the diamond above the cell “5”.
So, we may assume that $ > 6.

The third case, where $ = 7, is impossible since the rows above and below L
should contain three diamonds each to avoid the snakes and two are needed to the
right and left of L. This totals at least 8, more than the 7 that are available.

L 1 2 3 4 5 6 7 8, ,
, ,A A

L 1 2 3 4 5 6 7 8 9
, , ,

, , ,

Figure 3: The cases $ = 8 and $ ≥ 9.

In the fourth case, where $ = 8, we have at most eight diamonds around L, two of
those at the ends, and every three consecutive cells above and below L containing at
least one diamond. So, there are ten cells above L and ten cells below L to receive
the remaining 6 diamonds. There must be one in the three leftmost cells above L,
in the three rightmost cells above L, in the three leftmost cells below L and in the
three rightmost cells below L. Only two diamonds remain. One must be above one
of the cells labeled “3”, “4”, “5” or “6”. A diamond cannot be above the cell labeled
“4” or “5” because for the two Snakys with heads equal to {(4, 1), (5, 1)} and bodies
in L, the diamond either represents one of {1, 2, 3, 4} or one of {5, 6, 7, 8}. Hence,
one of these Snakys must be pairing-free. As a result, the cells {(4, 1), (5, 1)} must
be paired with each other and so we label them with “A”. See the diagram in the
left-hand side of Figure 3. Because every three consecutive cells must contain at
least one diamond, the cells above the cells labeled “3” and “6” are labeled with a
diamond. This is a contradiction to the fact that only one diamond can be above
these cells. So, we may assume that $ > 8.

In the fifth case, where $ ≥ 9 and is finite, all cells above and below the cells
4, . . . , $ − 3, the “critical region,” must be diamonds. It is the same idea as in the
previous case: If, say the cell above “4,” is A, then so is the cell above “5.” But
the same is true for the cells above “5” and “6”. Not only must the cells in the
critical region be diamonds, there must be a total of at least 4 more above or below
L to cover all of the triples of consecutive cells. With the additional two on the
endpoints, there must be at least 2($ − 6) + 4 + 2 diamonds, which is impossible,
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given that the total number of diamonds is at most $, which is at least 9.
Finally, suppose L is infinite. Take 13 consecutive cells of L, call it L′. In the

critical region of L′ there must be 2(13 − 6) = 14 cells with diamonds, but they
must repeat the labels in the cells of L′, a contradiction. This concludes the proof
of the fact that a pairing for Snaky must be a pairing for P5.

We exhibit two pairings for P5. The pairing T1 is like a chessboard, where the
fields are 2× 2, and alternately packed by standing and lying pairs of dominoes as
in the left-hand side of Figure 4. The pairing T2 is like an infinite zipper, repeated
in both directions; see the right-hand side of Figure 4.

Figure 4: The parings T1 and T2.

To complete the proof of Theorem 10, we will show the following, which we state
as a stand-alone result.

Lemma 11. A pairing for P5 is either the translated and rotated copy of T1 or of
T2.

Proof. Let us consider a pairing, ρ, for P5. A pair {x, ρ(x)} is good if x and ρ(x) are
neighboring cells. If {x, ρ(x)} is good, then d2(x, ρ(x)) = 4, otherwise it is smaller.
The number of P5’s is 2n2+O(n) on an n×n sub-board X, so Proposition 9 implies
that all but O(n) pairs on X are good. It follows that, if n is sufficiently large, then
there is a Y ⊂ X, k × k square sub-board that contains only good pairs. In other
words, this k × k sub-board is paired by dominoes.

There are either two dominoes meeting at their longer sides, or the two long sides
meet but are offset by one unit. In these cases the immediate neighboring dominoes
are forced to be in the pattern of T1 or T2, respectively.

We will show that if we have a large enough pattern of dominoes, then the pairs
in the neighboring cells are forced to be in either T1 or T2. First suppose that,
within the pattern tiled by dominoes that two dominoes share a long edge, as in
the dominoes labeled with “1” in the left-hand side of Figure 5. Since the pairs
can only occur as dominoes, we can use horizontal P5’s to ensure the pairing is
oriented as in the dominoes labeled with “2.” Vertical P5’s ensure the orientations
of the dominoes labeled “3.” We can continue in this fashion, getting the 8 × 8
pattern in the left-hand side of Figure 5. Once this is determined, one can extend
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Figure 5: The forcing for pairs and filling.

the pattern to a larger rectangle, forcing not just the domino condition, but the T1

pattern itself. This can be seen by first taking horizontal P5’s in rows 1,2,5,6 that
have two cells outside of the pattern. Then taking vertical P5’s in columns 9,10, the
pattern can be extended to an 8×10 rectangle. This can be continued ad infinitum,
showing that the entire n× n board must be in the pattern T1.

Next, suppose that whenever two dominoes meet at their long edge in the sub-
board, that they are offset by one unit, since two dominoes meeting at their long
edge will force the pattern T1. See dominoes labeled “1” in the diagrams in the
center or the right-hand side of Figure 5. The pairs must occur as dominoes and so
vertical P5’s ensure that the dominoes labeled with “2” are placed in that location.
Now, consider the right-hand side of Figure 5. Two P5’s are indicated by thin
lines. Since the dominoes cannot share a long side, this forces the placement of the
dominoes labeled with “3.”

In fact, if we know that a sub-board is tiled with dominoes that do not share a
long edge, then the configuration must be that of T2. It remains to show that if
we have a large enough fragment of T2 in a sub-board, then, even if the board is
not guaranteed to be tiled with dominoes, it must be completed to a T2 pattern.
The other pairs are forced even without the assumption that those are in dominoes,
since otherwise a P5 containing no pair would arise.

To see how we can use this sub-board to extend T2 to the whole board, we first
show in the center of Figure 5 how enough pairs can be formed under the assumption
that every pair forms a domino and no pair of dominoes can share a long edge. The
numbers show the order in which dominoes can be taken. Then, in Figure 6 we show
how, under no assumptions that the pairs occur as dominoes, that the dominoes
that cover the 7 × 7 board can be extended to cover a 9 × 9 board. Again, the
numbers show the order in which dominoes can be taken.

The general approach is that one can force new horizontal dominoes in every third
row that touch the left and right border of the small square and vertical dominoes
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in every third column that touch the top and bottom border. From there, the rest
of the larger square is easy to complete. This can continue ad infinitum until the
board is filled. This concludes the proof of Lemma 11. ,

10 10
12 11 12

13 13

10

10

13 13

12 11 12
10 10

· ·· ··· ·· ·· ·· ·· ·· ·· ··· ·· ·

Figure 6: Expanding a 7× 7 square to a 9× 9 square. The dominoes given by the
7× 7 square are marked with “·”.

By Lemma 11, the pairs of ρ are either in the pattern T1 or the pattern T2, but
none of those are pairings for Snaky. This concludes the proof of Theorem 10.

4. Torus Games

To test Beck’s paradigm from Conjecture 2 that Chooser-Picker and Picker-Chooser
games are similar to Maker-Breaker games, we check the status of concrete games
defined on the 4× 4 torus. That is, we identify the opposite sides of the grid, and
consider all lines of slopes 0 and ±1 and size 4 to be winning sets. We denote the
torus, along with those winning sets, with the notation 42. For the general definition
of torus games, see [5]. We use a chess-like notation to refer to the elements of the
board. We note that the hypergraph of winning sets on 42 is not almost disjoint,
see, e.g., the two winning sets {a2, b1, c4, d3} and {a4, b1, c2, d3} (see Figure 7). We
consider four possible games on 42: Maker-Maker, Maker-Breaker, Chooser-Picker
and Picker-Chooser. According to [5], the Maker-Maker version of 42 is a draw,
and, according to [10], Picker wins the Chooser-Picker version. Here, we investigate
the Maker-Breaker and the Picker-Chooser versions. In fact, the statement of the
Maker-Breaker version implies the result for the Maker-Maker version, while the
proof of it contains the proof of the Chooser-Picker version.

Proposition 12. Breaker wins the Maker-Breaker version of the 42 torus game.

Proof. Using the symmetry of 42, we may assume, without loss of generality, that
Maker takes a4. Breaker’s move will then be to take d1. Up to isomorphism, there
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are eight cases depending on the next move of Maker. The first element of the pair
is Maker’s move, while the second is Breaker’s answer: 1. (c3, b2), 2. (b3, b2), 3.
(c2, b2), 4. (b4, c3), 5. (c4, b4), 6. (d4, c3), 7. (d2, a3) and 8. (d3, b1).

In the first seven cases Breaker has winning pairing strategies. All eight cases
are shown in the first two rows of Figure 7 and the pairs appear under the labels
A, B, C, D, and E. We leave it to the reader to check that the pairs block all 16
winning sets.

In the eighth case Breaker does not have pairing strategy, but the game reduces
to one of the seven prior cases unless Maker plays a3, a2 or a1 in the third step of
the game. In that case, Breaker plays b4, a3 or b2, respectively, and wins by the
pairing strategy shown in the third row of Figure 7.
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Figure 7: The pairings used by Picker in the game 42.

Note that in the Chooser-Picker version of the game 42, Picker can achieve a
position isomorphic to Case 1. That is, Picker wins.

If Conjecture 2 were true, then Breaker has an easier job in the Maker-Breaker
version than Chooser has in the Picker-Chooser game. For the 4 × 4 torus the
outcome of these games is the same, although this is much harder to prove.

Proposition 13. Chooser wins the Picker-Chooser version of 42, the 4 × 4 torus
game.
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Proof. (Sketch.) The full proof needs a lengthy exhaustive case analysis. However,
some branches of the game tree may be cut by the following result of Beck [4]:
Chooser wins the Picker-Chooser game on H if T (H) :=

∑
A∈E(H) 2−|A| < 1.

In our case, T (H) = 16×2−4 = 1, which just falls short. Instead we use a similar
method using so-called potential functions. We assign weights to each edge at the
i th stage such that wi(A) = 0 if Chooser has taken an element of A, otherwise it is
2−f(A), where f(A) is the number of untaken elements of A. The weight of a vertex
x is wi(x) =

∑
x∈A wi(A), while the total weight is wi :=

∑
A∈E(H) wi(A).

Note that Picker wins if and only if both w8 ≥ 1 and w0 = T (H) = 1. When
a pair (x, y) is offered, Chooser can always take the one with larger weight, which
results in a non-increasing total weight. In fact, if the weights of x and y differ or
both x and y are elements of an A of positive weight, then the total weight strictly
decreases.

In order to have any possibility of winning, Picker has to select x and y of equal
weights and no edge of positive weight containing both. By the symmetries of the
board, we may assume Picker gets a4 and Chooser gets c3 in the first round. After
that, Picker has only pairs (x, y) that do not result in a loss for Picker: (b4, d3),
(a3, c4), (b3, d4), (a3, b3), (a3, d3), (b3, d3), (a1, b2) and (a1, d2); see Figure 8. The
letter P [C] designates the vertex taken by Picker [Chooser] in the first step, the
numbers are the weights of the vertices.
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Figure 8: The beginning of the Picker-Chooser 42 game.

The rest of the proof is similar to that of the prior step: one needs to check that
Chooser has a winning strategy for each of the eight nontrivial responses of Picker.
We omit the details.
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