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Abstract
In 1849, Alphonse de Polignac conjectured that every odd positive integer can be
written in the form 2n + p, for some integer n ≥ 0 and some prime p. In 1950,
Erdős constructed infinitely many counterexamples to Polignac’s conjecture. In
this article, we show that there exist infinitely many positive integers that cannot
be written in either of the forms Fn + p or Fn− p, where Fn is a Fibonacci number,
and p is a prime.

1. Introduction

In 1849, Alphonse de Polignac [3] conjectured that every odd positive integer can be
written in the form 2n + p for some integer n ≥ 0 and some prime p. Shortly after
making this conjecture, Polignac himself found several counterexamples, and about
a hundred years earlier, Euler indicated the counterexample 959 in a letter to Chris-
tian Goldbach [7]. In 1950, Erdős [5] constructed infinitely many counterexamples
to Polignac’s conjecture.

Recall that the Fibonacci sequence {Fn}∞n=1 is defined as F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for all n ≥ 2. We are interested here in two variations of the
conjecture of Polignac, which involve the Fibonacci numbers. In particular, given
any positive integer k, we ask:

1. Can k be written in the form Fn + p, where Fn is a Fibonacci number, and p
is a prime?

2. Can k be written in the form Fn − p, where Fn is a Fibonacci number, and p
is a prime?

For a fixed k, Question 1 is a finite problem. One needs only to check the primes
and Fibonacci numbers up to k. In fact, it is easy to find examples of positive
integers that cannot be written in the form Fn + p. The first few are: 35, 119, 125
and 177. (Note, we allow F0 = 0 to be used here.) However, whether there are
infinitely many such exceptions is another issue.
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Question 2 is more open-ended, and hence more difficult, since there is no bound
on either the Fibonacci number or the prime required in the decomposition of k.
For example, the first Fibonacci number for which Fn − 155 is prime is F954. A
simple computer search for a single value of k that cannot be written in the form
Fn− p produced none before running out of memory. So, finding a counterexample
to the conjecture that every positive integer k can be written in the form Fn − p is
a more monumental task.

In this article, we show that Question 2 also has a negative answer. In fact, we
prove that there exist infinitely many positive integers that cannot be written in
either of the forms Fn−p or Fn+p, which provides infinitely many negative answers
to both Question 1. and Question 2. simultaneously.

2. Preliminaries

The following definitions are standard and can be found, along with related infor-
mation, in [2, 6, 13].

Definition 1. Let α and β be algebraic integers, where α + β and αβ are nonzero
relatively prime rational integers, and α/β is not a root of unity. For n ≥ 0, we can
then define a sequence of rational integers

Un(α,β) :=
αn − βn

α− β
.

The pair (α,β) is called a Lucas pair, and the corresponding sequence Un is known
as a Lucas sequence of the first kind.

Definition 2. Let Un = Un(α,β) be a Lucas sequence. We define a primitive
(prime) divisor of Un to be a prime p such that both of the following hold:

• Un ≡ 0 (mod p),

• (α− β)2 U1U2 · · ·Un−1 $≡ 0 (mod p).

Polignac’s conjecture is related to the Lucas sequence Un(2, 1) as 2n = Un(2, 1)+
1. We are concerned in this article with the Fibonacci sequence, which is the
Lucas sequence Un((1 +

√
5)/2, (1−

√
5)/2). Helpful in the resolution of Polignac’s

conjecture, and also the problem of concern in this article, is the well-known fact
that any Lucas sequence Un is periodic modulo every prime [12]. A proof that {Fn}
is periodic can be found in [11], and a more general discussion with more references
can be found in [6].

Definition 3. Let Un be a Lucas sequence of the first kind, and let p be a prime.
Then the period of Un modulo p is the least positive integer m such that Um ≡ 0
(mod p). If Un is the Fibonacci sequence, we let PerF (p) denote the period of {Fn}
modulo p.
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Remark 4. The periods of {Fn} modulo z, where z is a positive integer, are
sometimes referred to as the Pisano periods [9].

The following concept is due to Erdős [5].

Definition 5. A (finite) covering system, or simply a covering, of the integers is
a system of congruences n ≡ ri (mod mi), with 1 ≤ i ≤ t, such that every integer
n satisfies at least one of the congruences. To avoid a trivial situation, we require
mi > 1 for all i.

Many applications of coverings require an associated set of primes, where each of
these primes corresponds in some way to a particular modulus in the covering. It
will be convenient throughout this article to represent a covering and the associated
set of primes using a set C of ordered triples (ri,mi, pi), where n ≡ ri (mod mi) is
a congruence in the covering and pi is the corresponding prime. The exact corre-
spondence needed in this article is described in the proof of Theorem 6. Abusing
notation slightly, we refer to C as a “covering”.

As mentioned before, Erdős [5] found infinitely many counterexamples to Polignac’s
conjecture. In fact, he constructed an infinite arithmetic progression of integers k
such that k − 2n is never prime for all n ≥ 1. To accomplish this task, he used the
covering

C = {(0, 2, 3), (0, 3, 7), (1, 4, 5), (3, 8, 17), (7, 12, 13), (23, 24, 241)},

and he exploited the fact that the sequence Un(2, 1) is periodic modulo pi, with
period mi. This method gives rise to a system of linear congruences in the variable
k, which can be solved using the Chinese remainder theorem. For example, using
the triple (1, 4, 5) in C, we want k − 2n ≡ 0 (mod 5) when n ≡ 1 (mod 4). But
k− 2n ≡ k− 2 (mod 5), when n ≡ 1 (mod 4), which tells us that k− 2n is divisible
by 5 if k ≡ 2 (mod 5). Continuing in this manner gives us the system

k ≡ 1 (mod 3)
k ≡ 1 (mod 7)
k ≡ 2 (mod 5)
k ≡ 8 (mod 17)
k ≡ 11 (mod 13)
k ≡ 121 (mod 241).

Since we require that k be odd, we add the congruence k ≡ 1 (mod 2) to our
system, and using the Chinese remainder theorem, we get the solution k ≡ 7629217
(mod 11184810).

Note that Erdős did not use the modulus 6 in his covering. One of the reasons to
avoid the modulus 6 is the fact that there does not exist a prime p such that Un(2, 1)
has period 6 modulo p. If such a prime p exists, it must divide U6(2, 1) = 63. But
it is easy to check that Un(2, 1) has period 2 modulo 3, and period 3 modulo 7.
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In fact, this result is a direct consequence of Bang’s theorem [1], which states that
Un(2, 1) has a primitive divisor for all n $= 1, 6. However, keep in mind that the
modulus 6 could be used to build a covering, with corresponding prime 3 or 7,
provided that either 2 or 3, respectively, is not used as a modulus. So, as long as
we are able to find a covering with a corresponding list of distinct primes pi, one for
each modulus mi, such that the Un(2, 1) is periodic with respect to mi in the sense
that the actual period of Un(2, 1) modulo pi divides mi, we can construct infinitely
many counterexamples to Polignac’s conjecture. For example, if we decide to use
the modulus 6 and not the modulus 3, then we can use the covering

{(1, 2, 3), (2, 4, 5), (0, 6, 7), (0, 8, 17), (1, 9, 73), (8, 12, 13), (4, 18, 19), (4, 24, 241)},

which gives the solution k ≡ 12161672909 (mod 15513331470). Thus, the use of
primitive divisors is not essential in finding a solution to this problem. However, we
see that not using primitive divisors in this situation can make the construction of
the covering more difficult, and can also increase the number of congruences needed
in the covering. In this example, the smallest solution for k increases as well.

Unlike the sequence Un(2, 1), the question of periodicity is not as straightforward
in {Fn}. For example, if p is a primitive divisor of Um(2, 1), then elementary group
theory shows that Um(2, 1) has period m modulo p. However, if p is a primitive
divisor of Fm, then [10]

PerF (p) =






m if m ≡ 0 (mod 2) and m $≡ 0 (mod 4)
2m if m ≡ 0 (mod 4)
4m if m ≡ 1 (mod 2) and n > 1.

(1)

This added complexity, along with the fact that certain Fibonacci numbers have
no primitive divisors, makes the use of primitive divisors to answer the questions
posed in this article more complicated than in the solution to Polignac’s conjecture.
But just as in the solution to Polignac’s conjecture, the issue of periodicity is the
real key to solving the problem here.

Although the formula given in (1) gives PerF (p) in terms of m, when p is a
primitive divisor of Fm, a more satisfying formula for PerF (p) in terms of only p
is still unknown. Still more complications and nuances arise in the theory of the
Pisano periods, and the interested reader should see [4, 10, 11, 12].

3. The Main Result

The main result of this article is:

Theorem 6. There exist infinitely positive integers k, such that k cannot be written
in either of the forms Fn + p or Fn − p, where Fn is a Fibonacci number and p is
a prime.



INTEGERS: 12 (2012) 5

Proof. We wish to build a covering C = {(ri,mi, pi)}, where the actual covering is
the set of congruences {n ≡ ri (mod mi)}, and for each congruence in the covering,
the corresponding prime pi is such that {Fn} has period mi modulo pi. In other
words, Fn ≡ Fri (mod pi) when n ≡ ri (mod mi). The fact that {Fn} is periodic
modulo every prime [6, 11, 12] is helpful in the construction of the covering. How-
ever, it is still somewhat tricky to construct a suitable covering since the period of
{Fn} modulo the prime p > 2 is always even [11], and not every even number is a
period; for example, {Fn} does not have period 2 or 4 modulo any prime. Another
complication arises from the fact that there is no known formula for the period of
{Fn} modulo an arbitrary prime.

Our general strategy is to first choose a number L that will be the least common
multiple of our moduli. Then we examine the divisors d of L, one at a time, and
search for primes p such that {Fn} has period d modulo p. If we find such a prime
p, then we let d be a modulus in our covering with corresponding prime p. If we
are fortunate, we find more than one such prime for a particular divisor d of L,
and we get to use d as a modulus multiple times, once for each of these primes.
Each time we add a new modulus, we use a greedy algorithm to find corresponding
residues to attempt to build a covering. We continue until we find a covering or
until we exhaust all divisors of L. If we exhaust all divisors of L, and the method
has failed to produce a covering, we increase our initial value of L to include more
divisors, and we repeat the process. After many computations, we were successful
at L = 453600 with largest modulus 1134, used four times. It seems unlikely that
such a covering could be constructed without the aid of a computer. We made use
of both MAGMA and Maple to assist us in the construction.

The covering C we use here contains 133 triples (ri,mi, pi), and as far as the
author knows, this covering is the first covering to appear in the literature such that
all moduli are periods of the Fibonacci numbers modulo some prime. Recently, the
covering C has been used to prove that there exist infinitely many positive integers
k such that k · (Fn + 5) + 1 is composite for all integers n ≥ 1 [8].

The covering is:

C = {(0, 3, 2), (0, 8, 3), (1, 10, 11), (6, 14, 29), (6, 16, 7), (5, 18, 19),
(3, 20, 5), (2, 28, 13), (19, 30, 31), (12, 32, 47), (29, 36, 17),
(27, 40, 41), (22, 42, 211), (20, 48, 23), (5, 50, 101), (45, 50, 151),
(35, 54, 5779), (18, 56, 281), (37, 60, 61), (0, 70, 71), (12, 70, 911),
(47, 72, 107), (14, 80, 2161), (10, 84, 421), (89, 90, 181), (85, 90, 541),
(92, 96, 1103), (13, 100, 3001), (53, 108, 53), (17, 108, 109),
(42, 112, 14503), (7, 120, 2521), (40, 126, 1009), (124, 126, 31249),
(42, 140, 141961), (100, 144, 103681), (85, 150, 12301), (115, 150, 18451),
(78, 160, 1601), (46, 160, 3041), (50, 162, 3079), (140, 162, 62650261),
(122, 168, 83), (50, 168, 1427), (73, 180, 109441), (75, 200, 401),
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(175, 200, 570601), (110, 210, 21211), (196, 210, 767131),
(4, 216, 11128427), (158, 224, 10745088481), (193, 240, 241),
(133, 240, 20641), (82, 252, 35239681), (29, 270, 271), (17, 270, 811),
(119, 270, 42391), (209, 270, 119611), (154, 280, 12317523121),
(28, 288, 10749957121), (25, 300, 230686501), (124, 324, 2269),
(232, 324, 4373), (148, 324, 19441), (26, 336, 167), (206, 336, 65740583),
(98, 350, 54601), (168, 350, 560701), (28, 350, 7517651),
(238, 350, 51636551), (133, 360, 10783342081), (88, 378, 379),
(130, 378, 85429), (214, 378, 912871), (52, 378, 1258740001),
(393, 400, 9125201), (153, 400, 5738108801), (278, 420, 8288823481),
(292, 432, 6263), (196, 432, 177962167367), (215, 450, 221401),
(35, 450, 15608701), (335, 450, 3467131047901),
(446, 480, 23735900452321), (268, 504, 1461601), (436, 504, 764940961),
(107, 540, 1114769954367361), (306, 560, 118021448662479038881),
(73, 600, 601), (433, 600, 87129547172401), (92, 630, 631),
(476, 630, 1051224514831), (260, 630, 1983000765501001),
(340, 648, 1828620361), (364, 648, 6782976947987),
(638, 672, 115613939510481515041), (658, 700, 701),
(474, 700, 17231203730201189308301), (13, 720, 8641),
(515, 720, 13373763765986881), (700, 756, 38933),
(472, 756, 955921950316735037), (715, 800, 124001), (315, 800, 6996001),
(782, 800, 3160438834174817356001), (742, 810, 1621), (94, 810, 4861),
(580, 810, 21871), (418, 810, 33211), (256, 810, 31603395781),
(34, 810, 7654861102843433881), (194, 840, 721561),
(266, 840, 140207234004601), (508, 864, 3023), (412, 864, 19009),
(14, 864, 447901921), (686, 864, 48265838239823),
(242, 900, 11981661982050957053616001), (46, 1008, 503),
(494, 1008, 4322424761927), (830, 1008, 571385160581761),
(302, 1050, 1051), (722, 1050, 9346455940780547345401),
(512, 1050, 14734291702642871390242051), (590, 1080, 12315241),
(950, 1080, 100873547420073756574681), (942, 1120, 6135922241),
(270, 1120, 164154312001), (750, 1120, 13264519466034652481),
(428, 1134, 89511254659), (680, 1134, 1643223059479),
(806, 1134, 68853479653802041437170359),
(1058, 1134, 5087394106095783259)}.

Then, we use the Chinese remainder theorem to find infinitely many positive
integers k that satisfy the system of congruences k ≡ Fri (mod pi), for 1 ≤ i ≤ 133.
Thus, for any solution k, and any positive integer n, we have that both Fn − k and
k−Fn are multiples of pi for some i. Hence, if either Fn−k or k−Fn is prime, then
it follows that Fn − k = pi or k − Fn = pi for some i. However, this is impossible
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for infinitely many sufficiently large values of k.
The smallest positive value of k produced here by this procedure has 950 digits.

Denote this value of k as K. Since F4547 < K−pi < K+pi < F4548 for each pi in C,
we see that indeed K cannot be written in either the form Fn−p or Fn +p, for some
prime p. Next we consider values of k > K. Observe that all of these values are of
the form K + zP , where P =

∏133
i=1 pi, and z is a positive integer. When n ≥ 4553,

we have that Fn+1 − Fn ≥ 4P , so that there exists a positive integer z such that
Fn < K + zP < Fn+1, with Fn+1 − (K + zP ) > P > pi and K + zP − Fn > P > pi

for all pi in C. Thus, there are infinitely many positive integers that also satisfy the
conditions of the theorem. This fact is illustrated by the following data, which was
generated by computer:

F4547 < K < F4548

< F4549 < K + P

< F4550 < K + 2P
< F4551 < K + 3P < K + 4P
< F4552 < K + 5P < K + 6P < K + 7P < K + 8P
< F4553 < K + 9P < · · · < K + 13P
< F4554 < K + 14P < · · · < K + 22P
< F4555 < K + 23P < · · · < K + 37P
< F4556 . . . . . .

Hence, there are infinitely many positive integers, namely k = K+zP , where z is
a positive integer, that have the property that for all positive integers n, both Fn−k
and k−Fn are divisible by at least one of the 133 primes pi in C, and |Fn− k| > pi

for all primes pi in C. Therefore, k cannot be written in the form Fn + p or Fn − p,
where Fn is a Fibonacci number and p is a prime. Theorem 6 follows.

Remark 7. I will gladly email any interested reader the values of K and P , and
the list of residues, moduli and primes in the covering C formatted for use in Maple.

4. Some Open Questions

In this section, we ask some questions for future investigations.

Question 8. All values of k that satisfy the conditions of Theorem 6 found here
are even. Are there infinitely many odd values of k that satisfy the conditions of
Theorem 6?

Question 9. Is K the smallest value of k that satisfies the conditions of Theorem
6?
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Question 10. For a fixed positive integer m ≥ 2, are there infinitely many values
of k such that km satisfies the conditions of Theorem 6?

Question 11. Are there consecutive values of k that satisfy the conditions of
Theorem 6?
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