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Abstract
We find an explicit bound, in terms of g when it is even, for the largest element of
an aliquot cycle of repdigits to base g.

1. Introduction

Let g ≥ 2 be an integer. We say a natural number n is a repdigit to base g if there
is an integer a with 1 ≤ a < g and m ≥ 1 such that n = a + ag + ag2 + · · · agm−1 .
If a = 1 then n is called a repunit. If σ(n) is the sum of divisors function, and
we define as usual s(n) = σ(n) − n , then n is called perfect if s(n) = n . A
finite sequence of distinct integers C = {n1, . . . , nk} is called an aliquot cycle if
s(ni) = ni+1 for 1 ≤ i < k and s(nk) = n1 , so a perfect number is just an aliquot
cycle of length 1.

Interest in the relationships between repdigits and perfect numbers was initiated
by Paul Pollack in [9], who showed that for a given base g there are only a finite
number of perfect repdigits to that base, and that the set of all such numbers is
effectively computable. Broughan, Guzman Sanchez and Luca [2] found explicit
bounds for both the largest perfect repdigit and the number of perfect repdigits
to base g . Luca and Te Riele [7] extended the result of Pollack by showing that,
at least when the base was even, the number of aliquot cycles of repdigits was
finite, and the members of these cycles were all effectively computable. Here we
make this result explicit by finding a function of g which gives an upper bound for
the cycle with an element of maximum size. The approach taken is to follow the
method of [7], making each of the constants explicit. This, on the face of it, requires
recourse to results depending on Baker’s theory of linear forms in logarithms, so it
is expected there would be a lot of scope for reducing the size of the bound, which
is exponentially large. This was at least implicit in the work set out in [9, 6, 2].

We use the following notations: νp(n) is the exponent with which the prime p
appears in the factorization of the natural number n , Um := (gm − 1)/(g − 1) and
Vm := gm + 1 for g ≥ 2 and m ∈ N . The Landau symbol O depends on g , as
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do constants ci, bi,∆i and θi for i = 1, 2, . . . . By ω(n) we mean the number of
distinct primes dividing n , by τ(n) the number of distinct divisors of n , by Ω(n)
the total number of prime divisors of n , including multiplicity, and by Ωg(n) the
total number of primes, including multiplicity, dividing n which do not divide g−1.
The expression p‖n means p | n and p2 ! n and for e ≥ 1, pe‖n means e = νp(n).
Following [6] we define ω′(n) to be the number of distinct odd primes to odd powers
in the standard prime factorization of n ∈ N . The tower of exponentials function
T is defined as follows: set T (x) := x and

T (x1, . . . , xn) := xT (x2,...,xn)
1

for n > 1. For example, T (x, y, z) = x(yz) . Euler’s constant γ is defined by

γ := lim
n→∞

(
n∑

k=1

1
k
− log n

)
.

Theorem 1. Let x be a member of an aliquot cycle of repdigits to base g ≥ 2 where
g is even. Write x = aUm where 1 ≤ a < g . Then

x ≤ T
(
g2, g7s, g7(s−1), . . . , g7·2, g7, g

)

where s := Ω(m) ≤ 2g .

2. Preliminary Lemmas

In this section, we set out some preliminary lemmas which are needed in the proof
of Theorem 1. Of particular importance are Lemma 12 and Lemma 15, which are
explicit forms of lemmas of Luca and Pollack.

Lemma 2. [10, Theorem 3, Corollary] For each n ∈ N let pn be the n ’th prime.
Then for n ≥ 6 ,

pn < n(log n + log log n).

Lemma 3. [10, Theorem 6, Corollary 1] If x > 1 then

∏

p≤x

p

p− 1
< eγ log x

(
1 +

1
log2 x

)
,

where γ is Euler’s constant.

Lemma 4. [10, Theorem 8, Corollary] If x > 1 then
∑

p≤x

log p

p
< log x.
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Lemma 5. [10, Theorem 5, Corollary] If x > 1 then
∑

p≤x

1
p

< log log x + γ +
1

log2 x
.

Lemma 6. [4] The only integer solutions to the diophantine equation

xn − 1
x− 1

= !

with |x| > 1 and n > 2 are

74 − 1
7− 1

= 24 · 52 and
35 − 1
3− 1

= 112.

Next we derive an explicit bound, for a particular Diophantine equation which
we need, based on Baker’s methods. It is included to give a comparison with the
use of the result of Rotkiewicz given below as Lemma 8, which is much better for
our purposes.

Lemma 7. Let p ≥ 5 be a given prime. Then the Diophantine equation

py2 = f(x) = 1 + x + x2 + · · · + xp−1 (1)

has at most a finite number of solutions with x > 1 , and solutions x satisfy

x < exp exp exp
(
p11p3

)
.

Proof. Let
w2 = h(x) := p + px + px2 + · · · + pxp−1. (2)

Any solution to Equation (1) gives rise to a solution to Equation (2) with p | w .
For (2) the maximum coefficient size H is p . Since f(x) = 0 has degree more than
three and all simple roots so does h(x) = 0, and we can apply Baker’s explicit
bound [1] to derive x < exp exp exp

((
p10pH

)p2)
< exp exp exp

(
p11p3

)
. !

Note for further reference that we need not consider the equation corresponding
to (1) for p = 3. This is because, taking the two equations 3y2 = 1 + x + x2 and
x = gk , if k ≥ 2 and g is even, then the left hand side of the first equation is 3
modulo 4, whereas the right is 1. Thus there are no solutions which satisfy these
two equations, other than for k = 1, and in that case only 1.

The following was proved by Rotkiewicz [11, Theorem 5”, Theorem 6’] in greater
generality:

Lemma 8. Let p be an odd prime and x a positive or negative even integer such
that 4 | x or if 2‖x then p &= 3 . Then

xp − 1
x− 1

&= p!.
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Lemma 8 enables all of the necessary cases to be covered, unless p = 3 and x is
twice an odd integer. That case is covered by the following result of Nagell [8].

Lemma 9. All solutions to the diophantine equation x2 + x + 1 = 3y2 in positive
integers are given by

xn =
√

3
4

((
2 +

√
3
)2n+1

−
(
2−

√
3
)2n+1

)
− 1

2

for n = 0, 1, 2, . . . so x0 = 1, x2 = 22, x3 = 313 , etc.

Lemma 10. [6, Lemma 1] Let P be any finite non-empty set of primes and P∗
the set of positive integers expressible as products of members of P . Then

∑

n∈P∗

log n

n
=




∑

p∈P

log p

p− 1




∏

p∈P

(
1 +

1
p− 1

)
.

Lemma 11. [7, Lemma 3] For all n ∈ N

ν2 (σ(n)) ≥
∑

p|n
νp(n) odd

ν2(p + 1).

In the following lemma we obtain a big reduction in complexity for the result
obtained by Pollack and Luca [6, Lemma 3] wherein the constant -2 replaces their
implicit constant Og(1).

We use the following well known function. If p is a prime not dividing g let the
index of appearance of p in (Un), denoted z(p), be the least positive integer d such
that p | Ud . If p ! g − 1 then z(p) is the multiplicative order of g modulo p and if
p | g − 1 then z(p) = p .

Lemma 12. Let m ∈ N , Um = (gm − 1)/(g − 1) with g even, then

ω′(Um) ≥ Ω(m)− 2.

Proof. (1) Assume first that m is a power of 2, and write it as m = 2s with s ≥ 1.
Then Um = V20V21V22 · · ·V2s−1 . For 0 ≤ i < j < s , V2i and V2j are coprime and
odd. For 0 < i < s , each V2i is never a square since g2i

+ 1 = x2 + 1 = ! with
x = g2i−1

has no solution. Hence ω′(Um) ≥ s− 1 ≥ Ω(m)− 2.

(2) Now let m = 2sn where n is odd and assume that n > 1. By repeated
application of the identity U2i = UiVi we obtain

Um = UnVnV2n · · ·V2s−1n = U · V,

where U := Un and V := Um/U . Since g is even Un is odd, so if a prime p | Un ,
p is odd and gn ≡ 1 (mod p). Thus for 1 ≤ i ≤ s− 1, V2in ≡ 2 (mod p) showing
that p ! V . Therefore (U, V ) = 1.
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(3) Now let n = p1 · · · pk be a product of odd primes. We also assume p1 ≤ p2 ≤
· · · ≤ pk . Then, following Pollack and Luca [6, Lemma 3], if we set

n = n1, n2 =
n1

p1
, . . . ni+1 =

ni

pi
, . . . ,

with nk+1 = 1, we can represent Un as a product of k integers

Un =
Un1

Un2

Un2

Un3

· · · Unk

Unk+1

=: T1 · · ·Tk.

(4) We claim that for all i < j , (Ti, Tj) = 1, unless a prime p | g − 1 satisfies
p | (Ti, Tj) and then we must also have pi = pi+1 = · · · = pj = p and p = (Ti, Tj)
with p‖Tl for i ≤ l ≤ j .

To derive these properties, let a prime p | (Ti, Tj) for some pair (i, j) with i < j .
Then ni+1 | ni so, p | Tj | gnj − 1 | gni+1 − 1 and

p | Ti =
gni+1pi − 1
gni+1 − 1

= 1 + gni+1 + · · · + gni+1(pi−1).

Reducing this equation modulo p we get 0 ≡ pi (mod p) so p = pi . Now since
p | Tj | Unj the index of appearance of p in (Un) divides nj = pj · · · pk , i.e. the
index is a product of primes greater than or equal to pj . But since the index is
less than or equal to p = pi , it is divisible only by primes less than or equal to pi .
Hence the index must be pi and p = pi = pi+1 = · · · = pj and p | g − 1. Let l be
such that i ≤ l ≤ j and suppose x := gnl+1 so p | x− 1. Then νp(Tl) = νp(p) = 1
so, in particular, (Ti, Tj) = p .

(5) Now for each p | (n, g − 1) let Cp := {i|1 ≤ i ≤ k, pi = p} and C0 =
{1, . . . , k} \ ∪p|(n,g−1)Cp . If i ∈ C0 then Ti is both odd, and by Lemma 6, never a
square since g is even. Hence, ω′(Ti) ≥ 1. Because for each distinct pair (i, j) in
C0 we have (Ti, Tj) = 1, we must have ω′(

∏
i∈C0

Ti) ≥ |C0| .
For the moment fix p | (n, g − 1) and let i ∈ Cp . If we now set x = gni+1 and

suppose that 4 | x then p | Ti and then, by Lemma 8,

Ti =
xp − 1
x− 1

&= p!.

Hence, there is at most one index i ∈ Cp with Ti = p! , and that is when 2‖x and
p = 3, and this can occur on at most one occasion. (Note that the corresponding
equation x2 + x + 1 = 3y2 has an infinite number of solutions by Lemma 9).
Therefore ω′(Cp) ≥ |Cp|− 1 and so

ω′(Un) ≥ |Co|− 1 +
∑

p|(n,g−1)

|Cp| = Ω(n)− 1.



INTEGERS: 12 (2012) 6

(6) The next step is along the lines of [6, Proof of Lemma 3] with some amendments.
Firstly, in case g = 2 and n = 3 we have the decomposition

V = V3V2·3 · · ·V2s−1·3.

The first factor is a square and the remaining factors never square. For i > 0,
setting x = 22i

, we can write V3·2i = (x + 1)(x2 − x + 1), these factors being
coprime. The first is not a square by Catalan. The second is also not a square
by Lemma 6. Hence in this case we get ω′(V ) ≥ 2(s − 1) ≥ s − 1 for s ≥ 1 and
ω′(V ) ≥ s− 1 for s = 0. From now in this part we assume g > 2.

In the decomposition
V = VnV2n · · ·V2s−1n,

each V2in is odd. If 0 ≤ i < s and a prime p | V2in , then gn2i ≡ −1 (mod p), so
the multiplicative order of gn modulo p is 2i+1 , uniquely determining i . Therefore
for i &= j , V2in and V2jn are coprime. If V2in = ! , then since this is Catalan’s
equation, we must have g = 2, i = 0 and n = 3. So since g ≥ 4 we get ω′(V2in) ≥ 1
for all i with 0 ≤ i ≤ s .

Now let q be the smallest prime divisor of n and write

V2in =
V2in

V2in/q
V2in/q =

xq − 1
x− 1

· V2in/q,

where x := −g2in/q . Since g is even, by Lemma 6, the first factor is never a square
and so ω′(V2in/V2in/q) ≥ 1. If the second factor is a square, by Catalan, since
g > 2 we must have i = 0, g = 8 and n = q . So assume g &= 8 or n &= q . We
claim the two factors on the right are coprime except for at most one index i : if a
prime p | (V2in/V2in/q, V2in/q), then we see that again g2in/q ≡ −1 (mod p) so

0 ≡ V2in

V2in/q
≡ 1 + 1 + · · · + 1 ≡ q (mod p),

giving p = q , so as before the index i is uniquely determined, say i = i0 . Hence
ω′(V2in) ≥ 2 except for i = i0 , and ω′(Vn2i0 ) ≥ 1. Therefore we have the lower
bound

ω′(V ) ≥ 2(s− 1) + 1 = 2s− 1 ≥ s− 1.

Finally assume q = n and g = 8. Consider the decomposition

V = (8q + 1)(82q + 1)(· · · )(82s−1q + 1).

As before ω′(82iq + 1) ≥ 2, for i > 0, and we need only show the same inequality
holds for ω′(8q + 1) for all odd primes q . But 83 + 1 = 33 · 19 and for q > 3 we
can write 8q + 1 = (2q + 1)((2q)3− 1)/(2q − 1)), which leads to ω′(V ) ≥ 2s ≥ s− 1
for all even g ≥ 2.
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(7) To complete the proof we use the coprime property of the factors of Um = UV
from part (2) and the additivity of ω′(m) to deduce, using parts (5) and (6)

ω′(Um) = ω′(U) + ω′(V ) ≥ Ω(n)− 1 + s− 1 ≥ Ω(m)− 2.

This completes the proof. !

Lemma 13. Let m ∈ N , Um = (gm − 1)/(g − 1) with g even, let a satisfy
1 ≤ a ≤ g − 1 and let x = aUm be a repdigit. Then ν2 (σ(x)) ≥ Ω(m)− g − 1.

Proof. Using Lemma 11 and Lemma 12 we get

ν2(σ(x)) = ν2(σ(aUm)) ≥ ω′(aUm) ≥ ω′(Um)− ω′(a)
≥ ω′(Um)− g + 1 ≥ Ω(m)− 2− g + 1
= Ω(m)− g − 1. !

The following is an explicit form for [6, Lemma 2].

Lemma 14. For all m ≥ 1 and g ≥ 4

log
(

σ(Um)
Um

)
≤ 1 + 2 log log log g + (1 + log log g)




∑

d|m

1
d



 +
∑

d|m

log d

d
,

where the triple logarithm should be replaced by zero when g ≤ 103 .

Proof. First write

σ(Um)
Um

≤
∏

p|Um

(
1 +

1
p

+ · · ·
)
≤

∏

p|Um

(
1 +

1
p− 1

)
≤ exp




∑

p|Um

1
p− 1



 .

Now, since p | Um implies that z(p) | m , and if p ! g− 1 then z(p) | p− 1, we have

∑

p|Um

1
p− 1

≤
∑

p|g−1

1
p− 1

+
∑

d|m
d>1




∑

p|Ud

p≡1 (mod d)

1
p− 1



 . (3)

Fix d > 1 such that d | m . If n is the number of primes p which satisfy p | Ud with
p ≡ 1 (mod d), then we have d ≤ p and so dn ≤ Ud < gd giving n ≤ d log g/ log d .
Hence

∑

p|Ud

p≡1 (mod d)

1
p− 1

≤ 1
d




∑

1≤k≤d log g/ log d

1
k



 ≤ 1
d

(
1 + log

(
d log g

log d

))

≤ log ed

d
+

log log g

d
,
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for g ≥ 4 and (after checking the upper bound explicitly for d = 2) for d ≥ 2.
Therefore, by Equation (3), using Lemma 5, and noticing that in the first term

on the right, the number of primes p | g − 1 is not greater than log g , we get,
provided g ≥ 16,

∑

p|g−1

1
p− 1

≤ 2
∑

p≤log g

1
p

< 2 log log log g + 2γ +
2

log2 log g
.

If g ≥ 103 then the sum on the left, evaluating it explicitly, is always bounded by
1. For g > 103 the sum of the second two terms on the right is also bounded by 1.
Hence we can write

∑

p|Um

1
p− 1

≤ 1 + 2 log log log g +
∑

d|m
d>1

(
log ed

d
+

log log g

d

)
.

This completes the derivation. !

The second form for the upper bound involves the number of distinct prime
divisors of m .

Lemma 15. Let m > 1 and the base g ≥ 4 . Then

log
(

σ(Um)
Um

)
≤ 1+2 log log log g+4(1+log log g)ω(m)+4eγ log (3ω(m) log (ω(m)))2.

Proof. By equation (3)

∑

p|Um

1
p− 1

≤
∑

p|g−1

1
p− 1

+
∑

d|m
d>1

(
log ed

d
+

log log g

d

)

≤ 1 + 2 log log log g +
∑

d|m
d>1

log d

d
+ 4(1 + log log g)ω(m).

where we have used the well known property [3] σ(m)/m < 4ω(m), valid for all
m > 1.

To bound the middle term we now use [6, Lemma 1], and reprove their Lemma
2 making the constants explicit. Let P := {p1, . . . , pk} be the initial sequence of
primes with p1 = 2 and let k = ω(m). Then, by Lemma 2, pk ≤ 3k log k for k ≥ 2
and, using Lemma 3, we get

∏

p≤pk

(
1 +

1
p− 1

)
≤ eγ log pk

(
1 +

1
(log pk)2

)
≤ 2eγ log pk ≤ 2eγ log(3k log k),
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where we don’t need to consider k = 1 since Um is always odd. Using Lemma 4,
∑

p≤pk

log p

p− 1
≤ 2

∑

p≤pk

log p

p
≤ 2 log(3k log k).

Hence, by Lemma 10,
∑

d′∈P∗

log(d′)
d′

≤ 2eγ log (3k log k) (2 log(3k log k)) = 4eγ log (3ω(m) log (ω(m)))2 .

Finally, combining these bounds we get

log
(

σ(Um)
Um

)
≤1+2 log log log g+4(1+log log g)ω(m)+4eγ log (3ω(m) log (ω(m)))2.

!

The final lemma enables us to treat the case of aliquot cycles of just one repdigit.

Lemma 16. [2, Theorem 1] The largest perfect number x which is a repdigit to
base g ≥ 2 satisfies

x < gggg3

= T (g, g, g, g3).

3. Proof of Theorem 1

The proof is divided into numbered parts. Assume C = {n1, . . . , nk} is an aliquot
cycle with n1 < · · · < nk consisting entirely of repdigits to base g . In part (2) we
deal with g = 2 and in (3)–(12) we assume g ≥ 4.

(1) If the cycle has length 1, C = {n1} , then x := n1 is perfect. Therefore, by
Lemma 16, we get an explicit upper bound for x in terms of g , namely T (g, g, g, g3).

(2) In this part we show the case g = 2 gives rise to no aliquot cycles. If an aliquot
cycle has length 2 or more, let x = Um, y = Un, n ≥ m ≥ 2. Then σ(x) = x + y
implies σ(Um) = 2m + 2n − 2 ≡ 2 (mod 4). Hence σ(Um) is twice an odd number,
which implies Um = qe! with q an odd prime and e ≥ 1 odd. If q ≡ 3 (mod 4)
then we would have σ(qe) ≡ 0 (mod 4), which is not possible. Thus q ≡ 1 (mod 4).
The same is true if a cycle has length 1. We now can write Um = q! ≡ 1 (mod 4),
on the one hand, and Um = 2m − 1 ≡ 3 (mod 4) on the other. Therefore there are
no aliquot cycles with g = 2.

(3) From now on assume k ≥ 2 and g ≥ 4. Following [7], let y := nk and let
x := ni where i < k is such that s(x) = y , and m, n are such that x = aUm ,
y = bUn with 1 ≤ a < g and 1 ≤ b < g . Then set

c2 :=
⌊ log(2(g − 1))

log 2

⌋
+ 1 < 2 log g + 1. (4)
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Under the assumption x > gc2 we get n ≥ m ≥ c2 so, since g is even,

(g − 1)σ(x) = agm + bgn − a− b ≡ −a− b (mod 2c2), (5)

and 0 < a + b ≤ 2(g− 1) < 2c2 so therefore ν2(σ(x)) < c2 ≤ 2 log g . If we then use
Lemma 13 to write ν2(σ(x)) ≥ Ω(m)− g − 1, we get

ω(m) ≤ Ω(m) ≤ g + 2 log g + 1 < 2g =: c3. (6)

Because
σ(x)

x
≤ σ(a)

a
· σ(Um)

Um
and

σ(a)
a

≤ a

φ(a)
≤ a ≤ g − 1,

we can write
σ(x)

x
≤ b1

σ(Um)
Um

, (7)

with b1 := g − 1 < g .

(4) For g ≥ 4 and m > 1 we have, by Lemma 15 and Equation (6), the following
upper bound:

log
(

σ(Um)
Um

)
≤ 1 + 2 log log log g + 4(1 + log log g)ω(m)

+ 4eγ log (3ω(m) log (ω(m)))2 < 92g log log g,

and this bound also holds for m = 1. Then if we set c4 := exp(94g log log g) we get
σ(x)/x ≤ c4 . Now because

c4 ≥
σ(x)

x
= 1 +

y

x
= 1 +

(
b

a

)(
gn − 1
gm − 1

)
≥ 1 +

gn−m

g − 1
≥ gn−m−1, (8)

if we set c5 := (96g log log g)/ log g we get n−m ≤ c5 .

(5) Now we assume that a, b and c := n − m are fixed, noting that 1 ≤ a < g
and 0 ≤ n − m ≤ c5 so a bound for the number of possible values of (a, b, c) is
g2c5 . Let p(m) be the smallest prime dividing m , and assume p(m) > g . If a
prime q | Um then gm ≡ 1 (mod q) so the multiplicative order of g , ordq(g) = e
say, satisfies e | m . If e = 1then q | g − 1 so 1 ≤ νq(Um) = νq(m), so therefore
q | m giving q ≥ p(m) > g . If however e > 1 then because e | (m, q − 1) we have
q > e ≥ p(m) > g . (The essence of this argument has been given many times.)
Therefore, since a < g , (a,Um) = 1.

(6) Now

σ(x) = σ(aUm) = x + y =
(

a + bgc

g − 1

)
gm − a + b

g − 1
, (9)

so therefore

σ(x)
Um

= σ(a)
σ(Um)

Um
= (a + bgc)

(
1 +

1
gm − 1

)
− a + b

gm − 1
, (10)
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and therefore ∣∣∣∣
σ(x)
Um

− (a + bgc)
∣∣∣∣ ≤ b2

(
1

gm

)
, (11)

where we can take b2 := 2g1+c5 = 2g exp(96g log log g).

(7) Recall Ωg(m) is the number of prime factors of m , including multiplicity, which
do not divide g−1. Since p(m) > g , Ω(m) = Ωg(m), and because f(x) := (log x)/x
is a decreasing function of x for x ≥ 3, we can write

∑

d|m
d>1

log d

d
≤ τ(m) log p(m)

p(m)
≤ 2Ωg(m) log p(m)

p(m)
≤ 2c3

log p(m)
p(m)

, (12)

using Equation (6). Let c6 := 2c3 = 22g and choose p(m) > c7 with c7 > g so large
that c6

log p(m)
p(m) < 1

2 . Indeed, we can choose c7 = 2(7g/2) .
Then, because ex ≤ 1 + 2x for 0 ≤ x ≤ 1/2, we have

σ(Um)
Um

≤ exp
(

c6
log p(m)

p(m)

)
≤ 1 + 2c6

log p(m)
p(m)

, (13)

and thus, by Equations (11) and (13)

|(a + bgc)− σ(a)| ≤ 2c6σ(a)
log p(m)

p(m)
+

b2

gm
,

so if we choose m ≥ c5 + 2 which gives b2/gm ≤ 1
2 , when it is the case that

σ(a) &= a + bgc , we get

log p(m)
p(m)

≥ |(a + bgc)− σ(a)|
4c6σ(a)

≥ 1
4c6g2

, (14)

whenever σ(a) &= a+bgc . Now for ε > 0 and x > 0, (log x)/x ≥ ε implies x < 1/ε2 .
Therefore the inequality of Equation (14) shows that we must have, in the given
situation,

p1 := p(m) ≤ 16c2
6g

4 = 16g424g ≤ 27g =: θ1,

so the smallest prime divisor of m is bounded.

(8) Now suppose that σ(a) = a + bgc . If also Um is not prime then the smallest
prime divisor of Um is less than or equal to

√
Um ≤ gm/2 . Therefore σ(Um)/Um ≥

1 + 1/gm/2 . By Equation (11) we can now write

1 +
1

g
m
2
≤ σ(Um)

Um
≤ a + bgc

σ(a)
+

b2

gm
= 1 +

b2

gm
=⇒ m ≤ 2 log b2/ log g, (15)

so in this case we have an upper bound for m .
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If however Um is prime then (see [7, Theorem 2]), we claim this case does not
arise: if σ(a) = a + bgc with Um prime, then σ(Um)/Um = 1 + 1/Um so, by
Equation (10) we get

σ(a) =
σ(a)
g − 1

− a + b

g − 1
=⇒ σ(a)(g − 2) = −(a + b),

which is a contradiction, since the left hand side is non-negative and the right
strictly negative.

(9) Suppose now that m = p1p2 · · · ps with p1 ≤ p2 ≤ · · · ≤ ps , and that for some
j with 1 ≤ j ≤ s − 1 we have established bounds pi ≤ θi for 1 ≤ i ≤ j . Fix
such a set of primes {p1, . . . , pj} and let m = p1 · · · pjmj =: njmj , gj := gnj ,
Mj := (gmj

j − 1)/(gj − 1), aj := a(gj − 1)/(g − 1) and note that nj ≤ θ1 · · · θj .
We will now apply a similar argument, as that which has been used for j = 1, to
bound p1 = p(m), to bound pj+1 = p(mj).

(10) We will assume pj+1 > gj = gnj which implies (aj ,Mj) = 1, and therefore,
using Equation (9), we get

σ(x) = σ(aj)σ(Mj) =
(

a + bgc

g − 1

)
g

mj

j − a + b

g − 1
. (16)

Thus,

σ(x)
Mj

= σ(aj)
σ(Mj)

Mj

(a + bgc)(gj − 1)
g − 1

(
1 +

1
g

mj

j − 1

)
− a + b

(g − 1)Mj

=
(a + bgc)(gj − 1)

g − 1
+ ∆j ,

where
|∆j | ≤

2gc5+nj

gm
≤ bj

1
gm

, (17)

with bj := 2gnj+c5 = 2gnj exp(96g log log g).

(11) Now, since p(mj) > gj , Ω(mj) = Ωgj (mj), so as in part (6) we can write

∑

d|mj

d>1

log d

d
≤ τ(mj) log p(mj)

p(mj)
≤ 2Ωgj (mj) log p(mj)

p(mj)
. (18)

As before, c6 = 22g , and we choose p(mj) > c7 with c7 > gj so large that
c6

log(p(mj))
p(mj)

< 1
2 . Indeed, we can choose as before c7 = 2(7g/2) . Then, again as in

part (6), we have

σ(Mj)
Mj

≤ exp
(

c6
log p(mj)

p(mj)

)
≤ 1 + 2c6

log p(mj)
p(mj)

. (19)
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Since
σ(aj)Mj

Mj
− σ(aj) =

(a + bgc)(gj − 1)
g − 1

+ ∆j , (20)

if σ(aj) &= (a + bgc)(gj − 1)/(g − 1) we can write

1 ≤ |(a + bgc)(gj − 1)/(g − 1)− σ(aj)| ≤ σ(aj)
(

σ(Mj)
Mj

− 1
)

+ |∆j |

≤ 2c6σ(aj)
log p(mj)

p(mj)
+ |∆j |,

and then if we choose m such that 1 + c5 + nj ≤ m we get, by Equation (17),
|∆j | ≤ bj/gm ≤ 1

2 , giving
1

4c6σ(aj)
≤ log p(mj)

p(mj)
, (21)

whenever σ(aj) &= (a + bgc)(gj − 1)/(g − 1). Recall that for ε > 0, provided
(log x)/x ≥ ε we get x < 1/ε2 . Therefore the inequality of Equation (21) shows
that we must have, in the given situation,

pj+1 := p(mj) ≤ 16c2
6σ(aj)2 ≤ 16 · 24ga4

j ≤ 16 · 24gg4g4nj ≤ 27gg4nj =: θj+1.

so the smallest prime divisor of mj is bounded also.

(12) If σ(aj) = (a+bgc)(gj−1)/(g−1), and on the one hand Mj is not prime then
the smallest prime factor of Mj is less than or equal to

√
Mj ≤ g

mj/2
j . Therefore

σ(Mj)/Mj ≥ 1 + 1/g
mj/2
j . By Equation (20) we can now write

1 +
1

g
mj
2

j

≤ σ(Mj)
Mj

< 1 +
bj

g
mj

j

=⇒ mj ≤ 2 log bj/ log gj , (22)

so in this case the proof is complete.
If on the other hand Mj is prime then we will see as before that this case does

not arise: if σ(a) = (a+ bgc)(gj − 1)/(g− 1) with Mj prime, by Equation (16) and
a little manipulation we get

σ(aj)
gj − 2
gj − 1

= −a + b

g − 1
,

which again is a contradiction.

(13) Now we are able to complete the proof. First we derive an upper bound for
m , then x , then y . By Equation (6) we have Ω(m) ≤ 2g . Now m = p1 · · · ps with
s = Ω(m). Looking back through parts (3)-(6), we observe, using the assumption
g ≥ 4,

n1 = p1 ≤ max
{

27g, 2 +
96g log log g

log g
, 2

7g
2

}
≤ g7g.
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Recall that T (x1, . . . , xn) = xT (x2,...,xn)
1 with T (x1) = x1 . Let B(1) := g7g =

T (g7, g), and assume we have bounds ni ≤ B(i) for 1 ≤ i ≤ j ≤ s − 1. Then
nj+1 ≤ g7jnj =: B(j + 1).

So, if s = Ω(m), the tower of exponentials bm := T (g7s, g7(s−1), . . . , g7·2, g7, g)
is a convenient (but far from best possible) upper bound for m . Then n + 1 ≤
m+c5 +1 ≤ bm +(96g log log g)/(log g)+1 so y ≤ gn+1 ≤ g2bm , and this completes
the proof.

4. Comment

The three most immediate tasks which arise from this study are (1) reduce if possible
the size of the explicit bound, (2) remove the restriction that the base g should be
even, and then (3) find an upper bound for a count of all aliquot cycles of repdigits
as a function of the base.
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