

A NOTE ON THE MINIMAL NUMBER OF REPRESENTATIONS IN ${\cal A} + {\cal A}$

Mirosława Radziejewska¹

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland mjanczak@amu.edu.pl

Received: 2/9/11, Accepted: 2/13/12, Published: 3/1/12

Abstract

Let $f_K(p)$ be the largest n such that for every set $A \subseteq \mathbb{Z}/p\mathbb{Z}$ with at most n elements there exists at least one element in A + A with less than K representations. We show a new lower bound for $f_K(p)$:

$$f_K(p) \ge \frac{K \log p}{2\left(\log K + 2\log\log p\right)\left(4 + \log\log\log K + \log\log\log p\right)} - 1.$$

1. Introduction

Let $f_K(p)$ be the largest n such that for every set $A \subseteq \mathbb{Z}_p$ (where $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$) with at most n elements there exists at least one element in A + A with less than Krepresentations. Straus [8] proved that $f_2(p) \ge \frac{1}{2}\log_2(p-1) + 1$ for all primes p. Browkin, Divis and Schinzel [1] showed that $f_2(p) \ge \log_2 p$.

For $x \in \mathbb{Z}_p$ let $\nu(x)$ be the number of representation of x in \mathbb{Z}_p in the form $x = a_1 + a_2$, where $a_1, a_2 \in A$. Straus [8] constructed a set $S \subseteq \mathbb{Z}_p$ such that $\nu(x) \geq 2$ for all $x \in S + S$ and $|S| = \gamma_p \log_2 p$, where $\gamma_p \leq 2$ is uniformly bounded and tends to $2/\log_2 3$ as $p \to \infty$. So for all primes p we have $f_2(p) < \frac{(2+o(1))}{\log_2} \log p$.

For $K \ge 2$, the lower bound $f_K(p) \ge \sqrt{K} \left\lfloor \frac{\log p}{2 \log 12} \right\rfloor - 1$, was established in [5], and was improved by Croot and Schoen [3], who showed that

$$f_K(p) \ge \frac{cK\log p}{\left(\log K + \log\log p\right)^2}.$$
(1)

On the other hand, Luczak and Schoen proved in [6] that $f_{2^Q}(p) \leq (\gamma_p \log_2 p)^Q$, where $\gamma_p = (2+o(1))/\log_2 3$ is the constant from the Straus construction and $Q \in \mathbb{Z}$, $0 < Q < \ln p/(2\ln(\gamma_p \log_2 p))$.

The aim of this note is to give a new lower bound for $f_K(p)$.

 $^{^1\}mathrm{The}$ author is supported by Grant N N201 391837 of the Polish Research Committee.

INTEGERS: 12 (2012)

Theorem 1. For $K \ge 2$ we have

$$f_K(p) \ge \frac{K \log p}{2\left(\log K + 2\log\log p\right)\left(4 + \log\log K + \log\log\log p\right)} - 1.$$

This implies that:

$$f_K(p) \geq \begin{cases} \frac{cK \log p}{\log \log p \log \log \log p}, & \text{if } K \le \log p, \\ \frac{cK \log p}{\log K \log \log K}, & \text{if } \log p < K. \end{cases}$$

In particular, if $K = c_1 \log p$ (which is the most important case; see [6] for applications) we have

$$f_K(p) \ge \frac{c_2(\log p)^2}{(\log \log p)(\log \log \log p)},$$

which is a slight improvement over (1).

Throughout the note, by $\log x$ we always mean $\log_2 x$ and p denotes a prime number greater than or equal to 5. For a real number x let ||x|| be the distance from x to the nearest integer number: $||x|| = \min \{x - \lfloor x \rfloor, \lfloor x \rfloor + 1 - x\}$. Capital letters A, B, etc., will generally refer to group subsets, usually sets of residues modulo p. Define $A + B = \{a + b : a \in A, b \in B\}$ and $A - B = \{a - b : a \in A, b \in B\}$.

2. The Proof of Theorem 1

Our approach closely follows the method introduced in [5]. However, instead of applying Ruzsa's covering lemma [7] we use the following result of Chang [2].

Lemma 2. (Chang) Let A and B be subsets of an abelian group G. If $|A + A| \leq M|A|$ and $|B+A| \leq N|B|$ then there exist sets S_1, S_2, \ldots, S_k with $|S_i| \leq 2M$ for $i = 1, 2, \ldots, k, k \leq \log(MN) + 1$, and $A \subseteq B - B + (S_1 - S_1) + (S_2 - S_2) + \cdots + (S_k - S_k)$.

The next lemma is the well-known Dirichlet approximation theorem.

Lemma 3. Let $A \subseteq \mathbb{Z}_p$. There exists an integer 0 < d < p such that for every $a \in A$ we have $||da/p|| \leq p^{-1/|A|}$.

Proof of Theorem 1. Let $A \subseteq \mathbb{Z}_p$ be the smallest set such that for every element $x \in A + A$ we have $\nu(x) \ge K \ge 2$. By definition $|A| = f_K(p) + 1$ and

$$K|A+A| \le \sum_{t \in A+A} \nu(t) = |A|^2,$$

and hence $|A + A| \leq \frac{|A|^2}{K}$. Clearly we may apply Lemma 2 for $A, B = \{0\}, N = |A|$ and $M = \frac{|A|}{K}$. So there exist sets S_1, S_2, \ldots, S_k such that

$$A \subseteq (S_1 - S_1) + (S_2 - S_2) + \dots + (S_k - S_k),$$

and $|S_i| \leq 2\frac{|A|}{K}$ for every $1 \leq i \leq k$ and some $k \leq \log(\frac{|A|^2}{K}) + 1$. By Dirichlet's theorem applied to the set $\bigcup_{i=1}^k S_i$ there is an integer 0 < d < p such that for every element $x \in \bigcup_{i=1}^k S_i$ we have

$$\left\|\frac{dx}{p}\right\| \le p^{-\frac{1}{|\bigcup_{i=1}^{k} S_i|}}.$$
(2)

Now we show that

$$p^{-\frac{1}{|\bigcup_{i=1}^k S_i|}} \ge \frac{1}{8k}.$$

Indeed, suppose that the above inequality does not hold. We have $d \cdot \bigcup_{i=1}^{k} S_i \subseteq \left(-\frac{p}{8k}, \frac{p}{8k}\right)$ by (2). Since $A \subseteq kS - kS$, then $d \cdot A \subseteq \left(-\frac{p}{4}, \frac{p}{4}\right)$. Let $M = d \cdot m$ be the largest element in $d \cdot A$. Then M + M has exactly one representation in $d \cdot A + d \cdot A$, a contradiction. Therefore, by (2) we have

$$p^{-\frac{K}{2k|A|}} \ge \frac{1}{8k}.\tag{3}$$

We also have $k \leq \log(\frac{|A|^2}{K}) + 1$, so (3) implies

$$\frac{|A|}{\sqrt{K}}\log\frac{|A|}{\sqrt{K}}\log\left(16\log\frac{|A|}{\sqrt{K}}\right) \geq \frac{\sqrt{K}\log p}{4}.$$

It is easy to see that $\log \frac{|A|}{\sqrt{K}} \log \left(16 \log \frac{|A|}{\sqrt{K}}\right) \ge 1$. Hence

$$\begin{split} |A| &\geq \frac{K \log p}{4 \log(\sqrt{K} \log p) \log\left(16 \log(\sqrt{K} \log p)\right)} \\ &\geq \frac{K \log p}{2 \left(\log K + 2 \log \log p\right) \left(4 + \log \log K + \log \log \log p\right)}, \end{split}$$

which completes the proof.

References

- J. BROWKIN, B. DIVIS, A. SCHINZEL, Addition of sequences in general fields, Monatshefte für Mathematik 82 (1976), 261–268.
- $\label{eq:chang} [2] \ \ \mathrm{M. \ Chang}, \ A \ polynomial \ bound \ in \ Freiman's \ theorem, \ \mathrm{Duke \ Math}. \ J. \ \mathbf{113} \ (2002) \ (3), \ 399-419.$
- [3] E. CROOT, T. SCHOEN, On sumsets and spectral gaps, Acta Arithmetica 136 (2009), 47-55.
- [4] D. L. HILLIKER, E. G. STRAUS, Uniqueness of linear combinations (mod p), Journal of Number Theory 24 (1986), 1–6.
- [5] M. JAŃCZAK, A note on a problem of Hilliker and Straus, The Electronic Journal of Combinatorics 14 (2007), 1–8.
- [6] T. LUCZAK, T. SCHOEN, On the problem of Konyagin, Acta Arithmetica 134 (2008), 101–109.
- [7] I. Z. RUZSA, An analog of Frieman's theorem in groups, Asterisque 258 (1999), 323-326.
- [8] E. G. STRAUS, Differences of residues (mod p), Journal of Number Theory 8 (1976), 40-42.