A NOTE ON THE MINIMAL NUMBER OF REPRESENTATIONS IN $A+A$

Mirosława Radziejewska ${ }^{1}$
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
mjanczak@amu.edu.pl

Received: 2/9/11, Accepted: 2/13/12, Published: 3/1/12

Abstract

Let $f_{K}(p)$ be the largest n such that for every set $A \subseteq \mathbb{Z} / p \mathbb{Z}$ with at most n elements there exists at least one element in $A+A$ with less than K representations. We show a new lower bound for $f_{K}(p)$:

$$
f_{K}(p) \geq \frac{K \log p}{2(\log K+2 \log \log p)(4+\log \log K+\log \log \log p)}-1
$$

1. Introduction

Let $f_{K}(p)$ be the largest n such that for every set $A \subseteq \mathbb{Z}_{p}$ (where $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$) with at most n elements there exists at least one element in $A+A$ with less than K representations. Straus [8] proved that $f_{2}(p) \geq \frac{1}{2} \log _{2}(p-1)+1$ for all primes p. Browkin, Divis and Schinzel [1] showed that $f_{2}(p) \geq \log _{2} p$.

For $x \in \mathbb{Z}_{p}$ let $\nu(x)$ be the number of representation of x in \mathbb{Z}_{p} in the form $x=a_{1}+a_{2}$, where $a_{1}, a_{2} \in A$. Straus [8] constructed a set $S \subseteq \mathbb{Z}_{p}$ such that $\nu(x) \geq 2$ for all $x \in S+S$ and $|S|=\gamma_{p} \log _{2} p$, where $\gamma_{p} \leq 2$ is uniformly bounded and tends to $2 / \log _{2} 3$ as $p \rightarrow \infty$. So for all primes p we have $f_{2}(p)<\frac{(2+o(1))}{\log 3} \log p$.

For $K \geq 2$, the lower bound $f_{K}(p) \geq \sqrt{K}\left\lfloor\frac{\log p}{2 \log 12}\right\rfloor-1$, was established in [5], and was improved by Croot and Schoen [3], who showed that

$$
\begin{equation*}
f_{K}(p) \geq \frac{c K \log p}{(\log K+\log \log p)^{2}} \tag{1}
\end{equation*}
$$

On the other hand, Łuczak and Schoen proved in [6] that $f_{2^{Q}}(p) \leq\left(\gamma_{p} \log _{2} p\right)^{Q}$, where $\gamma_{p}=(2+o(1)) / \log _{2} 3$ is the constant from the Straus construction and $Q \in \mathbb{Z}$, $0<Q<\ln p /\left(2 \ln \left(\gamma_{p} \log _{2} p\right)\right)$.

The aim of this note is to give a new lower bound for $f_{K}(p)$.

[^0]Theorem 1. For $K \geq 2$ we have

$$
f_{K}(p) \geq \frac{K \log p}{2(\log K+2 \log \log p)(4+\log \log K+\log \log \log p)}-1
$$

This implies that:

$$
f_{K}(p) \geq \begin{cases}\frac{c K \log p}{\log \log p \log \log \log p}, & \text { if } K \leq \log p \\ \frac{c K \log p}{\log K \log \log K}, & \text { if } \log p<K\end{cases}
$$

In particular, if $K=c_{1} \log p$ (which is the most important case; see [6] for applications) we have

$$
f_{K}(p) \geq \frac{c_{2}(\log p)^{2}}{(\log \log p)(\log \log \log p)}
$$

which is a slight improvement over (1).
Throughout the note, by $\log x$ we always mean $\log _{2} x$ and p denotes a prime number greater than or equal to 5 . For a real number x let $\|x\|$ be the distance from x to the nearest integer number: $\|x\|=\min \{x-\lfloor x\rfloor,\lfloor x\rfloor+1-x\}$. Capital letters A, B, etc., will generally refer to group subsets, usually sets of residues modulo p. Define $A+B=\{a+b: a \in A, b \in B\}$ and $A-B=\{a-b: a \in A, b \in B\}$.

2. The Proof of Theorem 1

Our approach closely follows the method introduced in [5]. However, instead of applying Ruzsa's covering lemma [7] we use the following result of Chang [2].

Lemma 2. (Chang) Let A and B be subsets of an abelian group G. If $|A+A| \leq$ $M|A|$ and $|B+A| \leq N|B|$ then there exist sets $S_{1}, S_{2}, \ldots, S_{k}$ with $\left|S_{i}\right| \leq 2 M$ for $i=$ $1,2, \ldots, k, k \leq \log (M N)+1$, and $A \subseteq B-B+\left(S_{1}-S_{1}\right)+\left(S_{2}-S_{2}\right)+\cdots+\left(S_{k}-S_{k}\right)$.

The next lemma is the well-known Dirichlet approximation theorem.
Lemma 3. Let $A \subseteq \mathbb{Z}_{p}$. There exists an integer $0<d<p$ such that for every $a \in A$ we have $\|d a / p\| \leq p^{-1 /|A|}$.

Proof of Theorem 1. Let $A \subseteq \mathbb{Z}_{p}$ be the smallest set such that for every element $x \in A+A$ we have $\nu(x) \geq K \geq 2$. By definition $|A|=f_{K}(p)+1$ and

$$
K|A+A| \leq \sum_{t \in A+A} \nu(t)=|A|^{2}
$$

and hence $|A+A| \leq \frac{|A|^{2}}{K}$. Clearly we may apply Lemma 2 for $A, B=\{0\}, N=|A|$ and $M=\frac{|A|}{K}$. So there exist sets $S_{1}, S_{2}, \ldots, S_{k}$ such that

$$
A \subseteq\left(S_{1}-S_{1}\right)+\left(S_{2}-S_{2}\right)+\cdots+\left(S_{k}-S_{k}\right)
$$

and $\left|S_{i}\right| \leq 2 \frac{|A|}{K}$ for every $1 \leq i \leq k$ and some $k \leq \log \left(\frac{|A|^{2}}{K}\right)+1$. By Dirichlet's theorem applied to the set $\bigcup_{i=1}^{k} S_{i}$ there is an integer $0<d<p$ such that for every element $x \in \bigcup_{i=1}^{k} S_{i}$ we have

$$
\begin{equation*}
\left\|\frac{d x}{p}\right\| \leq p^{-\frac{1}{\left|U_{i=1}^{k} s_{i}\right|}} \tag{2}
\end{equation*}
$$

Now we show that

$$
p^{-\frac{1}{\left|U_{i=1}^{k} S_{i}\right|}} \geq \frac{1}{8 k}
$$

Indeed, suppose that the above inequality does not hold. We have $d \cdot \bigcup_{i=1}^{k} S_{i} \subseteq$ $\left(-\frac{p}{8 k}, \frac{p}{8 k}\right)$ by (2). Since $A \subseteq k S-k S$, then $d \cdot A \subseteq\left(-\frac{p}{4}, \frac{p}{4}\right)$. Let $M=d \cdot m$ be the largest element in $d \cdot A$. Then $M+M$ has exactly one representation in $d \cdot A+d \cdot A$, a contradiction. Therefore, by (2) we have

$$
\begin{equation*}
p^{-\frac{K}{2 k|A|}} \geq \frac{1}{8 k} . \tag{3}
\end{equation*}
$$

We also have $k \leq \log \left(\frac{|A|^{2}}{K}\right)+1$, so (3) implies

$$
\frac{|A|}{\sqrt{K}} \log \frac{|A|}{\sqrt{K}} \log \left(16 \log \frac{|A|}{\sqrt{K}}\right) \geq \frac{\sqrt{K} \log p}{4}
$$

It is easy to see that $\log \frac{|A|}{\sqrt{K}} \log \left(16 \log \frac{|A|}{\sqrt{K}}\right) \geq 1$. Hence

$$
\begin{aligned}
|A| & \geq \frac{K \log p}{4 \log (\sqrt{K} \log p) \log (16 \log (\sqrt{K} \log p))} \\
& \geq \frac{K \log p}{2(\log K+2 \log \log p)(4+\log \log K+\log \log \log p)}
\end{aligned}
$$

which completes the proof.

References

[1] J. Browkin, B. Divis, A. Schinzel, Addition of sequences in general fields, Monatshefte für Mathematik 82 (1976), 261-268.
[2] M. Chang, A polynomial bound in Freiman's theorem, Duke Math. J. 113 (2002) (3), 399-419.
[3] E. Croot, T. Schoen, On sumsets and spectral gaps, Acta Arithmetica 136 (2009), 47-55.
[4] D. L. Hilliker, E. G. Straus, Uniqueness of linear combinations (mod p), Journal of Number Theory 24 (1986), 1-6.
[5] M. Jańczak, A note on a problem of Hilliker and Straus, The Electronic Journal of Combinatorics 14 (2007), 1-8.
[6] T. Łuczak, T. Schoen, On the problem of Konyagin, Acta Arithmetica 134 (2008), 101-109.
[7] I. Z. Ruzsa, An analog of Frieman's theorem in groups, Asterisque 258 (1999), 323-326.
[8] E. G. Straus, Differences of residues $(\bmod p)$, Journal of Number Theory 8 (1976), 40-42.

[^0]: ${ }^{1}$ The author is supported by Grant N N201 391837 of the Polish Research Committee.

