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Abstract
Let fK(p) be the largest n such that for every set A ⊆ Z/pZ with at most n elements
there exists at least one element in A + A with less than K representations. We
show a new lower bound for fK(p):

fK(p) ≥ K log p

2 (log K + 2 log log p) (4 + log log K + log log log p)
− 1.

1. Introduction

Let fK(p) be the largest n such that for every set A ⊆ Zp (where Zp = Z/pZ) with
at most n elements there exists at least one element in A + A with less than K
representations. Straus [8] proved that f2(p) ≥ 1

2 log2(p − 1) + 1 for all primes p.
Browkin, Divis and Schinzel [1] showed that f2(p) ≥ log2 p.

For x ∈ Zp let ν(x) be the number of representation of x in Zp in the form
x = a1 + a2, where a1, a2 ∈ A. Straus [8] constructed a set S ⊆ Zp such that
ν(x) ≥ 2 for all x ∈ S + S and |S| = γp log2 p, where γp ≤ 2 is uniformly bounded
and tends to 2/ log2 3 as p →∞. So for all primes p we have f2(p) < (2+o(1))

log 3 log p.

For K ≥ 2, the lower bound fK(p) ≥
√

K
⌊

log p
2 log 12

⌋
− 1, was established in [5],

and was improved by Croot and Schoen [3], who showed that

fK(p) ≥ cK log p

(log K + log log p)2
. (1)

On the other hand, !Luczak and Schoen proved in [6] that f2Q(p) ≤
(
γp log2 p

)Q
,

where γp = (2+o(1))/ log2 3 is the constant from the Straus construction and Q ∈ Z,
0 < Q < ln p/(2 ln(γp log2 p)).

The aim of this note is to give a new lower bound for fK(p).
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Theorem 1. For K ≥ 2 we have

fK(p) ≥ K log p

2 (log K + 2 log log p) (4 + log log K + log log log p)
− 1.

This implies that:

fK(p) ≥
{

cK log p
log log p log log log p , if K ≤ log p,

cK log p
log K log log K , if log p < K.

In particular, if K = c1 log p (which is the most important case; see [6] for applica-
tions) we have

fK(p) ≥ c2(log p)2

(log log p)(log log log p)
,

which is a slight improvement over (1).
Throughout the note, by log x we always mean log2 x and p denotes a prime

number greater than or equal to 5. For a real number x let ‖x‖ be the distance from
x to the nearest integer number: ‖x‖ = min {x− *x+ , *x++ 1− x} . Capital letters
A, B, etc., will generally refer to group subsets, usually sets of residues modulo p.
Define A + B = {a + b : a ∈ A, b ∈ B} and A−B = {a− b : a ∈ A, b ∈ B}.

2. The Proof of Theorem 1

Our approach closely follows the method introduced in [5]. However, instead of
applying Ruzsa’s covering lemma [7] we use the following result of Chang [2].

Lemma 2. (Chang) Let A and B be subsets of an abelian group G. If |A + A| ≤
M |A| and |B+A| ≤ N |B| then there exist sets S1, S2, . . . , Sk with |Si| ≤ 2M for i =
1, 2, . . . , k, k ≤ log(MN)+1, and A ⊆ B−B+

(
S1−S1

)
+

(
S2−S2

)
+· · ·+

(
Sk−Sk

)
.

The next lemma is the well-known Dirichlet approximation theorem.

Lemma 3. Let A ⊆ Zp. There exists an integer 0 < d < p such that for every
a ∈ A we have ‖da/p‖ ≤ p−1/|A|.

Proof of Theorem 1. Let A ⊆ Zp be the smallest set such that for every element
x ∈ A + A we have ν(x) ≥ K ≥ 2. By definition |A| = fK(p) + 1 and

K|A + A| ≤
∑

t∈A+A

ν(t) = |A|2,

and hence |A+A| ≤ |A|2
K . Clearly we may apply Lemma 2 for A, B = {0}, N = |A|

and M = |A|
K . So there exist sets S1, S2, . . . , Sk such that

A ⊆
(
S1 − S1

)
+

(
S2 − S2

)
+ · · · +

(
Sk − Sk

)
,



INTEGERS: 12 (2012) 3

and |Si| ≤ 2 |A|
K for every 1 ≤ i ≤ k and some k ≤ log( |A|2

K ) + 1. By Dirichlet’s
theorem applied to the set

⋃k
i=1 Si there is an integer 0 < d < p such that for every

element x ∈
⋃k

i=1 Si we have
∥∥∥∥

dx

p

∥∥∥∥ ≤ p
− 1

|
⋃k

i=1 Si| . (2)

Now we show that
p
− 1

|
⋃k

i=1 Si| ≥ 1
8k

.

Indeed, suppose that the above inequality does not hold. We have d ·
⋃k

i=1 Si ⊆(
− p

8k , p
8k

)
by (2). Since A ⊆ kS−kS, then d ·A ⊆

(
− p

4 , p
4

)
. Let M = d ·m be the

largest element in d ·A. Then M +M has exactly one representation in d ·A+d ·A,
a contradiction. Therefore, by (2) we have

p−
K

2k|A| ≥ 1
8k

. (3)

We also have k ≤ log( |A|2
K ) + 1, so (3) implies

|A|√
K

log
|A|√
K

log
(
16 log

|A|√
K

)
≥
√

K log p

4
.

It is easy to see that log |A|√
K

log
(
16 log |A|√

K

)
≥ 1. Hence

|A| ≥ K log p

4 log(
√

K log p) log
(
16 log(

√
K log p)

)

≥ K log p

2 (log K + 2 log log p) (4 + log log K + log log log p)
,

which completes the proof.
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