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Abstract
Consider a multiplicative function f(n) taking values on the unit circle. Is it possible
that the partial sums of this function are bounded? We show that if we weaken
the notion of multiplicativity so that f(pn) = f(p)f(n) for all primes p in some
finite set P , then the answer is yes. We also discuss a result of Bronstein that
shows that functions modified from characters at a finite number of places must
have unbounded partial sums.

1. Introduction

In number theory, quite commonly, we wish to understand the rate of growth of the
partial sums of a multiplicative function f(n):

S(N) = Sf (N) =
∑

n≤N

f(n).

In the case that |f(n)| ≤ 1, many theorems, especially those of Delange [4] [5], Hall
[12], and Halász [11], give upper bounds on the rate of growth.

The question of lower bounds on the rate of growth of S(N) are less well-known.
It may be that |S(N)| oscillates greatly, and so one is interested in finding a function
g(N) such that |S(N)| "= o(g(N))—that is, |S(N)| = Ω(g(N)).

Erdős [6] [7] [8] and Chudakov (see [6]) independently asked the following, more
general, question: given f(n) with values in {−1, 1} (not necessarily multiplicative),
is it true that for every c, there exist d and m so that

∣∣∣∣∣

m∑

k=1

f(kd)

∣∣∣∣∣ > c?

This has since become known as the Erdős Discrepancy Problem (EDP), and Erdős
offered $500 for a proof or counter-example.
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Recently, the EDP was the subject of a Polymath project, lead by Timothy
Gowers. Though the problem itself remained elusive, many interesting ideas were
put forth, and we suggest the interested reader visit the Polymath website1 for more
information.

There are many variants of the EDP, but in this paper we are interested in the
variant where f(n) is a multiplicative function taking values in T := {z ∈ C | |z| =
1}. This is informally known as the Multiplicative Erdős Discrepancy Problem
(MEDP), as in [3].

In an attempt to solve the MEDP, Kevin Ford suggested the following problem
in private correspondence: let P be a subset of the prime numbers, and say that
a function f(n) is P -multiplicative if f(pn) = f(p)f(n) for all p ∈ P . Do there
exist P -multiplicative functions f : N → T such that |Sf (N)| = O(1)? If not, then
clearly no completely multiplicative function could have bounded partial sums, and
this would solve the MEDP. However, in this paper we prove the following theorem:

Theorem 1. For every finite set of primes P , there exist P -multiplicative functions
f : N → {−1, 1} with bounded partial sums.

Paradoxically, the proof of this theorem gives more credence to the idea that
completely multiplicative functions should not have bounded partial sums. The
particular P -multiplicative functions constructed in the proof have bounded partial
sums, but as we add more elements to P , the bound on the sum appears to tend to
infinity.

If we suppose that the partial sums of multiplicative functions are unbounded,
then another interesting question would be to understand how slowly they could
tend towards infinity. The ideas of pretentiousness of Granville and Soundararajan
[9] [10] say that if a multiplicative function f(n) “pretends” to be another mul-
tiplicative function g(n), in the sense that their values on the primes are close to
each other, then one expects their partial sums to share similar characteristics. This
suggests that a multiplicative function with slowly growing partial sums might “pre-
tend” to be a character, which truly does have bounded partial sums. So, we say
a multiplicative function taking values in T ∪ {0} is character-like if there exists a
Dirichlet character χ(n) with conductor P such that f(n) = χ(n) when (n, P ) = 1,
and f is itself not a Dirichlet character.

The following result was proved first by Bronstein [2]; however, it appears to
have been forgotten in the modern literature. A weaker result appeared in a recent
paper of Borwein, Choi, and Coons [1], and the current author, initially unaware of
Bronstein’s original paper, proved the same result, albeit by a less efficient method.

Theorem 2. If f is character-like, then Sf (N) = Ω(log(N)).

It is curious that Bronstein’s proof, that of Borwein, Choi, and Coons, and that

1http://michaelnielsen.org/polymath1/
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of the author’s followed such similar methods, despite being done independantly.
The proof can be quickly sketched as follows:

• Pick a prime p|P and let P ′ be the largest divisor of P relatively prime to p.
Consider

S′(N) :=
∑

d|P ′

µ(d)Sf (N/d) =
∑

n≤N

f ′(n),

where f ′ is the multiplicative function defined by f ′(p) = f(p) on all primes
not dividing P ′ and 0 elsewhere. Assume p was chosen so f ′ is also not a
Dirichlet character. It is clear that if S′(N) = Ω(log(N)), then Sf (N) =
Ω(log(N)).

• Find an integer k such that S′(kP ′) "= 0.2

• Construct an integer value N =
∑M

i=1 kP
′pmi for some appropriate choice of

mi’s and show that S′(N) ' M ' log(N).

In particular, the first step reduces the problem to a function which differs from a
character at only one prime, and the final step relies on this simplification, as S′(N)
is dependent solely on the base P expansion of N . In general, for any character-like
f(n), Sf (N) can be written as a sum of at most (logN)ω(P ) character sums, so has
size at most O((logN)ω(P )). How close to this the lower bound can be is still an
open question.

2. Proof of the Theorem

Consider a set of primes p1 < p2 < p3 < · · · < pk, k > 2, and let P =
∏

1≤i≤k pi. We
wish to have an arithmetic function f(n) such that f(n) = ±1, f(pin) = f(pi)f(n)
for 1 ≤ i ≤ k, and S(N) :=

∑
n≤N f(n) is bounded.

We will begin by demonstrating two specific cases.

2.1. The Case k = 2, p1 = 2, p2 = 3

Let f(n) be a function such that f(n) = ±1, f(2n) = f(2)f(n) and f(3n) =
f(3)f(n). Such a function is completely determined by its values at 2, 3, and
6m+ 1, 6m+ 5, m ≥ 0. We will show that we can assign the values of f at these
points to create a function whose partial sums are bounded.

First, let f(1) := 1, f(2) := 1, f(3) := −1, f(5) = −1. Note that

f(6n+1)+f(6n+2)+f(6n+3) = −(f(6n+4)+f(6n+5)+f(6n+6)) = ±1 (1)

2It is in this step that Bronstein’s proof was more efficient than the author’s: Bronstein’s k was
smaller.
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for n = 0. We will show that if f satisfies (1) for all n < N , then we can specify
values for f(6N +1), f(6N+5) so that the relation is true for N as well. Note that
the values of f(6N +2), f(6N +3), f(6N +4), f(6N +6) are all predetermined by
earlier values.

In particular, if f(6N +2) = f(6N +3), then let f(6N +1) := −f(6N +2); and
if f(6N + 4) = f(6N + 6), then let f(6N + 5) := −f(6N + 4). (These conditions
guarantee f(6N + 1)+ f(6N + 2)+ f(6N + 3) = ±1 and f(6N +4)+ f(6N +5)+
f(6N + 6) = ±1.) Now we have several cases to consider:

Case 1: if f(6N + 2) = f(6N + 3) = −f(6N + 4) = −f(6N + 6), then the
assigned values to f(6N + 1), f(6N + 5) guarantee that (1) holds.

Case 2: if f(6N + 2) = f(6N + 3) but f(6N + 4) "= f(6N + 6), then let
f(6N + 5) := −f(6N + 2), which will guarantee that (1) holds.

Case 3: if f(6N + 2) "= f(6N + 3) but f(6N + 4) = f(6N + 6), then let
f(6N + 1) := −f(6N + 4), which will guarantee that (1) holds.

Case 4: if f(6N + 2) "= f(6N + 3) and f(6N + 4) "= f(6N + 6), then let
f(6N + 1) := 1, f(6N + 5) = −1, which will guarantee that (1) holds.

Case 5: the relation f(6N + 2) = f(6N + 3) = f(6N + 4) = f(6N + 6) is
impossible since f(6N + 2) + f(6N + 4) + f(6N + 6) = f(2)(f(3N + 1) +
f(3N + 2) + f(3N + 3)), which, by assumption, is ±1.

With all the needed values for f(n) defined inductively in this way, we see that

∑

n≤6m

f(n) = 0

for all positive m, and hence

∑

n≤N

f(n) = O(1)

for all N ≥ 1.

2.2. The Case k = 3, p1 = 2, p2 = 3, p3 = 5

This case is considerably more complicated. Let f(n) be a function such that f(n) =
±1 and f(pin) = f(pi)f(n) for i = 1, 2, 3. Such a function is again completely
determined by its values at f(2), f(3), f(5), and f(30m + k) with m ≥ 0 and
k = 1, 7, 11, 13, 17, 19, 23, 29.



INTEGERS: 12 (2012) 5

Suppose that f(2) := −1, f(3) := −1, f(5) := 1, f(17) := 1, and for all m ≥ 0
let the following relations hold:

f(30m+ 1) := −f(30m+ 3), f(30m+ 7) := −f(30m+ 5),

f(30m+ 11) := −f(30m+ 9), f(30m+ 13) := −f(30m+ 15),

f(30m+ 19) := −f(30m+ 21), f(30m+ 23) := −f(30m+ 25),

f(30m+ 29) := −f(30m+ 27).

From this we can see that
∑15

n=1 f(30m + (2n − 1)) = f(30m + 17) for m ≥ 0.
f(30m+17) is the only term of the form f(30m+k) with k = 1, 7, 11, 13, 17, 19, 23, 29
whose value has not yet been specified.

It would be nice if most of the terms in
∑30

n=1 f(30m+n) cancel with one another,
as indeed most of the odd terms do; while in this particular case, we have a lot of
cancellation among these terms, in the more general case below, this will not be
guaranteed, so we will assume there is little we can say about them. Instead, we
look at a larger interval.

Take
∑60

n=1 f(30(2m) + n). Note that the sum over all odd terms, except the
terms f(30(2m)+17) and f(30(2m+1)+17), is zero, and all the terms congruent to
2 modulo 4 also sum to zero if we again exclude the term f(30(2m)+2 ·17). Again,
we will assume there is little we can say about the terms divisible by 4. To get some
additional cancellation, let us suppose that f(30(2m) + 17) := −f(30(2m) + 2 · 17)
for all m ≥ 0. Unless m = 0 this defines f(30(2m)+ 17) in terms of f(30m+17), a
much earlier term in the sequence, and when m = 0, this merely says that f(17) =
−f(2)f(17), which holds since f(2) = −1.

Looking at the even longer sum
∑120

n=1 f(30(4m) + n), all the odd terms except
f(30(4m + j) + 17), 1 ≤ j ≤ 4, sum to zero. All the terms divisible by 2 except
for f(30(4m + 2j) + 2 · 17), 1 ≤ j ≤ 2, sum to zero. All the terms divisible
by 4 except for f(30(4m) + 4 · 17) sum to zero as well. However, our relation
f(30(2m)+17) := −f(30(2m)+2·17) implies automatically that f(30(4m)+4·17) =
−f(30(4m)+2 ·17). We can visually represent the cancellations occurring with the
following picture:

30(4m) + 17
!!!

!
30(4m+ 1) + 17

"
"

30(4m+ 2) + 17
!!!

!
30(4m+ 3) + 17

"
"

30(4m) + 2 · 17
#######

30(4m+ 2) + 2 · 17
$ $ $ $

30(4m) + 4 · 17

Bold lines represent that the value of the two connected terms have values that
cancel with one another, dashed lines just help to show relative placement.

If we were to double the length of the interval again, we would obtain a diagram
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that looks like the following.

•
%%

%%
•

&
&

•
%%

%%
•

&
&

•
%%

%%
•

&
&

•
%%

%%
•

&
&

•
''''''''' •

( ( ( ( ( •
''''''''' •

( ( ( ( (

•

))))))))))))))))))) •

* * * * * * * * * *

•

Consider the sum of each set of numbers linked by bold lines. If there are an even
number of terms linked together, then they sum to zero. If there are an odd number
of terms, then the value of the sum is equal to the value of the term in the linked
set that is on the top level of the diagram. So let us rewrite our diagram again,
writing down only the top level of the previous diagram with numbers to indicate
how many other numbers it is linked to:

4 !"#$%&'(1 2 !"#$%&'(1 3 1!! 2 !"#$%&'(1
Here the boxed terms represent sums that cancel out completely, due to an even
number of terms. The arrow between 1 and 3 represents that we want the relation
f(30(8m+5)+17) := −f(30(8m+4)+17) in order to cancel with the set of 3 terms
in the middle. The circled terms represent terms of the form f(30(8m+ j) + 17),
j = 1, 3, 7, for which we have not yet specified any values.

However, this is still not enough and we must double the length of our interval
3 more times, now looking at an interval of length 64 · 30 = 1920 to obtain the
following diagram:

7 1!! 2 !"#$%&'(1 3 1!! 2 !"#$%&'(1 4 !"#$%&'(1 2 !"#$%&'(1 3 1!! 2 !"#$%&'(1
5 1!! 2 !"#$%&'(1 3 1!! 2 !"#$%&'(1 4 !"#$%&'(1 2 !"#$%&'(1 3 1!! 2 !"#$%&'(1
6 !"#$%&'(1 2 !"#$%&'(1 3 1!! 2 !"#$%&'(1 4 !"#$%&'(1 2 !"#$%&'(1 3 1!! 2 !"#$%&'(1
5 1!! 2 !"#$%&'(1 3 1!! 2 !"#$%&'(1 4 !"#$%&'(1 2 !"#$%&'(1 3 1!! 2 !"#$%&'(1

The arrows between 1 and 5 correspond to a relation f(30(32m+ 17) + 17) :=
−f(30(32m+16)+17), and the arrow between the 1 and 7 corresponds to a relation
f(30(64m+ 1) + 17) := −f(30(64m) + 17).

The circled 1’s correspond to values f(30(64m+ j) + 17), j = 3, 7, 9, 11, 15, 19,
23, 25, 27, 31, 33, 35, 39, 41, 45, 47, 51, 55, 57, 59, 63, for all of which we have not
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specified any values. Let us index these values of j, calling them ji with j1 = 3,
j2 = 7, and so on.

Now if we consider the sum
∑64·30

n=1 f(30(64m) + n), we see that all terms where
the power of 2 that divides the argument is at most 64 sum to zero, except for the
terms f(30(64 + ji) + 17). The terms divisible by 128 have arguments of the form
li := 30(64m)+ 128i for 1 ≤ i ≤ 16. To make the sum in question equal to zero, we
set

f(30(64m+ ji) + 17) := −f(li) for 1 ≤ i ≤ 16

and then let

f(30(64m+ ji) + 17) := (−1)i for 16 ≤ i ≤ 21.

If all the values of f(30(64m + j) + k) with 0 ≤ m < N , 0 ≤ j < 64m, and
k = 1, 7, 11, 13, 17, 19, 23, 29 satisfy all the relations given above, then we can assign
the values of f(30(64N+j)+k) so that they also satisfy all the relations given above.
As noted above, with our particular value of f(2), the values of f(30(64 · 0+ j)+ k)
can be chosen to satisfy all the relations, and hence, we can define all the values of
f(30m+ k) inductively.

With these values, we see that

∑

n≤30·64m
f(n) = 0

for all positive m, and hence

∑

n≤N

f(n) = O(1).

2.3. The General Case

To generate a function with these properties, we require the use of several inter-
mediate steps. Let Fk−1, Fk−2, . . . , F1 ⊂ N be non-empty sets whose elements are
relatively prime to P , Rk−1, Rk−2, . . . , R1 ⊂ N2, and bk−1, bk−2, . . . , b1 ∈ N that all
satisfy the following conditions.

I. Fj−1 ⊂ Fj , and if n ∈ Fj , then n+bj ∈ Fj and (provided n > 2bj) n−bj ∈ Fj .

II. If (x1, y), (x2, y) ∈ Rj , then x1 = x2.

III. Rj−1 ⊃ Rj , and if (x, y) ∈ Rj−1 \Rj, then y ∈ Fj \Fj−1 and + x
bj−1

, = + y
bj−1

,.
Here, +x, denotes the usual floor function, the largest integer that is less than
or equal to x.

IV. For 1 ≤ j ≤ k − 2, bj = p
aj

j bj+1 for some aj ∈ N, and bk−1 = P .
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V. Suppose f(n) is any arithmetic function such that f(pin) = f(pi)f(n) for
j ≤ i ≤ k and f(x) = −f(y) for (x, y) ∈ Rj , and let

SN,j :=
∑

n<N
pi!n for 1≤i<j

n$∈Fj

f(n).

Then Sbj(m+1),j − Sbjm+1,j = 0 for all m ∈ N.

Rj represents a set of relations that we expect f to satisfy; Fj is a set of free
elements that we can use to build new relations from; and bj is a useful modulus
that we work with.

We start with the construction of Rk−1 and Fk−1 by letting P ′ =
∏

1≤i≤k−2 pi.

Then over any interval Im := [bk−1m + 1, bk−1(m + 1)], φ(P ′)
P ′ P = φ(P ′)pk−1pk of

the numbers in Im are relatively prime to P ′, and φ(P ) of the numbers in Im are
relatively prime to all the pk. Since

(
1− 1

pk−1

)(
1− 1

pk

)
≥

(
1− 1

3

)(
1− 1

5

)
>

1

2
,

there are more numbers relatively prime to P in Im than there are relatively prime
to P ′ but divisible by pk−1 or pk in Im.

Suppose f(n) is an arithmetic function such that f(pin) = f(pi)f(n) for i = k−1
or i = k and consider ∑

n∈Im
pi!n for 1≤i<j

f(n).

Observe that some f(n) are “fixed” because n is divisible by some pi with k − 2 <
i ≤ k, and hence the value of f(n) is completely predetermined by earlier terms.
The rest are “free” and we can specify relations (x, y) ∈ I2m to be placed in Rk−1

with the x taken from the fixed values and the y taken from the free values. By
the calculation in the previous paragraph, we have more free values in such an
interval than fixed so all the fixed values can be canceled in this way. This gives
SP (m+1),k−1 − SPm+1,k−1 = 0 if m ≥ 1, for any function that satisfies these new
relations.

To be more specific, let

Um := {n ∈ Im | (n, P ) = 1}

and
Vm := {n ∈ Im | (n, P ′) = 1, pk|n or pk−1|n},

with elements ui and vi, respectively, arranged in ascending order. Let F (0)
m = {ui |

i ≤ |Vm|} and R(0)
m = {(vi, ui) | i ≤ |Vm|}. Finally, let Fk−1 =

⋃∞
m=1 Um \ F (0)

m and

Rk−1 =
⋃∞

m=1 R
(0)
m . These sets satisfy conditions I–V with bk−1 = P .
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This shows that there exists at least one choice of Fk−1 and Rk−1 with bk−1 = P .
The following lemma will imply that we have at least one choice of F1, R1, and b1
as well.

Lemma 3. If Fj, Rj, bj, j > 1, are as above, then there exists Fj−1, Rj−1, and
bj−1 = p

aj−1

j−1 bj, that satisfy the above requirements as well.

Proof. First, define B := |[bj + 1, 2bj] ∩ Fj |.
Then, let aj−1 be large enough so that

B

aj−1−1∑

r=0

(−1)rp
aj−1−1−r
j−1 >

bj
pj−1

.

Again, consider the intervals Im := [bj−1m+1, bj−1(m+1)] starting with I1 and
then, in turn, I2, I3, and so on. For each Im, we work in three steps, creating new
sets F (1)

m , F (2)
m , F (3)

m and R(1)
m , R(2)

m , R(3)
m .

1. Consider all terms of the form pj−1bjm + t ∈ Im ∩ Fj with 0 < t < bj . Let

F (1)
m be the set that consists of all such pj−1bjm+ t. Let R(1)

m be the set that
consists of all (pj−1(bjm+ t), pj−1bjm+ t).

2. Consider all
n′ = psj−1bjm+ t ∈ Im ∩ Fj

with 0 < t < bj, such that either 1 ≤ s < aj−1 and (m, pj−1) = 1 or else

s = aj−1. Let F
(2)
m be the set that consists of all such (psj−1m+1)bj+ t with s

even. And let R(2)
m be the set that consists of all (psj−1bjm+t, (psj−1m+1)bj+t)

again with s even.

3. Let
Vm =

{
vi := bj−1m+ ip

aj−1+1
j−1 | 1 < i ≤ bj/pj−1

}

denote the set of n ∈ Im for which p
aj−1+1
j−1 |n. The number of n′ ∈ Im ∩ Fj

in the previous step with s = aj−1 − i is, for each t, equal to (pj−1 − 1)pi−1
j−1

if 0 < i < aj−1 and at least 1 if i = 0. There are exactly B distinct t. So,

the number of terms in Im ∩Fj \
(
F (1)
m ∪ F (2)

m

)
is greater than or equal to the

number of n′ with s odd, and this is at least

B

aj−1−1∑

r=0

(−1)rp
aj−1−1−r
j−1 .

Hence, we have, for aj−1 as defined at the start of the proof, that
∣∣∣Im ∩ Fj \

(
F (1)
m ∪ F (2)

m

)∣∣∣ > |Vm|.
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Now, let u1 < u2 < · · · < u|Vm| be the |Vm| smallest terms in Im ∩ Fj−1 \(
F (1)
m ∪ F (2)

m

)
. Let F (3)

m be the set consisting of all the ui’s. And let R(3)
m be

the set consisting of the elements (vi, ui) for 1 ≤ i ≤ |Vm|.

Now let Fj−1 = Fj \
⋃∞

m=1(F
(1)
m ∪ F (2)

m ∪ F (3)
m ) and Rj−1 = Rj ∪

⋃∞
m=1(R

(1)
m ∪

R(2)
m ∪R(3)

m ).

It is clear, by construction, that the Fj−1 and Rj−1 produced in this way will
satisfy conditions I through IV. It remains to check condition V.

Now let f be any arithmetic function that satisfies f(pin) = f(pi)f(n) if j ≤ i ≤
k, and f(x) + f(y) = 0 if (x, y) ∈ Rj−1.

Consider the sum
T =

∑

n∈Im
pi!n for 1≤i<j−1

f(n),

which, by condition V for Fj , Rj , equals

∑

n∈Im
n∈Fj

f(n) +
∑

n∈Im
pj−1|n

f(n).

Fix an s such that 1 ≤ s ≤ aj−1. Consider the set Js
m of terms n ∈ Im such that

psj−1 is the largest power of pj−1 dividing n, n/psj−1 is not an element of Fj , and
n/psj−1 is coprime to p1p2 · · · pj−1. Then Js

m/psj−1 consists of the set of numbers
coprime to p1p2 · · · pj−1 that are contained in

[(bj−1m+ 1)/psj−1, bj−1(m+ 1)/psj−1] \ Fj ,

which equals
[p

aj−1−s
j−1 bjm+ 1, p

aj−1−s
j−1 bj(m+ 1)] \ Fj

since we only consider the integer points within intervals.

Thus ∑

n∈Js
m

f(n) = f(pj−1)
s

∑

n∈Js
m/ps

j−1

f(n).

By condition V, however, the latter sum must be 0. So,

T =
∑

n∈Im
n∈Fj

f(n) +
∑

n∈Im

p
aj−1+1

j−1 |n

f(n) +
∑

n∈Im
ps
j−1||n 1≤s≤aj−1

n/ps
j−1∈Fj

f(n).

Now consider an n = ps̃j−1(bjm̃ + t) ∈ Im with 1 ≤ s̃ ≤ aj−1 and bjm̃ + t ∈ Fj ,
a term from the third sum above. Let n′ = ps̃j−1bjm̃ + t = psj−1bjm + t, where
either s ≤ aj−1 and pj−1 ! m or else s = aj−1; that is, n′ has the same form as the
elements in step 2 of the algorithm above.



INTEGERS: 12 (2012) 11

Then since (pj−1(p
s−1
j−1bjm+ t), psj−1bjm+ t) ∈ Rj−1, we have f(psj−1bjm+ t) +

f(pj−1(p
s−1
j−1bjm+ t)) = 0.

Note that ps−1
j−1bjm+t ≡ n (mod bj) and ps−1

j−1bjm+t > bj so ps−1
j−1bjm+t ∈ Fj as

well by condition I. Thus (pj−1(p
s−2
j−1bjm+t), ps−1

j−1bjm+t) ∈ Rj−1 and f(ps−1
j−1bjm+

t) + f(pj−1(p
s−2
j−1bjm+ t)) = 0.

Continuing in this way, we see that the sum

f(psj−1bjm+ t) + f(pj−1(p
s−1
j−1bjm+ t)) + · · ·+ f(psj−1(bjm+ t)) (2)

equals 0 if s is odd and f(n′) if s is even. The term n = ps̃j−1(bjm̃+ t) must appear
as one of the arguments a sum of the form (2).

The first multiple of p
aj−1

j−1 bj after psj−1bjm + t must occur at least psj−1bj − t
integers later. However,

psj−1(bjm+ t)− psj−1bjm+ t = (psj−1 − 1)t < (psj−1 − 1)bj < psj−1bj − t.

Since the right endpoints of the intervals Im are all multiples of p
aj−1

j−1 bj , this implies
that every argument in a sum of the form (2) is in an interval Im (for some m).

Thus, for every n = ps̃j−1(bjm̃+ t) ∈ Im with 1 ≤ s̃ ≤ aj−1 and bjm+ t ∈ Fj we
can find the corresponding n′ and find a sum of the form (2) that contains it as an

argument. Each pj−1bjm + t ∈ F (1)
m appears as the argument of the leading term

in such a sum because pj−1(bjm+ t) takes the form n = ps̃j−1(bjm̃+ t) ∈ Im.

At this point, by using the evaluation of the sum (2), we have

T =
∑

n∈Im
n∈Fj−1∪F (2)

m ∪F (3)
m

f(n) +
∑

n∈Im

p
aj−1+1

j−1 |n

f(n) +
∑

n′∈Im
n′=ps

j−1bjm+t as in step (2)

f(n′).

But by the construction of R(2)
m , the terms in the first sum satisfying n ∈ F (2)

m

cancel with all the terms in the third sum. We therefore have

T =
∑

n∈Im∩Fj−1

f(n) +
∑

n∈Im

p
aj−1+1

j−1 |n

f(n) +
∑

n∈F (3)
m

f(n).

And by the construction of R(3)
m , all terms in the second and third sum cancel, so

we have
T =

∑

n∈Im∩Fj−1

f(n)

and hence SP (m+1),k−1 − SPm+1,k−1 = 0.

By iterating this lemma, we eventually arrive at F1, R1, and b1. Now suppose
F1 = a1, a2, a3, . . . with ai < ai+1 and let f(n) be any function such that f(pin) =
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f(pi)f(n) if 1 ≤ i ≤ k, and that f(x) = −f(y) if (x, y) ∈ R1 or (x, y) = (ai, ai+1),
i ∈ N. Then

S(N) =
∑

n≤N

f(n) = O(1) +
∑

n≤N
n∈F1 or n≤b1

f(n) = O(1).

Such a function exists for all possible choices of f(n), 1 ≤ n ≤ P .

This completes the proof of the theorem.
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