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Abstract
We consider a (−β)-expansion which makes use of the structure of the corresponding
Sturmian sequences, and study some basic properties.

1. Introduction

Since Renyi [15] first introduced the theory of β-expansion, many aspects of that
have been studied, such as the characterization of the admissible sequences and
the shift spaces [15, 14], the conditions for finite or periodic expansions [6], the
corresponding dynamical system [15, 14], and the self-similar tilings [1]. Recently,
Ito-Sadahiro [8] proposed a theory of β-expansion with negative bases (we hence-
forth call it (−β)IS-expansion), and studied those properties mentioned above. In
this paper we consider another notion of (−β)-expansion, associated to the Stur-
mian sequence v0 = {v0(n)}n∈Z with rotation β−1. It makes use of the fact that
the combinatorial composition of an element vθ of the hull is equivalent to the ap-
proximation of θ in terms of a certain family of interval division of [0, 1). The main
feature is that the characterization of admissible sequences is simple and the shift
space is that of finite type (SFT), while it can only be defined for particular β
satisfying β2 = kβ + 1, k ∈ N :

β = βk :=
k +

√
k2 + 4
2

, k = 1, 2, . . .

For general β > 1, one has to consider an extended notion of (−β)-expansion. As
for related works, Góra [7] considered the transformations given by piecewise linear
maps and computed the invariant densities. Dajani and Kalle [3] studied a family of
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transformations generating (−β)-expansions. Our (−β)-expansion belongs to this
family after some rescaling and translations.

This paper is organized as follows. In Section 2, we recall basic facts on the
Sturmian sequences. In Section 3, we consider the case k = 1 where β = β1 = τ
is the golden number. We separate the discussion since β = τ is the simplest
case to consider, and the definition of the embedding operation is slightly different
from the other cases. We define the (−τ)-expansion and study the characterization
of the admissible sequence and of the shift space. In Section 4, we consider the
case of arbitrary β = βk (k ∈ N), and study the same properties as well as the
invariant measure of the corresponding shift map. In Section 5, we introduce the
(−β)-expansion in an extended sense for general irrational β > 1. In Section 6,
we consider arbitrary (−βk)-expansions and show that they can be transformed, by
successive application of local flips, to the (−βk)IS-expansion and that defined in
this paper. In the Appendix, we review the main results in Ito-Sadahiro’s paper [8]
to compare with those obtained here.

2. Sturmian Sequences

As a preliminary, we recall basic facts on Sturmian sequences. Let α ∈ (0, 1) ∩Qc

and let

vθ(n) := 1[1−α,1)(αn + θ, (mod 1)),
v′θ(n) := 1(1−α,1](αn + θ, (mod 1)), n ∈ Z, θ ∈ T := [0, 1)

be the Sturmian sequences of rotation α. Let

Ω := {v0(·−m)}m∈Z

be the hull: the closure of the set {v0(· − m)}m∈Z of translates of v0 under the
topology of pointwise convergence. It is known that

Ω = {vθ}θ∈T ∪ {v′0(·−m)}m∈Z = {v′θ}θ∈T ∪ {v0(·−m)}m∈Z.

Let α = [a1, a2, . . . ], an ∈ N be the continued fraction expansion of α. Let {sn}∞n=−1

be the sequence of words defined recursively by

s−1 = 1, s0 = 0, s1 = sa1−1
0 s−1

sn+1 = san+1
n sn−1, n ≥ 1. (1)

Then the word {v0(n)}∞n=1 is equal to the limit r of {sn} in the sense that each
sn is the prefix of {v0(n)}∞n=1. And the word {v0(−n)}∞n=0 (resp. {v′0(−n)}∞n=0) is
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equal to the limit l of {s2n} (resp. limit l′ of {s2n+1}) in the sense that each s2n

(resp. s2n+1) is the suffix of {v0(−n)}∞n=0 (resp. {v′0(−n)}∞n=0). That is,

r := lim
n→∞

sn,

l := lim
n→∞

s2n, l′ := lim
n→∞

s2n+1,

v0 = lr, v′0 = l′r.

It is also known that l = r(10), l′ = r(01) where r is the reflection of r. We recall
the results in [4]. The (n− 1, n)-partition of v ∈ Ω is the non-overlapping covering
of the sequence {v(n)}n∈Z by two words sn−1, sn.

Lemma 1. ([4]) For any n ≥ 0, v ∈ Ω has the unique (n− 1, n)-partition.

Corollary 2. ([4]) Let n ≥ 1. In the (n− 1, n)-partition of v ∈ Ω,
(1) sn−1 does not appear consecutively (sn−1 is always isolated), and
(2) sn always appears an+1 or (an+1 + 1) times successively.

For instance, in the Fibonacci word (k = 1), v0 = . . . 10110 . . . has the unique
(0, 1)-partition . . . s1s0s1s1s0 . . . where s0 is always isolated and s1 appears at most
twice successively.

3. Golden Number Case

In this section, β = τ is the golden number and α = τ−1. Then {sn}∞n=0 satisfies
the following recursion relation.

s0 = 0, s1 = 1,
sn+1 = sn sn−1, n ≥ 1. (2)

3.1. R, L-Construction of the Fibonacci Word

We recall a procedure discussed in [12] to construct combinatorially an element
of Ω. By (2), one can consider the two operations R : sn '→ snsn−1 = sn+1,
L : sn '→ sn+1sn = sn+2, to embed sn into sn′ (n < n′). They are the special cases
of the de-substitution[11]. We start at s0 or s1 and the following argument shows
that successive application of operations R or L gives us an element v in Ω. Let
W := {R,L}N be the set of operations and let (O1, O2, . . . ) ∈W .

Case (1) O1 = R : We put s1 = 1 at 0 and let v(0) = 1. We add blocks sk’s to s1
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depending on whether O2 = R or O2 = L, as are shown in the following figures.

s1

↓ O2 = R

s1 s0 s1

s2 s′1

s1

O2 = L ↓
s2 s1 s2

s3 s′2

The dash s′1 in s2s′1 in the first figure means that this part in v is not determined
yet in the (1, 2)-partition (and the same for s′2 in the second figure). In fact, if this
s′1 was followed by s0, it would be covered by s2 in the (1, 2)-partition.

Case (2) O1 = L : We put s0 = 0 at 0 and let v(0) = 0. Since s0 is isolated in the
(0, 1)-partition by Corollary 2, its neighbor is uniquely determined as follows.

s0

↓
s1 s0 s1

s2 s′1

Hence we regard s2s′1 as the initial state and add blocks sk’s depending on whether
O2 = R or L.

s2

↓ O2 = R

s2 s1 s2

s3 s′2

s2

O2 = L ↓
s3 s2 s3

s4 s′3
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We continue this procedure. Set

kn := n + %{l ≤ n |Ol = L}, n = 1, 2, . . .

After carrying out O1, O2, . . . , On, we have

skn s′kn−1

We then add blocks sk’s depending on whether On+1 = R or L as follows.

skn

↓ On+1 = R

skn skn−1 skn

skn+1 s′kn

skn

On+1 = L ↓
skn+1 skn skn+1

skn+2 s′kn+1

By repeating this procedure, we obtain v ∈ Ω for a given sequence of operations
(O1, O2, . . . ) ∈ W . In fact, if %{l |Ol = L} = ∞, we have a double-sided sequence
belonging to Ω. Otherwise, Oj = R for all but finitely many j’s and we obtain
a single-sided sequence which coincides with a translation of r := limn→∞ sn =
{v0(n)}n≥1. In this case we regard that {On} ∈ W corresponds to the following
two elements

r 10 r = v0(· + m)
r 01 r = v′0(· + m)

for some m ∈ N. Hence we have defined a correspondence Φ̃ : W → Ω. Conversely,
for any v ∈ Ω we can construct corresponding sequence of operations (O1, O2, . . . ) ∈
W uniquely[12]: the inverse correspondence Φ(:= (Φ̃)−1) : Ω→W is a well-defined
map, which is two-to-one on ΩR := {v0(· + m), v′0(· + m)}m≥1.

3.2. (−τ)S-Expansion

Let Ψ : T → Ω be the map θ ∈ T Ψ'→ vθ ∈ Ω. The composition map Φ ◦ Ψ : T Ψ→
Ω Φ→ W corresponds to a sequence of interval division of T [12] as is explained
below. We first decompose T into two intervals of ratio 1 : τ

T = IL ∪ IR := [0, 1− α) ∪ [1− α, 1).
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Then they are the inverse images of the cylinder set

IL = (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W |O1 = L})
IR = (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W |O1 = R}).

We further divide IL in the same ratio

IL = ILL ∪ ILR := [0,α4) ∪ [α4,α2),

and we have

ILL = (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W | (O1, O2) = (L,L)})
ILR = (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W | (O1, O2) = (L,R)}).

We similarly divide IR and have the same consequence:

IR = IRR ∪ IRL := [α2, 2α2) ∪ [2α2, 1)
IRR = (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W | (O1, O2) = (R,R)})
IRL = (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W | (O1, O2) = (R,L)}).

We repeat this procedure and define inductively the right-open half interval
IO1,O2,...,On(⊂ T) for a given sequence of operations (O1, O2, . . . , On) ∈ {R,L}n.
Suppose an interval IO1,O2,...,On−1(⊂ [0, 1)) is given by dividing its “parent” interval
IO1,O2,...,On−2 at x. We divide IO1,O2,...,On−1 into two intervals such that the ratio of
them is τ : 1 from x, and let IO1,O2,...,On−1,R (resp. IO1,O2,...,On−1,L) be the longer
(resp. shorter) interval. For instance, in the figure below, IO1,O2,...,On−2 = [a, b),
IO1,O2,...,On−2,On−1 = [x, b), IO1,O2,...,On−2,On−1,R = [x, c), and IO1,O2,...,On−2,On−1,L =
[c, b).

a x b

IO1,O2,...,On−2

IO1,O2,...,On−2,On−1

···

a x c b

IO1,O2,...,On−1,R IO1,O2,...,On−1,L

The interval division to define IO1,O2,...,On

Then for any (P1, P2, . . . , Pn) ∈ {R,L}n we have

IP1,P2,...,Pn = (Φ ◦Ψ)−1({(O1, O2, . . . , On) ∈W |Oj = Pj , j = 1, 2, . . . , n}).
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Thus, constructing vθ ∈ Ω by a sequence of operations (O1, O2, . . . ) ∈ W is
equivalent to approximating θ ∈ [0, 1] by the corresponding sequence of intervals
{IO1,O2,...,On}∞n=1.

Remark 3. Let D− := {−nα (mod 1) |n ≥ 1} be the set of division points. For
θ ∈ D−, taking the sequence of intervals is equivalent to approximating θ from
above and thus Ψ(θ) = v0(· −m) for some m ≥ 1. If these intervals IO1,O2,...,On

were left-open, it would be equivalent to approximating θ from below and we would
have limε↓0 Ψ(θ − ε) = v′0(·−m).

We shall have a representation θ =
∑∞

j=0 yj(−α)j for given θ ∈ T using this
interval division. Let (Φ◦Ψ)(θ) = (O1, O2, . . . ) ∈W be the corresponding sequence
of operations. We start from the point 1 + (−α) which divides T into IL and IR.

(1) If O1 = R, we add (−α)2 to go to 1 + (−α) + (−α)2 which divides IR into
IRR and IRL.

(2) If O1 = L, we add (−α)3 to go to 1 + (−α) + (−α)3 which divides IL into
ILR and ILL.
We repeat this procedure. Set

pn :=

{
n + %{k ≤ n− 1 |Ok = L} (n ≥ 2)
1 (n = 1)

then we have the expansion θ = 1 +
∑∞

n=1(−α)pn . Equivalently, let {yj}∞j=1 be the
sequence obtained by applying the substitution R '→ 1, L '→ 10 to the sequence
(Φ ◦ Ψ)(θ) = (O1, O2, . . . ) ∈ W . Then we have a power series expansion of θ in
terms of (−α) = (−β)−1

θ = 1 +
∞∑

j=1

yj(−α)j .

This definition is natural in the sense that this representation of θ is related to the
combinatorial structure of the corresponding Sturmian sequence vθ. However, if θ ∈
D− is in the set of division points, the characterization of the admissible sequences
would be complicated and, to be seen later, it would be impossible to define the shift
map. This is mainly because the intervals IO1,O2,...,On are half-open. Therefore we
slightly modify the intervals IO1,O2,...,On and consider the division of [0, 1] by another
family of intervals {JO1,O2,...,On |n ∈ N, (O1, O2, . . . , On) ∈ {R,L}n} defined as
follows. The interior is the same: J◦O1,...,On

= I◦O1,...,On
, but the division points

always belong to the longer interval, that is, the one corresponding to On = R. For
instance,

T = JL ∪ JR := [0, 1− α) ∪ [1− α, 1]
JL = JLL ∪ JLR := [0,α4) ∪ [α4,α2)
JR = JRR ∪ JRL := [α2, 2α2] ∪ (2α2, 1].
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Definition 4. ((−β)S-expansion) For a given θ ∈ [0, 1], let (O1, O2, . . . ) ∈ W be
the sequence of operations corresponding to the interval division {JO1,O2,...,On |n ∈
N, (O1, O2, . . . , On) ∈ {R,L}n} to approximate θ. Let {yj}∞j=1 be the sequence
given by applying the substitution S defined by S : R '→ 1, L '→ 10 to the sequence
(O1, O2, . . . ) ∈W . Then the power series expansion

θ = 1 +
∞∑

j=1

yj(−α)j = 1 +
∞∑

j=1

yj(−τ)−j (3)

of θ in terms of (−α) is called the (−τ)S-expansion of θ ∈ [0, 1]. We write
dS(θ,−τ) = {yj}∞j=1.

We always have y1 = 1 in this expansion. By definition, we have infinitely many
1’s in {yj}∞j=1; indeed 0 is isolated, so that we do not have finite expansion.

Remark 5. (1) Since we adopt {JO1,...,On} as the interval division, the tails of (Φ◦
Ψ)(θ) for θ ∈ D− is always equal to RRL = (1, 1, (10)), while LRL = (1, 0, 1, (10))
does not appear1. (2) For θ ∈ D−, the relation to the Sturmian sequence vθ is not
simple anymore: some θ ∈ D− corresponds to v0(·−m) while others to v′0(·−m′).

Remark 6. It is possible to define the (+τ)-expansion by the method above.
To construct the corresponding intervals {J+

O1,O2,...,On
|n ∈ N, (O1, O2, . . . , On) ∈

{R,L}n}, we divide J+
O1,O2,...,On−1

into two intervals by the ratio τ : 1 such that
the one closer to the origin is longer.

3.3. (−τ)S-Admissibility

Definition 7. ((−τ)S-admissibility) We say a sequence {yj}∞j=2 ∈ {0, 1}N is (−τ)S-
admissible if and only if it corresponds to the (−τ)S-expansion for some θ ∈ [0, 1].

This is a condition for the j ≥ 2 part of the sequence {yj}∞j=1, since we always
have y1 = 1. The consideration in the former subsection gives us the following
characterization of (−τ)S-admissible sequences.

Theorem 8. Let

X = {{yj}∞j=2 ∈ {0, 1}N | 0 is isolated }
Y = {{yj}∞j=2 ∈ {0, 1}N | tail is equal to 10110 }.

Then we have {{yj}∞j=2 ∈ {0, 1}N | {yj}∞j=2 is (−τ)S-admissible } = X \ Y.

We end this subsection by a brief remark on the (−τ)S-admissibility. The con-
dition that 0 is isolated is equivalent to

(010101 . . . ) .lex (xn, xn+1, . . . ) for any n ≥ 2,
1L = LL . . . denotes the infinite repetition of L.
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where .lex denotes the lexicographic order. This is similar to the case for the
(+τ)-expansion, where the (+τ)-admissibility of {xn}∞n=1 is equivalent to

(xn, xn+1, . . . ) .lex (101010 . . . ) for any n ≥ 2 (4)

and that the tail is not equal to 10. Condition (4) is natural since (10) is the
(+τ)-expansion of 1 and x < y is equivalent to {xn} ≺lex {yn} in the β-expansion
(apart from some exceptional points). However, this is not the case for the (−τ)S-
expansion. In fact, dS(τ−1,−τ) = (1) is the maximum in {0, 1}N in the lexico-
graphic order, while τ−1 ∈ [0, 1] lies in the interior.

Thus we consider another ordering ≺IS , which was introduced in [8].

Definition 9. (IS-ordering) For two sequences {ck}∞k=1, {dk}∞k=1 ∈ {0, 1}N, we
define the ordering ≺IS as follows.
(1) {ck}∞k=1 ≺IS {dk}∞k=1

def⇐⇒ {(−1)kck}∞k=1 ≺lex {(−1)kdk}∞k=1.

(2) {ck}∞k=1 .IS {dk}∞k=1
def⇐⇒ {ck}∞k=1 ≺IS {dk}∞k=1 or {ck}∞k=1 = {dk}∞k=1.

Since dS(0,−τ) = (1, 0, 1, 0, . . . ) and dS(1,−τ) = (1, 1, 0, 1, . . . ), it is reasonable
to expect that (−τ)S-admissibility is equivalent to:

for any k ≥ 2, (1, 0, 1, 0, . . . ) .IS (dk, dk+1, . . . ) .IS (0, 1, 0, 1, . . . ). (5)

However this equivalence is not true. In fact, 01, (resp. 10) is the maximum (resp.
the minimum) in {0, 1}N in the IS-ordering so that the condition (5) imposes no
restriction on the sequences in {0, 1}N. The reason is that we fix the expansion
for x ∈ D− so that we would not have a statement like (5). Nevertheless, since we
define the (−τ)S-expansion by interval division, the IS-ordering ≺IS preserves the
order of θ.

Proposition 10. We have: θ < θ′ if and only if dS(θ,−τ) ≺IS dS(θ′,−τ).

3.4. Shift Map

Let T−τ,S : [0, 1]→ [0, 1] be the shift map sending θ = 1+(−α)+
∑∞

y=2 yj(−α)j to
θ′ = 1 + (−α) +

∑∞
y=2 yj+1(−α)j . By a direct computation,

T−τ,S(θ) =

{
−α−1θ + 1 (θ ∈ [0, 1− α))
−α−1θ + α−1 (θ ∈ [1− α, 1])

and we can rephrase the definition of the (−τ)S-expansion as

θ = 1 + (−α) +
∞∑

j=2

yj(−α)j , yj := 1[1−α,1]((T−τ,S)j−2(θ)), j ≥ 2.
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Remark 11. It is also possible to regard equation (3) as the (−τ)S-expansion of
θ − (1 + (−α)) ∈ [−α2,α]: θ − (1 + (−α)) =

∑∞
k=2 yk (−α)k . Under this point of

view, we translate T−τ,S :

T̂−τ,S(θ) := T−τ,S(θ + α2)− α2

= −α−1θ + α1A(θ), A = [0,α] , θ ∈ [−α2,α]

and the definition of the (−τ)S-expansion becomes

θ =
∞∑

j=2

yj(−α)j , yj := 1A((T̂−τ,S)j−2(θ)), j ≥ 2, θ ∈ [−α2,α].

Then, as is done for the (−β)IS-expansion (Definition 23), we can expand any
θ ∈ R.

!

"

#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#

!

"

!

!
·
·
·

·
·
·
·
·
·
·
·
·
·

· · · · · ·

−α2

α

α

−α2

The graph of T̂−τ,S

3.5. Shift Space

Let

S−τ,S := {{xn}n∈Z | any finite subword of {xn} appears
in (−τ)S -admissible sequences }
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be the shift-invariant set of double-sided sequences obtained by taking translations
of (−τ)S-admissible sequences. Sequences {yj}∞j=2 whose tails are equal to 10110
can be approximated by (−τ)S-admissible sequences so that we have

Theorem 12. We have S−τ,S = {{xn}n∈Z | 0 is isolated, i.e., 00 is prohibited }.

Hence S−τ,S is SFT.

4. General k Case

In this section we develop the notion of (−β)S-expansion for β = βk, which is
the positive root of the equation β2 = kβ + 1(k ∈ N), along the discussion in
the previous section. Let α = β−1

k . The recursion relation (1) of words {sn}∞n=−1

becomes

s−1 = 1, s0 = 0, s1 = sk−1
0 s−1,

sn+1 = sk
n sn−1, n ≥ 1. (6)

4.1. R, L-Construction of Sturmian Words

Equation (6) implies that there are k operations R1, R2, . . . , Rk to embed sn into
sn+1 so that we take W := {L,R1, R2, . . . , Rk}N as the set of operations. We define
the correspondence Φ̃ : W → Ω obtaining v ∈ Ω from (O1, O2, . . . ) ∈W , as follows.

Case (1) O1 = Rk: We put s−1 = 1 at 0. By Corollary 2, we have at least (k − 1)
s0’s on both sides of s−1 and hence this s−1 is always embedded into the rightmost
position of s1 = sk−1

0 s−1. Thus we have s1(s′0)k−1. As in Section 2.1, the dash in
s′0 means that this is not determined in the (0, 1)-partition.

s−1

↓ O1 = Rk

s0 . . . s0
︸ ︷︷ ︸

k−1

s−1 s0 . . . s0
︸ ︷︷ ︸

k−1

||

s1 s′0 . . . s′0

Case (2) O1 = Rj (j = 1, 2, . . . , k − 1): We put s0 = 0 at 0. Since s1 =
sk−1
0 s−1, there are (k − 1) ways to embed s0 into s1 which correspond to op-

erations R1, . . . , Rk−1 respectively. For instance, if O1 = Rj we embed s0 into the
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jth position counted from the left in s1. We then have s1(s′0)k−1.

s0 @
↓ Oj = Rj

s0 . . . s0 . . . s0
︸ ︷︷ ︸

k−1

s−1 s0 . . . s0
︸ ︷︷ ︸

k−1

||

s1 s′0 . . . s′0

Case (3) O1 = L: We put s0 at 0 and embed s0 into the rightmost position of
s2 = sk

1s0. By Corollary 2, s0 is isolated in the (0, 1)-partition and there are at
least k s1’s on both sides of s0. Hence we have s2(s′1)k.

s0

O1 = L ↓
s1 . . . s1

︸ ︷︷ ︸
k

s0 s1 . . . s1
︸ ︷︷ ︸

k

||

s2 s′1 . . . s′1

We repeat this procedure. After carrying out O1, O2, . . . , On, we have skn(s′kn−1)
k,

where kn = n + %{l ≤ n | Ol = L}. Depending on On+1, we embed it into larger
sk’s as follows.

Case (1) On+1 = Rj (j = 1, 2, . . . , k):

skn @

↓ On+1 = Rj (j = 1, 2, . . . , k)
skn . . . skn . . . skn

︸ ︷︷ ︸
k

skn−1 skn . . . skn

︸ ︷︷ ︸
k

||

skn+1 s′kn
. . . s′kn
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Case (2) On+1 = L:

skn

On+1 = L ↓
skn+1 . . . skn+1

︸ ︷︷ ︸
k

skn skn+1 . . . skn+1
︸ ︷︷ ︸

k

||

skn+2 s′kn+1 . . . s′kn+1

If the tail of (O1, O2, . . . ) ∈ W is equal to R1, we have a single-sided sequence
and we regard that as corresponding to two elements v0(· + m), v′0(· + m) for some
m ∈ N. Thus we obtain the correspondence Φ̃ : W → Ω. As in Section 2.1, the
inverse Φ := (Φ̃)−1 : Ω→W is a well-defined map.

4.2. (−β)S-Expansion

Let Ψ : T→ Ω be the map given by Ψ(θ) := vθ. As in Section 2.2, we can explicitly
derive the composition map θ

Ψ'→ vθ
Φ'→ (O1, O2, . . . ) ∈W by the division of [0, 1) by

right-open half intervals. We first divide [0, 1) into an interval I0 of length α2 and
k intervals I1, . . . , Ik of length α:

[0, 1) = I0 ∪ I1 ∪ · · · ∪ Ik

I0 = [0,α2),
Ij = α2 + (j − 1)α + [0,α), j = 1, 2, . . . , k.

Then I0 corresponds to the operation O1 = L and I1, I2, . . . , Ik correspond to the
operations O1 = R1, R2, . . . , Rk respectively:

I0 := (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W |O1 = L})
Ij := (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W |O1 = Rj}), j = 1, . . . , k.

The interval Ij (j = 0, 1, . . . , k) is further divided, from the division point, into k
intervals Ij,k, Ij,k−1, . . . , Ij,2, Ij,1 of length multiplied by α and an interval Ij,0 of
length multiplied by α2:

(1) j = 0

I0,0 := [0,α4)
I0,l := α4 + (l − 1)α3 + [0,α3) (l = 1, . . . , k)



INTEGERS: 12 (2012) 14

(2) j = 1, . . . , k

Ij,0 := α2 + (j − 1)α + [kα2,α)
Ij,l := α2 + (j − 1)α + (k − l)α2 + [0,α2) (l = 1, 2, . . . , k).

And the operation Rk (resp. L) corresponds to Ij,k (resp. Ij,0). For instance

I0,0 = (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W | (O1, O2) = (L,L)})
I0,j = (Φ ◦Ψ)−1({(O1, O2, . . . ) ∈W | (O1, O2) = (L,Rj)}), j = 1, . . . , k.

The figure below is the example for k = 2 where the intervals Iij (i, j = 0, 1, 2) and
the corresponding operations are shown.

L R1 R2

········

········

"
L

"
R1

"
R2

R2 R1 L R2 R1 L

We repeat this procedure. Suppose we have an interval J = Ij1,j2,...,jn after
applying the operation On, by dividing the parent interval Ij1,j2,...,jn−1 at x. The
length of J is equal to αkn . We divide J , from x, into k intervals Ik, Ik−1, . . . , I1 of
length αkn+1 and an interval I0 of length αkn+2. Then each interval corresponds
to the operations On+1 = Rk, Rk−1, . . . , R1, L, respectively. Thus we have defined
the interval division {Ij1,j2,..., | jl = 0, 1, . . . , k} each of which corresponds to the
cylinder set of these operations.

To have a simple characterization of the (−β)S-admissibility and the shift map,
we slightly modify the definition and consider the division of [0, 1] by the fam-
ily of intervals {Jj1,j2,...,jn | jl = 0, . . . , k} as follows. They have the same interior
as {Ij1,j2,...,jn | jl = 0, . . . , k} and in dividing an interval J , from the former di-
vision point x, the first (k − 1) long intervals Ij1,j2,...,jn−1,k, Ij1,j2,...,jn−1,k−1, . . . ,
Ij1,j2,...,jn−1,2 are closed-open, and the k-th long interval Ij1,j2,...,jn−1,1 is closed. The
short interval Ij1,j2,...,jn−1,0 is open-closed. For instance I0, I1, . . . , Ik are replaced
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by J0, J1, . . . , Jk given below (in this case, x = 1):

[0, 1] = J0 ∪ J1 ∪ · · · ∪ Jk

J0 = [0, 1− kα) = [0,α2)
J1 = [1− kα, 1− (k − 1)α]
Jj = (1− (k − j + 1)α, 1− (k − j)α] (j = 2, . . . , k).

For given θ ∈ [0, 1], we take the corresponding sequence of operations (O1, O2, . . . ) ∈
W associated to the interval division {Jj1,j2,... | jl = 0, 1, . . . , k}. Letting

xn =

{
k (On = L)
k − j + 1 (On = Rj , j = 1, . . . , k)

p1 = 1, pn = n + %{k ≤ n− 1 |Ok = L},

we have

θ = 1 +
∞∑

n=1

xn(−α)pn ,

and applying the substitution

Rj '→ (k − j + 1), j = 1, 2, . . . , k
L '→ k 0

to (O1, O2, . . . ) ∈W gives a power series representation of θ in terms of (−α):

θ = 1 +
∞∑

j=1

yj(−α)j ,

which should be a definition of (−β)S-expansion of θ. In {yj}∞j=1, 0 is always
isolated and followed by k. In other words, 00, 10, 20, . . . , (k − 1)0 do not appear.

4.3. Shift Map

The map T : [0, 1] → [0, 1] sending θ = 1 + y1(−α) +
∑∞

j=2 yj(−α)j to θ′ =
1 + y1(−α) +

∑∞
j=2 yj+1(−α)j is

T (θ) = −α−1θ + (k + 1− y1(θ)) + (y2(θ)− y1(θ) + 1)α,

where y1(θ) is given by

y1(θ) =






k, (θ ∈ [0,α2))
k, (θ ∈ α2 + [0,α])
k − j + 1, (θ ∈ α2 + (j − 1)α + (0,α], j = 2, . . . , k)
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and y2(θ) is given by

(i) If θ ∈ α2 + (j − 1)α + (0,α] (j = 2, . . . , k) or θ ∈ α2 + [0,α],

y2(θ) =






l (θ ∈ α2 + (j − 1)α + (l − 1)α2 + [0,α2), l = 1, 2, . . . , k − 1)
k (θ ∈ α2 + (j − 1)α + (k − 1)α2 + [0,α2])
k (θ ∈ α2 + (j − 1)α + kα2 + (0,α3])

(ii) If θ ∈ [0,α2), y2(θ) = 0.

Nevertheless, since 0 must be followed by k in the (−β)S-expansion, if y1 2= k
and y3 = 0, then θ′ = T (θ) is not the (−β)S-expansion of θ′ in the sense of the
former subsection. Hence we restrict the domain of T to the interval

Iα := [0,α2 + α]

so that we always have y1(θ) = k, and y2 : [0,α2 + α] → {0, 1, . . . , k} is now equal
to

y2(θ) =






j (θ ∈ jα2 + [0,α2), j = 0, 1, . . . , k)
k (θ ∈ kα2 + [0,α2])
k (θ ∈ ((k + 1)α2,α + α2]).

We introduce the (−β)S-transformation T−β,S : [0,α2 + α]→ [0,α2 + α]:

T−β,S(θ) = −α−1θ + 1 + (y2(θ)− k + 1)α.

Definition 13. ((−β)S-expansion) The power series expansion of θ ∈ [0,α2 + α]
in terms of (−α) = (−β)−1 given by

θ = 1 + k(−α) +
∞∑

n=2

yn(−α)n, yn = y2((T−β,S)j−2(θ)), n = 2, 3, . . . (7)

is called the (−β)S-expansion of θ. We write dS(θ,−β) = {yj}∞j=1. As is done in the
(−τ)S-expansion, we can also regard it as an expansion of θ−(1+k(−α)) ∈ [−α2,α].
In this case T−β,S is replaced by its translation

T̂−β,S(θ) := T−β,S(θ + α2)− α2

= −α−1θ + ŷ2(θ)α, θ ∈ [−α2,α]

ŷ2(θ) :=

{
j (θ ∈ [(j − 1)α2, jα2), j = 0, 1, . . . , k)
k (θ ∈ [kα2,α])

and the definition of the (−β)S-expansion becomes

θ =
∞∑

j=2

yj(−α)j , yj := ŷ2((T̂−β,S)j−2(θ)), j ≥ 2, θ ∈ [−α2,α]. (8)
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In this case any θ ∈ R can be expanded as in the case for the (−β)IS-expansion
(Definition 23 in the Appendix).
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·

−α2
α2

·
·
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·
·
·
·
·

α

−α2

·
·
·
·
·
·
·
·

(k − 1)α2

· · · · · · · · · · · · · · · · · ·

α

·
·
·

The graph of T̂−β,S

Remark 14. T−β,S is discontinuous at θ = jα2, j = 1, 2, . . . , k. By the definition of
T−β,S , the orbits passing discontinuity points correspond to (. . . , R1, Rk−j+1, L) =
(k, j, (k0)). Hence (. . . , L,Rk, L) = (k, 0, 1, (k0)) and (. . . , R1, Rk−j+2, Rk, L) =
(k, (j − 1), 1, (k0)) (j ≥ 2) do not appear in the tails of sequences in the (−β)S-
expansion.

4.4. (−β)S-Admissible Sequences

Definition 15. ((−β)S-admissibility) We say {yj}∞j=2 ∈ {0, 1, . . . , k}N is (−β)S-
admissible if and only if

yj = y2((T−β,S)j−2(θ)), j = 2, 3, . . .

for some θ ∈ [0,α2 + α]. In other words, θ = 1 + k(−α) +
∑∞

j=2 yj(−α)j is the
(−β)S-expansion of θ.

By the argument in Section 3.3 and in Remark 14, we have the following simple
characterization.

Proposition 16. The set of (−β)S-admissible sequences has the following charac-
terization:

{{yj}∞j=2 | {yj}∞j=2 is (−β)S-admissible } = X \ Y



INTEGERS: 12 (2012) 18

where

X = {{yj}∞j=2 | 00, 10, . . . , (k − 1)0 do not appear}

Y = {{yj}∞j=2 | tail is equal to (k, (j − 1), 1, (k0)), j = 1, 2, . . . , k }.

4.5. Shift Space

The shift space S−β,S is defined similarly as in Section 2.5.

Theorem 17. S−β,S is SFT whose set of forbidden words is {00, 10, . . . , (k−1)0}.

Remark 18. For those β, the shift space Sβ for the (+β)-expansion is also SFT
whose set of forbidden words is {k1, k2, . . . , k(k − 1)} with the same entropy. The
shift space S−β,IS for the (−β)IS-expansion is given in Example B in the Appendix.

4.6. Invariant Measure

The invariant measure of T̂−β,S uniquely exists by [10].

Theorem 19. The invariant measure of T̂−β,S is given by dν−β,S = h−β,S dx where

h−β,S(x) =

{
α (−α2 < x < 0)
1 (0 < x < α).

It seems not to be possible to have the power series representation of h−β,S , as
it is in the (+β)-expansion, and in the (−β)IS-expansion.

Proof. It suffices to check ν−β,S(T̂−1
−β,SA) = ν−β,S(A) for intervals A.

If β = τ , the frequency of appearance of 0 and 1 is equal to 1
τ2 : 1, while it is

1 : 1
τ2 in the (+β)-expansion and 1 : 2

τ in the (−β)IS-expansion.

5. General Case: (−β)S-Expansion in an Extended Sense

In this section we extend the discussion in Sections 2, 3 to general irrational β > 1,
which does not give us the power series expansion but those in an extended sense.
Since the idea is the same as that in Sections 2, 3, we state the results without
proofs. As in Section 2, let α = [a1, a2, . . . ], an ∈ N be the continued fraction
expansion of α := β−1. We define recursively the sequence {γn}∞n=1 by

γn−1 =
1

an + γn
, n ≥ 1, γ0 = α

and let

αn =

{
γn−1 · γn−2 . . . γ1 · γ0 (n ≥ 1)
1 (n = 0).
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We then have
anαn + αn+1 = αn−1, n ≥ 1.

5.1. R, L-Construction

By (1), we have an+1 operations R1, R2, . . . , Ran+1 to embed sn into sn+1; the set of
embedding operations becomes W :=

∏
n≥0 Wn, Wn := {L(n), R(n)

1 , R(n)
2 , . . . , R(n)

an+1}.
The interval division is defined by dividing the interval of length αk, from the former
division point x, into ak+1 intervals of length αk+1 and an interval of length αk+2.
They correspond to the operations On+1 = R(k)

ak+1 , R
(k)
ak+1−1, . . . , R

(k)
2 , R(k)

1 , L(k) re-
spectively where k = kn := n + %{l ≤ n |Ol = L}.

5.2. (−β)S-Expansion

For given θ ∈ [0, 1) let (O1, O2, . . . ) ∈ W be the corresponding sequence of opera-
tions. For n ≥ 0 set k = kn, and

xn+1 =

{
ak+1 − j + 1 (On+1 = R(k)

j , j = 1, 2, . . . , ak+1)
ak+1 (On+1 = L(k))

, n ≥ 0

pn :=

{
n + %{l ≤ n− 1 | Ol = L}, n ≥ 2
1, n = 1

and define {yj}∞j=1 by applying the substitution

R(k)
j '→ ak+1 + 1− j (j = 1, 2, . . . , ak+1)

L(k) '→ ak+1 0

to the sequence (O1, O2, . . . ). Then we have the following representation of θ, which
may be viewed as the (−β)S-expansion of θ in an extended sense.

θ = 1 +
∞∑

n=1

xn(−1)pnαpn = 1 +
∞∑

n=1

yn(−1)nαn.

6. Local Flip Connectedness

In this section, β is the positive root of the equation β2 = kβ + 1 and we adopt
T̂−β,S and equation (8) as the definition of the (−β)S-expansion. If θ ∈ R has the
following representation

θ =
∑

n≥n0

xn

(−β)n
, xn ∈ {0, 1, . . . , k}, n0 ∈ Z, (9)
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there may be many choices of {xn}n≥n0 in general. Whenever a single-sided se-
quence {xn}n≥n0 satisfies (9), we say this is a (−β)-expansion of θ, and distinguish
it from the (−β)S-expansion and the (−β)IS-expansion. For simplicity, we call
a sequence {xn}n≥n0 (xn ∈ {0, 1, . . . , [β]}) in a (−β)-expansion a (−β)-sequence.
Similarly, we also call the (−β)S-admissible sequence (resp. the (−β)IS-admissible
sequence) the (−β)S-sequence (resp. the (−β)IS-sequence). We do not consider the
case of finite expansions since the tail 0 can always be replaced by k0. Since we
have

1
(−β)n

+
k

(−β)n+1
=

1
(−β)n+2

, n ∈ Z,

we may locally modify 1k0 ↔ 001 in a (−β)-sequence. Therefore we introduce the
following operations in the sequences {xn}n≥n0 (xn ∈ {0, 1, . . . , k}):

(A) (l + 1)k(j − 1)↔ l0j (l = 0, 1, . . . , k − 1, j = 1, 2, . . . , k)
(B) (k, (j − 1), 0, 1, (k0))↔ (k, j, (k0)) (j = 1, 2, . . . , k)
(C) (0, 0, k, (k − 1))↔ (1, k, (k − 1)).

Operation (B) turns non-(−β)S-admissible sequences into admissible ones at θ ∈
D− while (C) modifies the sequences whose tails are equal to that of d∗IS(rβ ,−β)
into (−β)IS-admissible ones (d∗IS(rβ ,−β) is defined in the Appendix). Then we can
prove that any (−β)-sequences corresponding to the same number θ are connected
by these operations.

Theorem 20. Any (−β)-sequence can be transformed into the (−β)S-sequence, and
the (−β)IS-sequence, via the operations (A), (B), (C).

Proof. (1) If the sequence in question {xn}n≥n0 is not (−β)S-admissible, it should
contain l0j (l = 0, 1, . . . , k−1, j = 1, 2, . . . , k). A successive application of (A) turns
it into a (−β)S-admissible one.
(2) According to Example B in the Appendix, the (−β)IS-admissibility is expressed
by two rules (i), (ii). We say that {xn}n≥n0 is (−β)IS-admissible up to xd if when
we look at xn0 , xn0+1, . . . , xd only, these two rules are not broken. Suppose that
{xn} is (−β)IS-admissible up to xd and is not (−β)IS-admissible at xd+1. We would
like to modify {xn} into a (−β)IS-admissible sequence using (A). We proceed by a
case-by-case analysis.

Case (I) (xd, xd+1) = (k, (j − 1)), j = 1, 2, . . . , (k − 1): we further divide our dis-
cussion into some cases according to xd−1.

(i) xd−1 = 1, 2, . . . , k: we apply (A) to (xd−1, xd, xd+1). Then (xd−1, xd, xd+1) is
transformed to

(xd−1, xd, xd+1) = ((l + 1), k, (j − 1)) '→ (l, 0, j)
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(j = 1, 2, . . . , (k − 1), l = 0, 1, . . . , (k − 1)) which is (−β)IS-admissible up to xd+1.

Remark 21. Since we modified xd−1, we have to check whether the (−β)IS-
admissibility is maintained up to xd−1 after applying this operation. If l + 1 = k
for instance, the only possibility where (−β)IS-admissibility may be broken is that

(. . . , xd−2) = (k,

even︷ ︸︸ ︷
(k − 1), . . . , (k − 1)). After applying (A) to (xd−1, xd, xd+1), we

have

(. . . , xd−2, xd−1, xd, xd+1) = (k,

even︷ ︸︸ ︷
(k − 1), . . . , (k − 1), k, k, (j − 1))

'→ (k,

even︷ ︸︸ ︷
(k − 1), . . . , (k − 1), (k − 1), 0, j)

(j = 1, 2, . . . , (k − 1), l = 0, 1, . . . , (k − 1)). This is (−β)IS-admissible. If l + 1 =
1, . . . , k − 1, and in those arguments below, we can similarly check that (−β)IS-
admissibility is maintained.

(ii) xd−1 = 0: since we assumed {xn} is (−β)IS-admissible up to xd, we should
have xd−2 = 0, 1, . . . , k − 1. We apply (A) to (xd−2, xd−1, xd) and obtain

(xd−2, xd−1, xd, xd+1) = (l, 0, k, (j − 1)) '→ ((l + 1), k, (k − 1), (j − 1))

(l = 0, 1, 2, . . . , k − 1) which is (−β)IS-admissible.

Case (II) (xd, . . . ) = k

odd︷ ︸︸ ︷
(k − 1) . . . (k − 1) k : we modify (xd−1, xd, xd+1) = (∗, k, (k−

1)) to have the (−β)IS-admissibility. In the argument below, the number of suc-
cession of (k − 1) changes by one so that we obtain the (−β)IS-admissibility.

(i) xd−1 = 1, 2, 3, . . . , k: we apply (A) as follows.

(xd−1, xd, xd+1) = ((l + 1), k, (k − 1)) '→ (l, 0, k) l = 0, 1, . . . , (k − 1).

(ii) xd−1 = 0: since we assumed {xn} is (−β)IS-admissible up to xd, we should
have xd−2 = 0, 1, . . . , k − 1. We apply (A) to (xd−2, xd−1, xd) and obtain

(xd−2, xd−1, xd) = (l, 0, k) '→ ((l + 1), k, (k − 1)), l = 0, 1, . . . , (k − 1).

Case (III) (xd, . . . ) = k

even︷ ︸︸ ︷
(k − 1) . . . (k − 1) j, j 2= k: As in Case(II), we modify

(xd−1, xd, xd+1) = (∗, k, (k−1)) and obtain the (−β)IS-admissibility up to xd+1.

In the proof above, to have a (−β)S-sequence, we need the operation l0j '→
(l+1)k(j−1) only, but to have a (−β)IS-sequence we need both l0j '→ (l+1)k(j−1)
and (l + 1)k(j − 1) '→ l0j. Indeed, we have
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Proposition 22. For a sequence {xn}∞n=1 ∈ {0, 1, . . . k}N, the following conditions
are equivalent.
(i) The operation l0j '→ (l + 1)k(j − 1) (l = 0, 1, . . . , k − 1, j = 1, 2, . . . , k) is
impossible2,
(ii) 0 is isolated and followed by k.

This property of (−β)S-sequences should have something to do with that of the
(−β)S-admissibility discussed in Section 2.3.

7. Appendix : Ito-Sadahiro’s (−β)-Expansion

We briefly review the basic properties of the (−β)IS-expansion to compare it with
those in this paper3. Let

Iβ := [lβ , rβ), lβ := − β

β + 1
, rβ :=

1
β + 1

.

Definition 23. ((−β)IS-expansion) Let T−β,IS : Iβ → Iβ be the (−β)-transformation
defined by

T−β,IS(x) := −βx− [−βx− lβ ].

The power series representation of x ∈ Iβ in terms of (−β)−1 given by

x =
∞∑

k=1

xk

(−β)k
, xk = [−β(T−β,IS)k−1(x)− lβ ]

is called the (−β)IS- expansion of x ∈ Iβ . We write dIS(x,−β) = {xn}∞n=1. For
x /∈ Iβ we take k ∈ N such that (−β)−kx ∈ Iβ and multiply the (−β)IS-expansion
of (−β)−kx by (−β)k.

The (−β)IS-admissibility is defined similarly as in the (−β)S-expansion.

Definition 24. ((−β)IS-admissibility) We say {xn}∞n=1 ∈ {0, 1, . . . , [β]}N is (−β)IS-
admissible if and only if we can find x ∈ Iβ such that {xn}∞n=1 is the (−β)IS-
expansion of x.

Let dIS(lβ ,−β) = (b1, b2, . . . ), dIS(rβ ,−β) = (0, b1, b2, . . . ) be the (−β)IS-expan-
sions of lβ , rβ respectively. Then dIS(rβ ,−β) can at least formally be defined as

2For a sequence (0, j, . . . ) (j = 1, 2, . . . , k), we regard it as (0, 0, j, . . . ) so that operation (i) is
possible.

3[13] contains a review of the (−β)IS- and the (−β)S-expansions as well as a discussion of some
unsolved problems.
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above. We set

d∗IS(rβ ,−β) :=

{
(0, b1, . . . , bq−1, bq − 1) (dIS(lβ ,−β) = (b1, . . . , bq), q : odd)
dIS(rβ ,−β) (otherwise).

Because the orbit of (T−β,IS)n(lβ) passes the discontinuity points of T−β,IS when
dIS(lβ ,−β) = (b1, . . . , bq), we set the definition of d∗IS(rβ ,−β) as above. The con-
dition for the (−β)IS-admissibility of a given sequence {xn} is expressed as follows.

Theorem 25. {xn}∞n=1 is (−β)IS-admissible if and only if

for any n ≥ 1, dIS(lβ ,−β) .IS (xn, xn+1, . . . ) ≺IS d∗IS(rβ ,−β).

The IS-ordering ≺IS is defined in Definition 9.

Example A. Let β = τ . Then dIS(lβ ,−β) = (10 . . . ) = (10), dIS(rβ ,−β) =
(0100 . . . ). Hence, {xn} is (−τ)IS-admissible if and only if (i) after the first 1 ap-
pears, all subsequent blocks of consecutive 0s have even length, and (ii) its tail is
not equal to 10.

Example B. Let β be the positive root of β2 = kβ +1, k ≥ 2. Then dIS(lβ ,−β) =
(k, (k − 1)). Hence {xn} is (−β)IS-admissible if and only if its tail is not equal to
k(k − 1) and it satisfies the following rules.

(i) Whenever k appears, it should be followed by k or (k − 1).

(ii) When we have k . . . k

j︷ ︸︸ ︷
(k − 1) . . . (k − 1)x, then

x =

{
0, 1, . . . , (k − 2) (j : odd)
k (j : even).

The shift space S−β,IS is defined similarly to S−β,S .

Theorem 26. {xn}∞n=1 ∈ S−β,IS if and only if

for any n ∈ Z, dIS(lβ ,−β) .IS (xn, xn+1, . . . ) .IS d∗IS(rβ ,−β).

Theorem 27. S−β,IS is a Sofic shift if and only if dIS(lβ ,−β) is eventually peri-
odic.

The invariant measure of T−β,IS has a power series representation like the β-
expansion does [14].

Theorem 28. The invariant measure is given by dν−β,IS = h−β,IS dx where

h−β,IS(x) =
∞∑

n=0

1
(−β)n

1{x>(T−β,IS)n(lβ)}.
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Example C. Let β be the positive root of β2 = kβ + 1. Then

h−β,IS(x) =

{
1 (lβ < x < − k−1

β+1)
β

β+1 (− k−1
β+1 < x < rβ).

Remark 29. As is done for the (−β)S-expansion, it is possible to determine the
sequence dIS(x,−β) by interval division, whose construction is not simple however
(this fact would imply that generically we may not have a simple formula to relate
d(x,β), dIS(x,−β) and dS(x,−β)). For instance, we let β = τ . We first divide Iβ

into the two intervals with ratio 1 : τ :

I =
[
−1

τ
,− 1

τ3

)
∪

[
− 1

τ3
,
1
τ

)
=: I1 ∪ I2.

We label them as L,R. We define inductively the division and labeling of intervals:
(i) If we divide an interval labelled R, we divide it in the same way as in the

(−β)S-expansion. That is, we divide into two intervals with ratio 1 : τ and label
the longer one (resp. shorter one) R (resp. L).

(ii) If we divide an interval labelled L, we divide it into two intervals with ratio
1 : τ , but label the longer one (resp. shorter one ) L (resp. R). And we do not
divide the shorter interval in the next step.
If x lies in an interval labelled R (resp. L), then we set xn = 0 (resp., xn = 1).

L R

...

R L R L

......
...

R L R L R L R

The interval division corresponding to (−τ)IS-expansion
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