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Abstract
Recently, Gu, Lai and Liang proved necessary and sufficient conditions for a given
sequence of positive integers d1, d2, . . . , dn to be the degree sequence of a line–
Hamiltonian multigraph. Our goal in this note is to utilize this result to prove
a closed formula for the function dlh(2m), the number of degree sequences with
degree sum 2m representable by line–Hamiltonian multigraphs. Indeed, we give a
truly elementary proof that

dlh(2m) = p(2m)− 2




m−1∑

j=0

p(j)



 + 1

where p(j) is the number of unrestricted integer partitions of j.

1. Introduction and Statement of Results

In this note, all graphs G = (V,E) under consideration will be finite, undirected,
and loopless but may contain multiple edges. We denote the degree sequence of the
vertices v1, v2, . . . , vm by d1, d2, . . . , dm with the convention that d1 ≥ d2 ≥ · · · ≥
dm. We say that a sequence d1, d2, . . . , dm with d1 ≥ d2 ≥ · · · ≥ dm is multigraphic
if there exists a multigraph G with this degree sequence. (This multigraph G is
called a realization of this degree sequence.) Lastly, we say that a degree sequence
is line–Hamiltonian if it has a multigraphic realization G such that L(G), the line
graph of G, is Hamiltonian.
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In 2008, Fan, Lai, Shao, Zhang, and Zhou [1] characterized those degree sequences
for which there exists a simple line–Hamiltonian graph realization. More recently,
Gu, Lai and Liang [2] provided a characterization of those degree sequences for which
there exists a multigraphic line–Hamiltonian realization. Their characterization (in
this multigraphic setting) is the following:

Theorem 1. Let d1 ≥ d2 ≥ · · · ≥ dn ≥ 1 be integers with n ≥ 2. There exists a
multigraphic line–Hamiltonian realization of d1, d2, . . . , dn if and only if

1) d1 + d2 + · · · + dn is even, and
2) d1 ≤ d2 + d3 + · · · + dn, and

3a)
∑

di=1

di ≤
∑

dj>1

(dj − 2) or 3b) d1 = n− 1.

In this brief note, our goal is to enumerate all degree sequences of sum 2m for which
there exists a multigraphic line–Hamiltonian realization. We will denote the number
of degree sequences of sum 2m with a multigraphic line–Hamiltonian realization by
dlh(2m). Then our ultimate goal is to prove the following:

Theorem 2. For all m ≥ 2,

dlh(2m) = p(2m)− 2




m−1∑

j=0

p(j)



 + 1

where p(k) is the number of unrestricted integer partitions of k.

It should be noted that similar enumeration results were discovered recently by
Rødseth, Sellers, and Tverberg [3] when they proved that the number of degree
sequences with multigraphic connected (respectively, non–separable) realizations
equal similar linear combinations of the partition function p(k). In [3], the proofs
utilized included generating function manipulations and bijections. In this paper,
the proof techniques are even more elementary and involve simply understanding the
combinatorial nature of the integer partitions in question. Even so, these techniques
should not be discounted for their simplicity.

2. Proof of the Theorem

We begin our proof of Theorem 2 by considering the enumeration of those degree
sequences satisfying the criteria 1, 2, and 3a of Theorem 1 above. To this end,
assume d1 + d2 + · · · + dn = 2m for some fixed value of m, so that the graphs
in question have exactly m edges. Then we see that criterion 2 is equivalent to
2d1 ≤ d1+d2+d3+· · ·+dn or 2d1 ≤ 2m or d1 ≤ m. From a partition–theoretic point
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of view, this means that the largest part in our partition is at most m. Note also
that criterion 3a is equivalent then to saying that n ≤ m because of the following:

∑

di=1

di ≤
∑

dj>1

(dj − 2) if and only if
∑

di=1

di ≤
∑

dj>1

dj − 2
∑

dj>1

1

if and only if 2
∑

di=1

di ≤
∑

all dj

dj − 2
∑

dj>1

1

if and only if 2
∑

di=1

1 ≤
∑

all dj

dj − 2
∑

dj>1

1

if and only if 2
∑

all di

1 ≤
∑

all dj

dj

if and only if 2n ≤ 2m
if and only if n ≤ m.

This gives us an upper bound on the number of parts in each partition in question.
Taking all of this information into account, we see that the number of partitions
satisfying criteria 1, 2, and 3a is given by the coefficient of q2m in the q–binomial

coefficient
[
2m
m

]

q

which equals

(1− qm+1)(1− qm+2)(1− qm+3) . . . (1− q2m)
(1− q)(1− q2)(1− q3) . . . (1− qm)

.

This generating function is equivalent to

(1− qm+1)(1− qm+2)(1− qm+3) . . . (1− q2m)
∞∑

N=0

p(N ;≤ m)qN

where p(N ;≤ m) is the number of partitions of N where the largest part is at
most m. A closer consideration reveals that the coefficient of q2m in this generating
function is given by

p(2m;≤ m)−p(2m−(m+1);≤ m)−p(2m−(m+2);≤ m)− · · ·−p(2m−2m;≤ m)

or
p(2m;≤ m)− p(m− 1;≤ m)− p(m− 2;≤ m)− · · ·− p(0;≤ m)

upon simplification. Next, note that whenever a ≤ m, p(a;≤ m) = p(a), where p(a)
is simply the number of (unrestricted) partitions of a. Thus, we now know that the
coefficient of q2m in the generating function in question is actually equal to

p(2m;≤ m)− p(m− 1)− p(m− 2)− · · ·− p(0).
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Lastly, note that

p(2m;≤ m) = p(2m)− p(2m;m + 1)− p(2m;m + 2)− · · ·− p(2m; 2m)

where p(a; b) equals the number of partitions of a with largest part exactly equal
to b. But, of course, p(a; b) = p(a − b;≤ b) by simply removing this largest part b
from every partition counted by p(a; b). Therefore,

p(2m;≤ m) = p(2m)− p(m− 1;≤ m + 1)− p(m− 2;≤ m + 2)− · · ·− p(0;≤ 2m)
= p(2m)− p(m− 1)− p(m− 2)− · · ·− p(0).

Combining all the results above, we know that the number of partitions satisfying
criteria 1, 2, and 3a equals

p(2m)− 2
m−1∑

j=0

p(j). (1)

Notice that (1) gives almost all of the formula for dlh(2m) as given in Theorem
2. As an aside, it should be noted that the values generated by (1), namely
1, 3, 8, 18, 39, . . . , appear as the elements of sequence A128552 in Sloane’s Online
Encyclopedia of Integer Sequences [4].

To close the proof, we must now consider those partitions of 2m which satisfy
criteria 1, 2, 3b and the negation of 3a of Theorem 1 above. Combining criteria 2
and 3b we know that n−1 ≤ m. We also know from the negation of criterion 3a, and
the work completed above, that n > m. Clearly, this implies m = n−1. This means
d1 = m since criterion 3b states that d1 = n − 1. So we know that the partitions
in question must have largest part equal to m. But we also know that n = m + 1,
meaning that the number of parts in our partition must be exactly m + 1. Lastly,
from criterion 1, we know that the sum of all the parts in the partition must be 2m.
Combining all these facts implies that there can be only one partition satisfying
these requirements, the partition

2m = m + 1 + 1 + · · · + 1︸ ︷︷ ︸
m ones

.

(Notice that the graph realization of this degree sequence is a star graph. The line
graph of such a graph is complete, and this is clearly Hamiltonian.) This means that
the contribution to the formula for dlh(2m) which arises from this set of criteria is
simply 1 (accounting for this one partition above). Combining this with (1) yields

dlh(2m) = p(2m)− 2




m−1∑

j=0

p(j)



 + 1.

This completes the proof of Theorem 2. !
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3. Closing Thoughts

Two sets of closing thoughts come to mind. First, it would be intriguing to know
of other degree sequence characterization results which might provide such enu-
merative corollaries. Secondly, it would be truly satisfying to obtain a similar
enumeration result for simple graphs. Unfortunately, this would mean altering the
second criterion in the statement of Theorem 1 to a statement which is much more
complicated. This makes the enumeration problem much more difficult.
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