
#A28 INTEGERS 12 (2012)

THE 2-ADIC, BINARY AND DECIMAL PERIODS OF 1/3k

APPROACH FULL COMPLEXITY FOR INCREASING k

Josefina López
Villa Abecia, Sud Cinti, Chuquisaca, Bolivia

josefinapedro@hotmail.com

Peter Stoll
Villa Abecia, Sud Cinti, Chuquisaca, Bolivia

josefinapedro@hotmail.com

Received: 2/28/11, Revised: 12/10/11, Accepted: 3/23/12, Published: 4/18/12

Abstract
An infinite word x over an alphabet with b letters has full complexity if for each
m ∈ N all the bm words of length m are factors of x. We prove that the periods of
±1/3k in the 2-adic expansion approach full complexity for increasing k: For any
m ∈ N, the periods for k > "(m + 1)ln(2)/ln(3)# have complexity 2m. Amazingly,
these 2m words occur in the period almost the same number of times. On the way,
first we prove the same for the binary period. We get a similar result for the decimal
period of 1/3k.

1. Introduction

Let Z2 denote the ring of 2-adic integers. Each x ∈ Z2 can be expressed uniquely
as an infinite string x0x1x2 · · · of 1’s and 0’s. The xk are the digits of x, written
from left to right. For instance, −1 = 1111 · · · and 1 = 1000 · · · , since −1 + 1 = 0.
The 2-adic norm | · |2 in Z2 is given by |x|2 := 2−n if x %= 0, where xn is the first
nonzero digit of x, and |x|2 := 0 if x = 0. Let 0 ≤ d0 < d1 < d2 < · · · be a finite
or infinite sequence of nonnegative integers defined by di := k whenever xk = 1 for
a 2-adic integer x = x0x1 · · ·xk · · · . Then x can be written as the finite or infinite
sum x = 2d0 + 2d1 + 2d2 + · · · .

The 3x + 1 map T is defined on the 2-adic integers Z2 by T (x) = x/2 for even
x and T (x) = (3x + 1)/2 for odd x. Let T k(x) denote the k-th iterate of T and
T 0(x) := x. The sequence

(T k(x) mod 2)∞k=0

is called the parity vector of x ∈ Z2 (Lagarias [3]). The parity vector can be regarded
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as the 2-adic integer

vx =
∞∑

k=0

(T k(x) mod 2) · 2k.

Conversely, each x ∈ Z2 is uniquely determined by its parity vector vx. Indeed,
there is an explicit formula (Bernstein [1]):

x = Φ(vx), where Φ(2d0 + 2d1 + 2d2 + · · · ) := −
∑

i≥0

1
3i+1

2di . (1)

The periodicity conjecture of the famous 3x + 1 problem states that the parity
vector vx is eventually periodic for all x ∈ Z2 (Bernstein, Lagarias [2]). This
conjecture is still open. If the parity vector of some x ∈ Z2 is eventually periodic,
then x = Φ(vx) is also eventually periodic. This follows from (1) by computing
the corresponding geometric series using the 2-adic norm. For instance, −1/3 =
101010 · · · since 20+22+· · · = 1/(1−4). If the periodicity conjecture is true, Φ maps
each aperiodic vx onto an aperiodic 2-adic integer x ∈ Z2. In a former paper ([5]),
we calculated Φ(vx) over a Sturmian word (the digits of vx are Sturmian). These
aperiodic words are very similar to the periodic words by their “almost-periodicity”.
We accumulated evidence that Φ(vx) is an infinite word of full complexity. That
was reason enough for searching more in this direction.

George Pólya, in his famous book “How to solve it”, suggested that “When you
can’t solve a problem” —and we cannot prove the periodicity conjecture— “then
there is an easier problem you can solve: find it”. That is what we did. We prove
that the terms −2di/3i+1 added in (1) approach full complexity for increasing i.
The complexity function of a word x counts for each nonnegative integer m ≥ 0
the number P (x,m) of different factors of length m in x.1 The number P (x, 1)
counts the different letters appearing in x. In our case, the alphabet is {0, 1}, so
P (x, 1) = 2. If x is purely periodic with a period of length m, we have P (x,m) = m.
If x is Sturmian, we have P (x,m) = m+1 for every m ≥ 0 (Lothaire [6]). An infinite
word x over {0, 1} has full complexity if for every nonnegative integer m all the 2m

words of length m are factors of x. We prove that for every m ∈ N the period p of
−1/3i+1 has complexity P (x,m) = 2m for all (i + 1) > "(m + 1)ln(2)/ln(3)#. The
di’s in (1) introduce di leading 0’s for each −1/3i+1. In this sense, our best result
is Corollary 4 which gives the necessary and sufficient condition for complexity 2m.

Luckily, there is a helpful relation between the 2-adic and the binary expansion
for reduced fractions with odd denominator of the unit interval. This relation is
given by Lemma 19 in Section 4: The 2-adic period of −1/3i+1 is the reversal of
the binary period of +1/3i+1. Therefore, the main part of this paper is in Section
3 where we study the binary expansion of 1/3k. The transcription from binary to
2-adic periods is in Section 4, and our main result appears there as Corollary 4 of

1Lothaire [6] A word f is called a factor of a word x if there exist words u, v such that x = ufv.
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Theorem 1. Most things we deal with in Section 3 are well known facts of elementary
arithmetic, and the recursive method used there can be generalized to other bases
and also to other fractions 1/p in base 10 for primes p different from 2 and 5. As
such an application should be seen Section 5 where we study the decimal expansion
of 1/3k. The main tool for establishing conditions for complexity is Proposition 23
in Section 6.

2. Results

Theorem 1. Let k ∈ N and m ∈ N \ {1}. The set Xm(k) of words with length m
in the binary expansion of 1/3k has 2m elements if and only if k ≥ k0, where

k0 =
⌈
(m + 1)

ln(2)
ln(3)

⌉
.

All these 2m words can be found in the enlarged period pk := pk(0)m−1, which is
the period pk of 1/3k concatenated with the first m− 1 zeros of pk.

The words n ∈ Xm(k), k ≥ k0, occur in pk with almost the same frequency f(n):2

|f(n)− f(n′)| ≤ 2 for all n, n′ ∈ Xm(k).

Theorem 2. Let k, k0 and m be as in Theorem 1. If k > k0, then the binary period
pk of 1/3k has complexity 2m.

Theorem 3. The binary period of 1/3k

pk = x1x2 · · ·xi · · ·x!k (!k = 2 · 3k−1)

has the following properties:

1. The digits are given by xi = (2i mod 3k) mod 2 or equivalently, the digit xi is
1 if and only if the remainder 2i mod 3k is odd.

2. The number n0 of 1’s at an even position exceeds the number n1 of 1’s at an
odd position by 1: n0 − n1 = 1.

3. The word pk has the same number of 1’s and 0’s.

4. The right half of pk is complementary to the left half of pk: xi+!k/2 + xi = 1
(0 ≤ i ≤ !k/2).

5. In the left half of pk, the number of 1’s at an even position is equal to the
number of 1’s at an odd position.

2The frequency f(n) is the number of times a given word n occurs as factor of the enlarged
period.
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6. There are exactly (k · ln(3)/ln(2)) leading 0’s in pk.

Corollary 4. Let k ∈ N and m ∈ N \ {1}. The set Xm(k) of words with length m
in the 2-adic expansion of −1/3k has 2m elements if and only if k ≥ k0, where

k0 =
⌈
(m + 1)

ln(2)
ln(3)

⌉
.

All these 2m words can be found in p̃k := (0)m−1p̃k, which is the period p̃k of −1/3k

extended to the left by m− 1 zeros.
The words n ∈ Xm(k), k ≥ k0, occur in p̃k with almost the same frequency f(n):

|f(n)− f(n′)| ≤ 2 for all n, n′ ∈ Xm(k).

Corollary 5. Let k, k0 and m be as in Corollary 4. If k > k0, then the 2-adic
period p̃k of −1/3k has complexity 2m.

Corollary 6. Let k, k0 and m be as in Corollary 4. Let p+
k be the period of the

(not purely periodic) 2-adic expansion 1/3k = 1p+
k p+

k · · · . If k > k0, then the 2-adic
period p+

k has complexity 2m.

Theorem 7. Let k ∈ N and m ∈ N. The set Xm(k) of words with length m in the
decimal expansion of 1/3k has 10m elements if and only if k ≥ k0, where

k0 =
⌈
m

ln(10)
ln(3)

⌉
+ 2.

All these 10m blocks of m digits can be found in the enlarged period uk := uk(0)m−1,
which is the period uk of 1/3k concatenated with the first m− 1 zeros of uk.3

The words n ∈ Xm(k), k ≥ k0, occur in uk with almost the same frequency f(n):

|f(n)− f(n′)| ≤ 1 for all n, n′ ∈ Xm(k).

Corollary 8. Let k, k0 and m be as in Theorem 7. If k > k0, then the decimal
period uk of 1/3k has complexity 10m.

3. The Binary Expansion

In this section, we use the standard notation for numbers in base 2 with the most
significant digit at the left. For instance, 1101 = 23 + 22 + 20 = 13 and 0.1101 =
2−1 + 2−2 + 2−4 = 13/16.

The binary expansion of 1/3k is a purely periodic fraction. The period is a word

pk = x1x2 · · ·xi · · ·x!k (!k = 2 · 3k−1)
3If m = 1, then (0)m−1 := ε (the empty word).
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of digits 0 and 1 with length !k = 2 · 3k−1:

1
3k

=
∞∑

i=1

xi

2i
=

2!k

2!k − 1

!k∑

i=1

xi ·
1
2i

. (2)

For example,
p1 = 01;
p2 = 000111;
p3 = 000010010111101101;
p4 = 000000110010100100010110000111111001101011011101001111.

We get the period pk+1 dividing 1/3k by 3, executing a long division by the
binary integer 11. As !k+1 = 3!k, we write the word pk three times, building the
word pkp′kp′′k as dividend, to obtain the full period pk+1. The long division in short
form looks like this:

y1 · · · yi · · · y!k y′1 · · · y′i · · · y′!k
y′′1 · · · y′′i · · · y′′!k

11
)
x1 · · ·xi · · ·x!kx′1 · · ·x′i · · ·x′!k

x′′1 · · ·x′′i · · ·x′′!k

r1 · · · ri · · · r!k r′1 · · · r′i · · · r′!k
r′′1 · · · r′′i · · · r′′!k

The divisor 11 and the dividend pkpkpk are in the second line. The quotient is in
the first line, where the “0.” has been omitted. At each step, after bringing down
the next xi, we have a remainder ri. These remainders are in the third line. We
define r0 := 0 at the start of the division. Note that xi = x′i = x′′i for each i ∈ Lk,
where Lk := {1, 2, . . . , !k}.

There are only three possible remainders less than 11: {0, 1, 10}. Therefore,
{ri, r′i, r

′′
i } ⊆ {0, 1, 10}. Obviously r′′!k

= 0. Since !k+1 = 3!k, r!k %= 0 and r′!k
%= 0.

It is a simple, but important fact that the remainders ri, r′i and r′′i are a permutation
of (0, 1, 10).

Lemma 9. Let Lk := {1, 2, . . . , !k} and i ∈ Lk. The sequence (ri, r′i, r
′′
i ) is a

permutation of (0, 1, 10).

Proof. (a) The Lemma holds for i = !k.
When bringing down the first digit x′1 of p′k, we take care of the previous remainder
r!k %= 0. If r!k = 1, the division continues by dividing the binary integer 1x′1 =
1 ·21 +x′1 ·20 by 11. If r!k = 10, then we continue with 10x′1 = 1 ·22 +0 ·21 +x′1 ·20.
The division can be done by bringing down a single digit x′1 but also by bringing
down two or more digits in one step. When we bring down all the digits of p′k in
one step, the division by 11 continues with the binary integers

1x′1x
′
2 · · ·x′!k

= 1 · 2!k + x1x2 · · ·x!k for r!k = 1, or
10x′1x

′
2 · · ·x′!k

= 1 · 2!k+1 + 0 · 2!k + x1x2 · · ·x!k for r!k = 10,
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since pk = p′k. The new remainder is r′!k
in both cases. As !k is even, we have

2!k ≡ 1 (mod 3), so that r′!k
≡ 1 + r!k (mod 3) for r!k = 1, and r′!k

≡ 2 + r!k

(mod 3) for r!k = 10. Hence (r!k , r′!k
, r′′!k

) is either (1, 10, 0) or (10, 1, 0).
(b) The Lemma holds for i < !k.
We have x1x2 · · ·x′i = x1 · · ·x!kx′1 · · ·x′i. The remainder of the left side is r′i. The
remainder of the right side is equal to the remainder of r!kx1 · · ·xi, where r!k is
either 1 or 10. Dividing the binary integer r!kx1 · · ·xi by 3, we get the remainder
r!k · 2i + ri modulo 3. Hence r′i ≡ r!k · 2i + ri (mod 3). In the same way, x1 · · ·x′′i =
x1 · · ·x′!k

x′′1 · · ·x′′i yields r′′i ≡ r′!k
· 2i + ri (mod 3). There are 12 possibilities:

r!k r′!k
ri r′i r′′i

i even 1 10 0 1 10
1 10 1 10 0
1 10 10 0 1
10 1 0 10 1
10 1 1 0 10
10 1 10 1 0

i odd 1 10 0 10 1
1 10 1 0 10
1 10 10 1 0
10 1 0 1 10
10 1 1 10 0
10 1 10 0 1

In all cases, (ri, r′i, r
′′
i ) is a permutation of (0, 1, 10). !

A word x of length m entirely contained in pk has two exact copies (x′ and x′′) in
the dividend pkp′kp′′k : x′ is factor of p′k, and x′′ is factor of p′′k . The input remainders
ri−1, r′i−1 and r′′i−1, and also the output remainders ri+m−1, r′i+m−1 and r′′i+m−1,
are all different by Lemma 9, so that the corresponding words y, y′ and y′′ in the
quotient are all different too.

It is convenient to use base 10 numbers. Each word x of length m receives a list
number n from 0 to 2m − 1 which is its value when read as a base 2 integer. For
instance, if m = 3, the list number 6 is the word x = 110. When translating a list
number back into a word, we take care of eventually leading 0’s. For instance, if
m = 4, the list number 5 is the word x = 0101. Dividing n by 3, we get the quotient
q which is the list number of the word y. The possible remainders are 0,1 and 2.

We identify the words x or y with their respective list numbers n or q for a given
m ∈ N \ {1}. We denote the set of list numbers by

Mbinary := {0, 1, . . . , 2m − 1}. (3)

Table 1 shows the division by 3 for any m ∈ N \ {1}. The construction of Table
1 is quite easy. Write the list numbers from 0 to 2m − 1 in the first column. Write
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each of them three times consecutively in column 2 starting with (0,0,0). When
column 2 is filled up, continue with the remaining numbers in column 4 and finally
in column 6. Write the remainders (0,1,2) in this order, filling up columns 3, 5 and
7.

ri−1 = 0 ri−1 = 1 ri−1 = 2

n q ri+m−1 q ri+m−1 q ri+m−1

0 0 0 (2m

3 ) m mod 2 + 1 (2·2m

3 ) (m + 1) mod 2 + 1

1 0 1 (1+2m

3 ) (1+2·2m

3 )
2 0 2

3 1 0

4 1 1

5 1 2

6 2 0

...
...

...
...

...
...

...
n (n

3 ) n mod 3 (n+2m

3 ) (n + 2m) mod 3 (n+2·2m

3 ) (n + 2 · 2m) mod 3

...
...

...
...

...
...

...
2m − 1 (2m−1

3 ) m mod 2 (2·2m−1
3 ) (m + 1) mod 2 (3·2m−1

3 ) 2

Table 1: Mbinary, quotients and remainders.

Definition 10. Let m ∈ N \ {1}. The set of triads for m is defined by

Sbinary :=
{(⌊n

3

⌋
,
⌊n + 2m

3

⌋
,
⌊n + 2 · 2m

3

⌋)∣∣∣∣n ∈ Mbinary

}
.

We exclude m = 1, because q ∈ {0, 1} would generate two times the same number
in the triad. For m > 1, the numbers of the triad are all different.

Definition 11. Let m ∈ N \ {1}. Let p = pkpk · · · = x1x2 · · · be the infinite
word of the binary expansion of 1/3k. The enlarged period of 1/3k is the word
pk = pkx1x2 · · ·xm−1. We denote by Xm(k) the set of (different) words of length
m appearing in p. In the context it will be clear if its elements are words or list
numbers identifying them.

Lemma 12. For each x ∈ Xm(k), the word x is factor of pk.

Proof. Let x = xi · · ·xi+m−1 ∈ Xm(k). Take j := i mod !k. If j %= 0, then
xj · · ·xj+m−1 is factor of pk. If j = 0, then i is the last digit in some pk, and the
word x!kx1x2 · · ·xm−1 is factor of pk. !
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Let pk be the enlarged period of 1/3k for some m. We determine the enlarged
period pk+1 by executing the long division “11)pkpkpk = pk+1”. We start with an
example. In Example 13, we divide the enlarged period p2 of 1/9 by 3 to get the
enlarged period p3 of 1/27. We do this for m equal to 2, 3 and 4. In the three cases,
the dividend below the division line is p2p2p2, and the quotient above the division
line is p3. The smaller numbers are list numbers which can be read in dividend and
quotient by grouping the digits in blocks of 2, 3 or 4 digits, corresponding to m.

Example 13. Consider

00 0 1 2 0 1 2 1 3 3 3 2 1 3 2 1 2

000 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0
000 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0

00 1 3 3 2 0 0 1 3 3 2 0 0 1 3 3 2

0 0 1 2 4 1 2 5 3 7 7 6 5 3 6 5 2 4

000 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 0
000 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0

0 1 3 7 6 4 0 1 3 7 6 4 0 1 3 7 6 4

0 1 2 4 9 2 5 11 7 15 14 13 11 6 13 10 4 8

000 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 0
000 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

1 3 7 14 12 8 1 3 7 14 12 8 1 3 7 14 12 8

.

For instance, if m = 3, we can read the following words in the dividend from
left to right: 000, 001, 011, 111, 110, 100, 000, . . . , 110, 100. The corresponding
list numbers are 0, 1, 3, 7, 6, 4, 0, . . . , 6, 4. In the quotient, we can read the
list numbers 0, 0, 1, 2, 4, 1, 2, 5, . . . , 2, 4. For m = 3, the 7 in the dividend
generates 2, 7 and 5 in the quotient. Indeed, the list number 7 generates the triad
(2,5,7) in Table 1. Note that these numbers appear permuted. In Example 13,
we have X2(3) = {0, 1, 2, 3} = X2(2). Further, X3(3) = {0, 1, 2, 3, 4, 5, 6, 7} and
X3(2) = {0, 1, 3, 4, 6, 7}. Finally, X4(3) = {0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15}
and X4(2) = {1, 3, 7, 8, 12, 14}. If m > 6, the words in the dividend (and also in
the quotient) will be overlapping because the length of p2 is 6. The example shows
that Xm(k) determines Xm(k + 1) by means of table 1.

Proposition 14. We have

Xm(1) =
{⌊2m

3

⌋
,
⌊2 · 2m

3

⌋}
, where m ∈ N \ {1}.

Proof. We have p1 = 01. Let p := p1p1 · · · = x1x2 · · · . Thus p1 = p1x1x2 · · ·xm−1.



INTEGERS: 12 (2012) 9

There are only two words of length m: n(1) := 01 · · · and n(2) := 10 · · · , both of
length m.

Word n(1). If m is odd, then the last digit of n(1) is 0. Hence n(1) = 21 + 23 +
25 + · · ·+2m−2. We get n(1) = (2m−2)/3. So n(1) = (2m/3) since 2m ≡ 2 (mod 3).
If m is even, then the last digit of n(1) is 1. Hence n(1) = 20 + 22 + 24 + · · ·+ 2m−2.
We get n(1) = (2m − 1)/3 = (2m/3) since 2m ≡ 1 (mod 3).

Word n(2). For odd m, n(2) = 20 + 22 + · · ·+ 2m−1 = (2m+1 − 1)/3 = (2m+1/3).
For even m, n(2) = 21 + 23 + · · · + 2m−1 = (2m+1 − 2)/3 = (2m+1/3). !

Proposition 15. We have

Xm(k + 1) =
⋃

n∈Xm(k)

{⌊n

3

⌋
,
⌊n + 2m

3

⌋
,
⌊n + 2 · 2m

3

⌋}
, where k ∈ N, m ∈ N \ {1}.

Proof. We execute the long division “11)pkpkpk = pk+1”. The words are identified
by their list numbers in Mbinary. We use the notation n(i) and q(i) for words of
length m having their first binary digit at position i.

The set of all words of length m in pkpkpk is given by Xm(k) = {n(i)| i ∈ Lk}.
We have n(i) = n(i+!k) = n(i+2!k). Their input remainders ri−1, ri+!k−1 and
ri+2!k−1 , and also their output remainders ri+m−1, ri+!k+m−1 and ri+2!k+m−1, are
all different by Lemma 9. It follows that the corresponding quotients q(i), q(i+!k)

and q(i+2!k) are all different too.
Conversely, if s(j) is a factor of length m in pk+1 for some j ∈ {1, 2, . . . , 3!k},

then s(j) ∈ {s(j mod !k), s(j mod !k+!k), s(j mod !k+2!k)}. These factors are generated
by n(j mod !k) = n(j mod !k+!k) = n(j mod !k+2!k). All these n’s are equal to n(j). So,

Xm(k + 1) =
⋃

i∈Lk

{q(i), q(i+!k), q(i+2!k)}.

The q’s are a permutation of ((n(i)/3), ((n(i) +2m)/3), ((n(i) +2 ·2m)/3)) (Table
1). !

Proposition 16. Let k ∈ N and m ∈ N \ {1}.

Xm(k) =
{⌊

t · 2m

3k

⌋ ∣∣∣ t %≡ 0 (mod 3) and 0 < t < 3k
}
.

Proof. Proposition 14 and Proposition 15 define a tree of triads. Note that the
two numbers of Xm(1) are elements of the triad generated by 0 in Sbinary. Any
n ∈ Mbinary generates the following tree of triads (we show only the levels k = 1
and k = 2):

(⌊ n

3

⌋
,

⌊ n + 2m

3

⌋
,

⌊ n + 2 · 2m

3

⌋)

↙
︷ ︸︸ ︷
⌊ n

9

⌋
,

⌊ n + 3 · 2m

9

⌋
,

⌊ n + 6 · 2m

9

⌋

↓
︷ ︸︸ ︷
⌊ n + 1 · 2m

9

⌋
,

⌊ n + 4 · 2m

9

⌋
,

⌊ n + 7 · 2m

9

⌋

↘
︷ ︸︸ ︷
⌊ n + 2 · 2m

9

⌋
,

⌊ n + 5 · 2m

9

⌋
,

⌊ n + 8 · 2m

9

⌋
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The 3k numbers written at level k have the form ((n + t · 2m)/3k), where t ∈
{0, 1, 2, · · · , 3k − 1}; eventually not all of them are different. The left branch of the
tree corresponds to t ≡ 0 (mod 3), the central branch to t ≡ 1 (mod 3) and the
right branch to t ≡ 2 (mod 3). We substitute n = 0 and cut off the left branch.
All the remaining numbers at level k are elements of Xm(k) by Proposition 14 and
Proposition 15. !

Note that card(Xm(k)) ≤ 2
3 · 3k.

Lemma 17. There is a unique t0 ≡ 2 (mod 3) such that
⌈
t0 · 2m

3k

⌉
− t0 · 2m

3k
∈

{ 1
3k

,
2
3k

}
.

Proof. The congruence t · 2m + 1 ≡ 0 (mod 3k) has the unique solution t′ ≡
−1/2m (mod 3k), and t · 2m +2 ≡ 0 (mod 3k) has the unique solution t′′ ≡ −2/2m

(mod 3k). Hence t′2m/3k + 1/3k = "t′2m/3k# and t′′2m/3k + 2/3k = "t′′2m/3k#,
where t′ and t′′ are taken as positive integers less than 3k. Both are positive integers
relatively prime to 3k. Either t′ ≡ 1 (mod 3) and t′′ ≡ 2 (mod 3), or t′ ≡ 2 (mod 3)
and t′′ ≡ 1 (mod 3). The claimed t0 is either t′′ or t′. !

Proposition 18. Let k ∈ N and m ∈ N \ {1}.

Xm(k) = Mbinary if and only if 0 <
2m

3k
<

1
2
.

Proof. Let t0 ≡ 2 (mod 3) be as in Lemma 17. Then t0 + 1 ≡ 0 (mod 3), and
t0 + 1 is left out in Xm(k) by Proposition 16. By Proposition 23, paragraph 1,
{(t2m/3k) | t ∈ {0, 1, · · · , 3k − 1}} = Mbinary if and only if 0 < 2m/3k < 1. As
shown in the following figure, we can avoid that the integer s := ((t0 + 1)2m/3k)
is left out in Xm(k) by the condition 2 · 2m/3k < 1 + c/3k for the corresponding
c ∈ {1, 2} of Lemma 17, having now s = ((t0 + 2)2m/3k).

t0 s t0 + 1 t0 + 2

• −−︸︷︷︸
c/3k

| −−−−−− ◦ −−−−−−−−− •−−︸ ︷︷ ︸
1

|

By Lemma 22, there is no other t ≡ 2 (mod 3) such that t2m/3k is closer to
"(t2m/3k# than for t0. It follows that the condition 2m+1 < 3k + c is necessary
and sufficient to guarantee Xm(k) = Mbinary.

Recall that m ≥ 2 and k ≥ 1. Obviously, 2m+1 = 3k is impossible. We show that
2m+1 = 3k +1 is impossible too. Note that in this case m+1 is even since 2m+1 ≡ 1
(mod 3). We get (2(m+1)/2 − 1)(2(m+1)/2 + 1) = 3k. Only one of the consecutive
integers (2(m+1)/2 − 1), 2(m+1)/2 and (2(m+1)/2 + 1) is divisible by 3, so either
2(m+1)/2− 1 = 1 and 2(m+1)/2 + 1 = 3k, or 2(m+1)/2− 1 = 3k and 2(m+1)/2 + 1 = 1.
We get the excluded value m = 1 (and k = 1).

Hence 2m+1 < 3k. !
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Proof of Theorem 1. By Proposition 18, Xm(k) = Mbinary if and only if 0 <
2m/3k < 1/2. Thus k > (m + 1) · ln(2)/ln(3). Hence k0 = "(m + 1) · ln(2)/ln(3)#.

The same condition yields m < k · ln(3)/ln(2)− 1, so m ≤ (k · ln(3)/ln(2)) − 1.
The number z of leading zeros in (2) is given by z = max{i | 1/2i > 1/3k}, so
z = (k · ln(3)/ln(2)). Thus m− 1 < z and pk = pk(0)m−1. All the 2m words can be
found in pk by Lemma 12.

It remains to prove the last part of Theorem 1. We have k ≥ k0, so Xm(k) =
Mbinary. There is a q ∈ N such that 3k = q · 2m + r, where 0 < r < 2m. Then
q = (3k/2m). By Proposition 23, paragraph 3, there are r different numbers in
Mbinary each of them occurring exactly q + 1 times in S0 = ((t2m/3k))3

k−1
t=0 ; each

of the remaining 2m − r numbers of Mbinary occurs exactly q times in S0. Clearly,

0 ≤ |f(n)− f(n′)| ≤ 1 for all n, n′ ∈ Mbinary.

By Propositions 16 and 18, when leaving out each third term of S0, we get a
sequence S∗0 which also contains all the elements of Xm(k).

In any sequence with s elements, by leaving out each third term, we eliminate
(s/3) or "s/3# elements as suggested in the following scheme (the crosses signify
“eliminated”):

s: 1 2 3 4 5 6 7 8 9 10 11
x x x x

x x x x
x x x

Each number n ∈ Mbinary repeats in S0 either q or q + 1 times. In S∗0 , we have
eliminated (q/3) or "q/3# elements for some n ∈ Mbinary occurring q times, and
((q + 1)/3) or "(q + 1)/3# elements for another n′ ∈ Mbinary occurring q + 1 times.
We get

f(n) ∈
{
q −

⌊q

3

⌋
, q − 1−

⌊q

3

⌋}
, and

f(n′) ∈
{
q + 1−

⌊q + 1
3

⌋
, q −

⌊q + 1
3

⌋}
.

It is an easy check that in the four possible cases holds |f(n)− f(n′)| ≤ 2. !

Proof of Theorem 2. Let pk0pk0pk0
= pk0pk0(pk0t) be the dividend and pk0+1t the

quotient, where t is the tail of m − 1 zeros. We have Xm(k0) = Mbinary. By
Proposition 15, Xm(k0 + 1) =

⋃
n∈Xm(k0)

{(n
3 ), (

n+2m

3 ), (n+2·2m

3 )}.
Every n ∈ Mbinary generates a triad. Conversely, the number a (respectively, b

or c) of a triad (a, b, c) is generated by three consecutive list numbers as suggested
in Table 2.

We define T := {n ∈ Mbinary | the last binary digit of n is in t}, and T ′ := {q ∈
Mbinary | the last binary digit of q is in t} for the corresponding quotient. Every
q ∈ T ′ is generated by three consecutive list numbers. Since at least one of three
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n-2 a c b
n-1 a b a c b c
n a b c or a b c or a b c
n+1 b c a b a c
n+2 c b a

Table 2: Three consecutive list numbers (m odd).

consecutive list numbers —say z— must have its last binary digit equal to 1, the
number q is generated by z %∈ T so that we do not need T ′ anymore. !

Proof of Theorem 3. 1. Let 2i = qi · 3k + ri, where 0 < ri < 3k and i ∈ N. Hence
qi ≡ ri (mod 2). Note that ri = 2i mod 3k. We prove by induction the following
statement:

ri ≡ xi (mod 2) and qi = x1x2 · · ·xi (written as a binary integer).

The statement holds for i = 1. Recall that k ≥ 1. We have 2 = q1 ·3k +r1, where
0 < r1 < 3k. So r1 = 2. Further x1 = 0 since 1/3k < 1/2. Hence r1 ≡ x1 (mod 2),
and q1 = x1 since q1 = 0.

Assume the statement holds for some i. Let 2i+1 = qi+1 · 3k + ri+1, where
0 < ri+1 < 3k. So 2i+1 = 2qi · 3k + 2ri.

If 2ri < 3k then ri+1 = 2ri, so ri+1 ≡ 0 (mod 2). Further qi+1 = 2qi = x1 · · ·xi0,
where xi+1 = 0. If 2ri > 3k then ri+1 = 2ri − 3k, so ri+1 ≡ 1 (mod 2). Further
qi+1 = 2qi + 1 = x1 · · ·xi1, where xi+1 = 1.

In both cases, ri+1 ≡ xi+1 (mod 2) and qi+1 = x1 · · ·xi+1.

2. Write the remainders 2i mod 3k as a sequence R of increasing natural numbers:

R := (1, 2, 4, 5, 7, 8, . . . 1 + 3s, 2 + 3s, . . . 3k − 2, 3k − 1)
1’s: 1 1 1 ♠ ♣ 1

s even↖ ↗ s odd
1

In the second line are written the 1’s corresponding to the odd remainders by
property 1. If r = 1+3s is odd, then i is odd too since 2i ≡ 1+3s (mod 3k) implies
2i ≡ 1 (mod 3). If r = 2 + 3s is odd, then i is even since 2i ≡ 2 + 3s (mod 3k)
implies 2i ≡ 2 (mod 3). Therefore, the odd remainders (1, 5, 7, . . . , 3k − 2) have
the alternating positions (even, odd, even, odd,. . . ,even). The last remainder in
this sequence corresponds to an even position i, since there are !k/2 = 3k−1 odd
remainders and (3k−1/2) pairs (even, odd). Hence n0 − n1 = 1.

3. There are !k/2 = 3k−1 odd remainders, each of them producing a 1. The
remaining 3k−1 remainders produce a 0.

4. We have 2!k ≡ 1 (mod 3k). So 2!k/2 ≡ −1 (mod 3k) since !k is even. Thus
2!k/2+1 ≡ 1 (mod 3k). Hence,
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21 ≡ −1 (mod 3k) and 2!k/2+1 ≡ 1 (mod 3k);
22 ≡ 1 (mod 3k) and 2!k/2+2 ≡ −1 (mod 3k);

.

.

.
.
.
.

2!k/2 ≡ −1 (mod 3k) and 2!k ≡ 1 (mod 3k).

Then 2i + 2!k/2+i ≡ 0 (mod 3k) for all i ∈ (1, 2, . . . , !k/2). It follows ri + r!k/2+i =
3k. As 3k is odd, one of the two remainders is odd and the other one is even. By
property 1, xi + x!k/2+i = 1.

5. The word w := (0)!k/2(1)!k/2 has the properties 2, 3 and 4 of Theorem 3.
We start with w and try to construct pk moving digits from one side to the other
without violating the properties 2, 3 and 4. The positions i in the left half and
the corresponding positions !k/2 + i in the right half of w have different parity. We
cannot exchange some 1 with any 0 because the property 4 remains valid if and only
if 1 and 0 are placed at corresponding positions !k/2+ i and i. When we exchange a
1 with the corresponding 0 at the left side, either n0 or n1 is decreasing 1 —initially,
we had n0 − n1 = 1— so either n0 − 1− (n1 + 1) = −1 or n0 + 1− (n1 − 1) = 3 by
property 3.

Therefore, we have to exchange the digits by pairs, so that the number of 1’s in
the left half must be even. When we move a pair of 1’s, both having an even position,
n0 − n1 will be altered: n0 increases 2, and n1 decreases 2, so n0 − n1 = 5. If both
have initially an odd position, n0 decreases 2, and n1 increases 2, so n0 − n1 = −3.
When we move two 1’s to the left side, their starting positions must have different
parity so that n0 − n1 = 1 is preserved.

6. By property 1, max{i | 2i < 3k} = (k · ln(3)/ln(2)). !

4. The 2-Adic Expansion

Lemma 19. Let pk = x1x2 · · ·x!k be the period of the binary expansion of 1/3k

(k ∈ N). The 2-adic expansion of −1/3k is purely periodic too, and its period p̃k is
the reversal of pk: p̃k = x!k · · ·x2x1.

Proof. The ring Z2 of 2-adic integers has no zero divisors, so there is the field of
fractions Q2 of 2-adic numbers. Every non-integer 2-adic number can be written as∑∞

i=−s xi · 2i, where s > 0 is some natural number. The binary expansion (2) can
be written as

− 1
3k

=
−1

2!k − 1
· 2!k

!k∑

i=1

xi
1
2i

.

We evaluate this expression term by term in the field Q2 of 2-adic numbers.
We get the 2-adic integer

−1
2!k − 1

∣∣∣∣
2−adic

= 1 00 · · · 0︸ ︷︷ ︸
!k−1 zeros

1 00 · · · 0︸ ︷︷ ︸ · · · ,
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since −1 = 111 · · · , 2!
k − 1 = 11 · · · 1︸ ︷︷ ︸

!k ones

and

11 · · · 1︸ ︷︷ ︸
!k ones

× 1 00 · · · 0︸ ︷︷ ︸
!k−1 zeros

1 00 · · · 0︸ ︷︷ ︸ · · · = 111 · · ·︸ ︷︷ ︸
−1

.

Further, we get the 2-adic non-integer
!k∑

i=1

xi
1
2i

∣∣∣∣
2−adic

=
∞∑

i=−!k

xi2i =
−1∑

i=−!k

xi2i + 0,

where x−i := xi for −!k ≤ i ≤ −1, and xi = 0 for i ≥ 0. Note that the word
x−!k · · ·x−2x−1 is the reversal of pk.

We multiply the last sum by 2!k to get the 2-adic integer p̃k00 · · · , where p̃k =
x!k · · ·x2x1. Finally,

1 00 · · · 0︸ ︷︷ ︸
!k−1 zeros

1 00 · · · 0︸ ︷︷ ︸ · · · × p̃k00 · · · = p̃kp̃k · · · .
!

Proof of Corollary 4. By Lemma 19, the word (0)m−1p̃k is the reversal of the
enlarged period pk(0)m−1. If one of the two words has complexity 2m, then also the
other one so that the necessary and sufficient condition of Theorem 1 holds here too.
The frequency of non-palindromic words will possibly change but the difference of
frequencies will not. !

Proof of Corollary 5. Apply Lemma 19. !

Proof of Corollary 6. We define the rotate left operator ρ by ρ(x1x2x3 · · ·x!k) :=
x2x3 · · ·x!kx1. Then

− 1
3k

∣∣∣
2−adic

= p̃kp̃k · · · = 1ρ(p̃k)ρ(p̃k) · · · .

We need the additive inverse +1/3k
∣∣
2−adic

. Such a “change of sign” can be done
in Z2 by exchanging 1’s and 0’s with exception of the first 1. For instance, −1/3 =
101010 · · · and 1/3 = 1101010 · · · . So

1
3k

∣∣∣
2−adic

= 1p+
k p+

k · · · ,

where p+
k denotes ρ(p̃k) with its 1‘s and 0’s exchanged: p+

k + ρ(p̃k) = 11 · · · 1︸ ︷︷ ︸
!k ones

.

The rotate left operator ρ preserves the set of words of length m by moving the
first word of p̃k to the end of ρ(p̃k); it also preserves the complementarity of left and
right halves. Hence, if p̃k has complexity 2m, then ρ(p̃k) has complexity 2m too.
Since all 2m words of length m are factors of ρ(p̃k), p+

k contains the same words.
We can even say where they can be found: we get p+

k = ρ!k/2(p̃k) by iterating ρ on
p̃k exactly !k/2 times. !
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5. The Decimal Expansion

The decimal expansion of 1/3k is purely periodic. Let !k denote the length of the
period uk. Then !1 = 1 and !k = 3k−2 for k ≥ 2, so !k is now odd. The words
are over the alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Furthermore, 10i ≡ 1 (mod 3) for
all positive integers i. Since the long division in base 10 is essentially the same
algorithm as in base 2, we have the following Lemma similar to Lemma 9.

Lemma 20. Let k ∈ N \ {1} and i ∈ {1, 2, . . . , 3k−2}. The sequence (ri, r′i, r
′′
i ) is a

permutation of (0, 1, 2).

Since 10i ≡ 1 (mod 3), the proof is simpler and leads to only six possibilities
(corresponding to the six permutations of (0, 1, 2)), equivalent to the case “i even”
in base 2.

We define for m ∈ N:

Mdecimal := {0, 1, . . . , 10m − 1}; (4)

Sdecimal :=
{(⌊n

3

⌋
,
⌊n + 10m

3

⌋
,
⌊n + 2 · 10m

3

⌋)∣∣∣∣n ∈ Mdecimal

}
. (5)

There is no special case m = 1 in base 10. The numbers of any triad of Sdecimal

are all different, even in the case m = 1.
Definition 11 is still valid if we substitute “m ∈ N \ {1}” by “m ∈ N”, “pk” by

“uk” and“binary” by “decimal”. If m = 1, then (0)m−1 is defined as the empty
word. Lemma 12 holds when we substitute pk by uk.

For any m ∈ N, the list number 0 ∈ Mdecimal generates a tree. When we choose
m = 2, the tree looks like this:

(0,33,66)
↙ ↓ ↘

(0,33,66) (11,44,77) (22,55,88)
↙ ↓ ↘ ↙ ↓ ↘ ↙ ↓ ↘

(0,33,66) (11,44,77) (22,55,88) (3,37,70) (14,48,81) (25,59,92) (7,40,74) (18,51,85) (29,62,96)
↙ ↓ ↘

(1,34,67) (12,45,79) (23,56,90)

The length of the period uk is regular for k ≥ 2 (i. e., !k+1 = 3!k). For p prime,
the length of the period of 1/pk is usually (p − 1)pk−1. There are three known
exceptions, and p = 3 is one of them.4 We have 1/9 = 0.111 · · · and u2 = 1. At
level k = 2, only the word 11 really appears in 1/9. Therefore, it is convenient to
use the subtree generated by 11 because 11 generates the first triad (3, 37, 70). We
have 1/27 = 0.037037 · · · , so u3 = 0370 for m = 2. In u3, there are the three words
03, 37 and 70 corresponding to the triad (3, 37, 70) at level k = 3.

Further, 1/81 = 0.012345679012345679 · · · . Then u4 = 0123456790 for m = 2.
There are nine words in u4 corresponding to the triads (1, 34, 67), (12, 45, 79) and
(23, 56, 90) at level k = 4.

4Wikipedia, electronic: http://en.wikipedia.org/wiki/Repeating decimal.
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Proof of Theorem 7. For any m ∈ N, define 1m :=
∑m−1

j=0 10j . Instead of Proposition
14 and Proposition 15, we have now

Xm(3) =
{⌊1m

3

⌋
,
⌊1m + 10m

3

⌋ ⌊1m + 2 · 10m

3

⌋}
, and (6)

Xm(k + 1) =
⋃

n∈Xm(k)

{⌊n

3

⌋
,
⌊n + 10m

3

⌋
,
⌊n + 2 · 10m

3

⌋}
(k ≥ 3). (7)

It follows that the list numbers of Xm(k) (k ≥ 3) have the form

Xm(k) =
{⌊1m + t · 10m

3k−2

⌋ ∣∣∣ t ∈ {0, 1, 2, · · · , 3k−2 − 1}
}
.

We apply Proposition 23, paragraphs 1 and 2: Xm(k) = Mdecimal if and only if 0 <
10m/3k−2 < 1. This condition yields k0 = "m · ln(10)/ln(3)#+2. Additionally, m ≤
((k− 2)ln(3)/ln(10)). The number of leading zeros in 1/3k is z = (k · ln(3)/ln(10)),
so that m− 1 < z. Finally, |f(n)− f(n′)| ≤ 1 follows directly from Proposition 23,
paragraph 3. !

The proof of Corollary 8 is almost identical to that of Theorem 2. Instead
of “Since at least one of three consecutive list numbers —say z— must have its
last binary digit equal to 1” in the last part of the proof of Theorem 2, we have
now “Since at least two of three consecutive list numbers —say z— must have
its last digit different from 0”. Obviously, instead of Mbinary, Proposition 14 and
Proposition 15, we have now Mdecimal, expression (6) and expression (7).

6. A Helpful Sequence

Lemma 21. Let a/b ∈ Q be a positive fraction in lowest terms: a ∈ N, b ∈ N\{1},
and gcd(a, b) = 1. Let ((t · a

b ))
b−1
t=0 be a finite sequence of non-negative integers,

where t ∈ B := {0, 1, . . . , b− 1}. Then the following hold:

If 0 < a
b < 1, then ((t + 1)a

b ) − (t
a
b ) ≤ 1 for all t, t + 1 ∈ B;

If 1 < a
b , then there is some t ∈ B such that ((t + 1)a

b ) − (t
a
b ) ≥ 2.

Proof. Note that b ≥ 2.
1. Let 0 < a/b < 1. By the inequality (x + y) ≤ (x)+ (y)+ 1 for x, y ∈ R, we have
(ta

b + a
b ) ≤ (ta

b )+ 1 for all t, t + 1 ∈ B.

2. Let 2 < a/b. Then t0 = 0 is the claimed t because (a/b) − 0 ≥ 2.

3. Let 1 < a/b < 2. Then 1
b ≤

a−b
b < 1 since a− b ≥ 1. We write a

b = 1 + a−b
b . So

⌊
t
a

b

⌋
= t +

⌊
t
a− b

b

⌋
. (8)
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There is a unique t0 ∈ B such that

t0(a− b)
b

+
1
b

= s

is an integer because ta + 1 ≡ 0 (mod b) has the solution t0 ≡ − 1
a (mod b). We

prove that t0 ∈ B is the claimed t.
We have

⌊ t0(a− b)
b

+
1
b

⌋
=

t0(a− b)
b

+
1
b

= s; hence
⌊ t0(a− b)

b

⌋
= s− 1.

Furthermore,

⌊ t0(a− b)
b

+
a− b

b

⌋
=

⌊ t0(a− b)
b

+
1
b

+
a− b− 1

b

⌋
= s +

⌊a− b− 1
b

⌋
= s.

We apply relation (8):

⌊
(t0 + 1)

a

b

⌋
= t0 + 1 +

⌊
t0

a− b

b
+

a− b

b

⌋
= t0 + 1 + s,

⌊
t0

a

b

⌋
= t0 +

⌊
t0

a− b

b

⌋
= t0 + s− 1.

Finally, ⌊
(t0 + 1)

a

b

⌋
−

⌊
t0

a

b

⌋
= 2.

!

Lemma 22. Let a/b ∈ Q be a positive fraction in lowest terms: a ∈ N, b ∈ N\{1},
and gcd(a, b) = 1. Let A := {0, 1, 2, . . . , a− 1}, B := {0, 1, 2, . . . , b− 1} and n ∈ A.
Then

Dfloor :=
{ ta + n

b
−

⌊ ta + n

b

⌋ ∣∣∣ t ∈ B
}

=
{0

b
,
1
b
,
2
b

. . . ,
b− 1

b

}
.

Proof. As a is relatively prime to b, the positive integer a generates the additive
cyclic group of order b in the finite ring Z/bZ. So {(ta) mod b | t ∈ B} = B. For
a fix n ∈ A, ((ta + n) mod b)b−1

t=0 permutes the elements of B. Then also {(ta +
n) mod b | t ∈ B} = B. Finally,

Dfloor =
{ (ta + n) mod b

b

∣∣∣ t ∈ B
}

=
{0

b
,
1
b
,
2
b

. . . ,
b− 1

b

}
.

!

Proposition 23. Let a/b ∈ Q be a positive fraction in lowest terms: a ∈ N,
b ∈ N \ {1}, and gcd(a, b) = 1. Let A := {0, 1, 2, . . . , a− 1}, B := {0, 1, 2, . . . , b− 1}
and n ∈ A. Then the following hold:

1.
{⌊

t · a

b

⌋ ∣∣∣ t ∈ B
}

= A ⇐⇒ 0 <
a

b
< 1.
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2.
{⌊ ta + n

b

⌋ ∣∣∣ t ∈ B
}

= A ⇐⇒
{⌊

t · a

b

⌋ ∣∣∣ t ∈ B
}

= A.

3. Let 0 < a
b < 1 and r := b mod a. In the sequence

Sn :=
(⌊ ta + n

b

⌋)b−1

t=0
,

each element of A occurs either "b/a# or (b/a) times. There are exactly r ele-
ments of A occurring "b/a# times in Sn; each of the remaining a− r elements
occurs (b/a) times.

Proof. 1. By Lemma 21.

2. We define
S′n :=

( ta + n

b

)b−1

t=0
.

By Lemma 22, the sequence S′n contains exactly one integer. We calculate the
corresponding t solving ta + n ≡ 0 (mod b). So t ≡ − 1

an (mod b). This linear
function yields a unique t ∈ B for each n ∈ A and different t’s for different n’s. We
denote this special t by tn.

By Lemma 22, the sequence S′n contains exactly one term (ta + n)/b such that
(ta + n)/b + 1/b is integer. We calculate the corresponding t solving ta + n + 1 ≡ 0
(mod b). So t ≡ − 1

an− 1
a (mod b). We denote this special t ∈ B by t′n. Note that

t′n ≡ tn − 1
a (mod b).

We get S′n+1 (n %= a − 1) by adding 1/b to all terms of S′n so that an integer is
generated in S′n+1 at the position t′n of S′n and nowhere else by Lemma 22. Hence
tn+1 = t′n (n %= a − 1). It follows that the sequences Sn and Sn+1 have the same
terms, excepted at the position tn+1 = t′n:

⌊ tn+1a + n + 1
b

⌋
=

tn+1a + n + 1
b

=
t′na + n

b
+

1
b

=
⌊ t′na + n

b

⌋
+ 1.

Let {(ta/b) | t ∈ B} = A. Note that t0 = 0 and t′0 %= t0. Further, t′n %= 0 for all
n ∈ A \ {0} because − 1

an − 1
a ≡ 0 (mod b) yields n = b − 1, but b − 1 %∈ A. The

sequence S0 has two or more leading zeros. When going up from n to n + 1, no
integer gets lost. Indeed, let

u′n :=
(t′n − 1)a + n

b
and v′n :=

t′na + n

b

be two consecutive terms in S′n. Then v′n + 1/b := s + 1 is an integer —the only
one— in S′n+1. The integer (v′n) = s does not get lost in Sn+1 since (u′n) = s:

⌊ (t′n − 1)a + n

b

⌋
=

⌊ t′na + n

b
+

1
b
− 1 + a

b

⌋
=

⌊
s + 1− 1 + a

b

⌋
= s.

Conversely, if {((ta+n)/b) | t ∈ B} = A for some n ∈ A, then there is at least one
integer s ∈ Sn occurring twice (or more times): (u′n) = (v′n) = s at the positions
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t′n − 1 and t′n. Since tn = t′n−1, we can go down from n to n − 1 without loosing
any of the integers of Sn. If n = a − 1, then ta−1 ≡ −1 + 1/a (mod b). It follows
t′a−1 ≡ −1 (mod b), so the integers at the positions b − 2 and b − 1 in Sa−1 are
always equal.

3. There is a q ∈ N such that b = qa + r and 0 < r < a. Clearly q = (b/a). For
an interval I = [i, i + 1), i ∈ A, we have

1 = q · a

b
+

r

b
and 0 < r < a.

Let Dfloor be as in Lemma 22. Then {0/b, 1/b, 2/b, . . . , (r − 1)/b} ⊂ Dfloor. Note
that the interval I is closed at the left and open at the right. For every r′ ∈
{0/b, 1/b, 2/b, . . . , (r − 1)/b}, the corresponding interval I —corresponding to a t
such that r′ = (ta + n)/b− ((ta + n)/b)— contains (b/a) times the closed interval
of length a/b and for any other r′′ ∈ Dfloor only ((b/a) − 1) times. Note that q
intervals have q + 1 endpoints. Consequently, there are r different integers in A
each of them occurring exactly ((b/a)+ 1) times in Sn; each of the remaining a− r
integers occurs exactly (b/a) times. !
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