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Abstract
A More Sums Than Differences (MSTD) set is a set of integers A ⊂ {0, . . . , n− 1}
whose sumset A+A is larger than its difference set A−A. While it is known that as
n→∞ a positive percentage of subsets of {0, . . . , n−1} are MSTD sets, the methods
to prove this are probabilistic and do not yield nice, explicit constructions. Recently
Miller, Orosz and Scheinerman gave explicit constructions of a large family of MSTD
sets; though their density is less than a positive percentage, their family’s density
among subsets of {0, . . . , n−1} is at least C/n4 for some C > 0, significantly larger
than the previous constructions, which were on the order of 1/2n/2. We generalize
their method and explicitly construct a large family of sets A with |A+A+A+A| >
|(A + A)− (A + A)|. The additional sums and differences allow us greater freedom
than those by Miller, Orosz and Scheinerman, and we find that for any ε > 0 the
density of such sets is at least C/nε. In the course of constructing such sets we find
that for any integer k there is an A such that |A+A+A+A|− |A+A−A−A| = k,
and show that the minimum span of such a set is 30.

1We thank the participants of various CANT Conferences (especially Peter Hegarty, Mel
Nathanson and Kevin O’Bryant) and the Number Theory and Probability Group of SMALL
2011 REU at Williams College for many enlightening conversations. The first and second named
authors were partially supported by NSF grant DMS0970067; all three authors were partially sup-
ported by Williams College.
MSC 2010: 11P99 (primary), 11K99 (secondary). Keywords: sum-dominant sets, MSTD sets.
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1. Introduction

Many problems in number theory reduce to understanding the behavior of sums
and differences of a set with itself, where for a set A the sumset is

A + A = {x + y : x, y ∈ A} (1)

and the difference set is

A−A = {x− y : x, y ∈ A}; (2)

if A is finite we denote the number of elements of A by |A|. Examples include
the Goldbach problem (if P is the set of all primes, then P + P contains all the
even numbers), Waring’s problem, the Twin Prime Conjecture (there are infinitely
many representations of 2 in P−P), and Fermat’s Last Theorem. In studying these
additive problems, it is natural to compare |A + A| and |A − A|. If the sumset is
larger, we say A is sum-dominant, or a More Sums Than Differences (MSTD) set.
While such sets were known to exist (see [2, 7, 10, 11, 12, 13, 14, 15]) it was thought
that they were rare. Specifically, it was believed that as n → ∞ the percentage
of subsets of {0, . . . , n − 1} that were sum-dominant tends to zero. Martin and
O’Bryant [8] recently disproved this, showing that a positive percentage of sets
are sum-dominant. They showed the percentage is at least 2 · 10−7, which was
improved by Zhao [18] to at least 4.28 · 10−4 (Monte Carlo simulations suggest that
approximately 4.5 · 10−4 percent are sum-dominant). See [5] for a survey of the
field, where these and other results (such as those in [3, 4], which deal with varying
the probability measure on {0, . . . , n− 1}) are given.

It is natural to ask whether or not there is an explicit construction of large families
of MSTD sets. Unfortunately, the proofs in [8, 18] are probabilistic, and do not lend
themselves to a clean enumeration of such sets. Miller, Orosz and Scheinerman [9]
gave an explicit construction of MSTD sets (shortly thereafter, Zhao [17] gave a
new method as well). Previously the largest explicit families had, in the limit,
at least f(n)/2n/2 of the 2n subsets of {0, . . . , n − 1} being sum-dominant (with
f a nice polynomial). The construction in [9] gives an explicit family of size at
least C4/n4, which was improved to C1/n in [17]. The purpose of this paper is to
extend the method in [9] to generalized MSTD sets. While our families will not be
a positive percentage, we see in Theorem 1 that we can preserve the simplicity of
the construction but improve the result to missing by an arbitrarily small power.

Before explaining Miller, Orosz and Scheinerman’s construction, we first set some
notation.

• We let [a, b] denote all integers from a to b; thus [a, b] = {n ∈ Z : a ≤ n ≤ b}.
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• By kA we mean A added to itself k − 1 times:

kA = A + · · · + A︸ ︷︷ ︸
k times

. (3)

• We say a set of integers A has the property Pn (or is a Pn-set) if both its sumset
and its difference set contain all but the first and last n possible elements (and
of course it may or may not contain some of these fringe elements).2 Explicitly,
let a = minA and b = maxA. Then A is a Pn-set if

[2a + n, 2b− n] ⊂ A + A (4)

and

[−(b− a) + n, (b− a)− n] ⊂ A−A. (5)

Essentially, their method is as follows (see [9] for the full details). Let A be
an MSTD set, and write A as L ∪ R, where L is the left fringe and R the right
fringe; for convenience, we assume |L| = |R| = n = |A|/2 and 1, 2n ∈ A. Let
Ok = [1, k] = {1, . . . , k}, and for any M of length m set

A(M) = L ∪ (n + Ok) ∪ (n + k + M) ∪ (n + k + m + Ok) ∪ (n + 2k + m + R),
(6)

where a + S is the translate of S by a. If A is a Pn, MSTD set, then A(M)
is an MSTD set, so long as M contains one out of every k consecutive elements.
The reason this is true is due to the fact that we have two intervals containing k
consecutive elements, and these guarantee that all possible sums are realized as M
never misses k consecutive elements. This controls the middle of A(M) + A(M);
the fringes are controlled by L and the translate of R. One way to ensure M never
misses k consecutive elements is to divide M into m/(k/2) consecutive blocks of
size k/2 (assume k

2 |m), and note that each block may be any non-empty subset of
a translate of [1, k/2]. The number of valid choices for all the blocks is

(
2k/2 − 1

)m/(k/2)
= 2m

(
1− 1

2k/2

)m/(k/2)

; (7)

the factor hitting 2m measures how much we lose from our condition. There is also
a loss from having two translates of Ok; we could have had 22k possible sets here,
but instead have a fixed choice. Letting r = 2n + 2k + m and optimizing m and

2It is not hard to show that for fixed 0 < α ≤ 1 a random set drawn from [1, n] in the uniform
model is a P!αn"-set with probability approaching 1 as n→∞.



INTEGERS: 12 (2012) 4

k, Miller, Orosz and Scheinerman show their family has density at least C/r4 for
some C > 0.

An essential ingredient in [9] is the existence of one Pn, MSTD set A. While it is
not hard to find such a set by brute force enumeration, this becomes tricker for the
generalized problems we now consider. Instead of looking at |A+A| versus |A−A|,
one could study |A+A+A| and |A+A−A| or |A+A+A+A| and |A+A−A−A|.
While the methods of [9] generalize to these (and additional) cases, the increased
number of additions and subtractions provide opportunities that were not present
in A + A and A−A, and significantly larger families can be explicitly constructed
once an initial set is found. For definiteness in this paper we mostly study sets with
|A + A + A + A| > |A + A − A − A|, and we give an example where this holds.
For general comparisons, Iyer, Lazarev, Miller and Zhang recently proved existence
and positive percentage (see [5, 6] for the construction). Our main result is the
following.

Theorem 1. For all ε > 0, there is a constant Cε > 0 such that as r goes to
infinity, the percentage of subsets A of [1, r] with |2A + 2A| > |2A− 2A| is at least
Cε/rε.

Remark 2. It is worth noting that Theorem 1 gives us a higher percentage family
of generalized MSTD sets (with |2A + 2A| > |2A − 2A|) than MSTD sets. Our
methods generalize to |4A + 4A| > |4A− 4A| (among other comparisons).

In the course of proving Theorem 1, our tools immediately yield

Theorem 3. Given x ∈ Z there exists an Sx with |2Sx + 2Sx|− |2Sx − 2Sx| = x.

In other words, we can construct these generalized MSTD sets such that we have
arbitrarily more sums than differences.

In §2 we go through (in full detail) the calculation needed to generalize [9], and
obtain a lower bound for the probability of C/r4/3. We improve this to C′/rε for
any ε > 0 in §3, and then end in §4 by showing we can find sets such that the
size of the generalized sumset is any desired number greater than (or less than) the
generalized difference set. Not surprisingly, as the bounds for the density of these
generalized MSTD sets improve, our constructions become more complicated; this
is why we provide full details and a description of the method for the weaker results.

2. Constructing Many A with |2A + 2A| > |2A − 2A|, I

In this section we generalize the construction in [9]; we greatly improve the percent-
age in the next section. Here we prove

Theorem 4. There is a constant C > 0 such that as r goes to infinity, the percent-
age of subsets of [1, r] with |2A + 2A| > |2A− 2A| is at least C/r4/3.



INTEGERS: 12 (2012) 5

We first describe our search for one set with the desired properties (as our ap-
proach may be of use in finding sets needed for other problems), then discuss some
lemmas needed to generalize Miller, Orosz and Scheinerman’s construction.

We started by searching for a single set with |A+A+A+A| > |A+A−A−A|;
from now on we use the notation 4A to denote A + A + A + A and 2A − 2A to
denote A + A − A − A. We generated random subsets of [1, 40], including each
number with probability 1/4, and checked if the generated sets had our desired
property. We quickly found A = {6, 7, 9, 10, 13, 32, 35, 36, 38, 39, 40}, which has
|A + A + A + A| = 136 and |A + A−A−A| = 135.

In order to construct an infinite family from one set A using the techniques of
[9], A must satisfy two properties:

• The set A must be a subset of [1, 2n] containing 1 and 2n.

• The set A must be a P 4
n set; meaning that 4A and 2A− 2A contain at least

all but the first and last n possible elements.

While we can subtract 5 from each element in our set, to have it start at 1 without
affecting the number of sums and differences, it then ranges from 1 to 35 and 35
is not even. Though we could restructure their construction to avoid needing the
first condition, our set does not meet the second condition either. We then looked
for further ways to modify our set, hoping to find a set that had |4A| > |2A− 2A|
and meet their second condition. By taking our set and adding it to {0, 49} (that
is repeating each element shifted by 49)3, we found our desired set. With n = 42,

A = {1, 2, 4, 5, 8, 27, 30, 31, 33, 34, 35, 50, 51, 53, 54, 57, 76, 79, 80, 82, 83, 84} ⊂ [1, 2n],
(8)

1, 2n ∈ A, and

4A = [4, 336]\{27} ⊃ [n+4, 7n], 2A−2A = [−166, 166]\{141,−141} ⊃ [−3n+1, 3n].
(9)

This set thus meets all of the required properties to use a modified version of Miller
et. al’s construction of an infinite family of sets with |4A| > |2A − 2A|. To do so,
we first need to prove two lemmas, similar to their Lemma 2.1 and Lemma 2.2.

Lemma 5. Let A = L ∪R be a P 4
n set where L ⊂ [1, n] and R ⊂ [n + 1, 2n]. Form

A′ = L ∪M ∪ R′ where M ⊂ [n + 1, n + m] and R′ = R + m. If A′ is a P 4
n set

then |4A′|− |4A| = |2A′− 2A′|− |2A− 2A| = 4m and thus if |4A| > |2A− 2A| then
|4A′| > |2A′ − 2A′|.

3While it is expected that A + {0, a}, a > 4(34) = 136 would still have |4A| > |2A − 2A|
(since the two repetitions of A would never interact) it is surprising that A + {0, a} still has
|4A| > |2A− 2A| for many smaller values of a. Investigating this might lead to some insight into
the structure of sets with |4A| > |2A− 2A|.



INTEGERS: 12 (2012) 6

The utility of this lemma is that if A were also a generalized MSTD set (with
|4A| > |2A− 2A|), then A′ would be a generalized MSTD set as well.

Proof. We first consider the number of added sums. Just as in [9], in the interval
[4, n+3], 4A and 4A′ are identical as all elements come from L+L+L+L. Also, we
can pair the elements of 4A in the interval [7n+1, 8n] with the elements of 4A′ in the
interval [7n+1+4m, 8n+4m]. Since both A and A′ are P 4

n sets, we know they each
contain all possible elements more than n from their boundaries. Having accounted
for the sums within n of the boundaries, |4A′|−|4A| = (7n+4m+1)−(7n+1) = 4m.

Now consider the differences in the same way. Again, the elements within n of
the boundaries of 2A−2A and 2A′−2A′ can be paired and both contain all elements
that are not within n of the boundaries (since they are P 4

n sets). The filled middle
interval in 2A−2A is [−3n+2, 3n−2] and in 2A′−2A′ is [−3n−2m+2, 3n+2m−2].
Thus |2A′ − 2A′|− |2A− 2A| = 4m as desired.

Lemma 6. Let A = L ∪ R be a P 4
n set where L ⊂ [1, n] and R ⊂ [n + 1, 2n]

and {1, 2n} ∈ A. Form A′ = L ∪ O1 ∪ M ∪ O2 ∪ R with O1 = [n + 1, n + k],
M ⊂ [n+ k +1, n+ k +m], O2 = [n+ k +m+1, n+2k +m] and R′ = R +2k +m.
If k ≥ n and M has no run of 3k − 2 missing elements then A′ is a P 4

n set.

Proof. We need to show that 4A′ ⊃ [n + 4, 7n + 8k + 4m] and 2A′ − 2A′ ⊃ [−3n−
4k − 2m + 2, 3n + 4k + 2m− 2] (because 4A′ ⊂ [4, 8n + 8k + 4m] and 2A′ − 2A′ ⊂
[−4n− 4k − 2m + 2, 4n + 4k + 2m− 2]).

First consider 4A′. Since 1 ∈ L,

L + L + L + O1 ⊃ [4 + n, 3 + n + k]
L + L + O1 + O1 ⊃ [4 + 2n, 2 + 2n + 2k]

L + O1 + O1 + O1 ⊃ [4 + 3n, 1 + 3n + 3k]. (10)

Further, since 2n ∈ R,

O2 + O2 + O2 + R′ ⊃ [5n + 5k + 4m + 3, 5n + 8k + 4m]
O2 + O2 + R′ + R′ ⊃ [6n + 6k + 4m + 2, 6n + 8k + 4m]
O2 + R′ + R′ + R′ ⊃ [7n + 7k + 4m + 1, 7n + 8k + 4m]. (11)

We now consider the sums of the Oi’s. We have

O1 + O1 + O1 + O1 ⊃ [4 + 4n, 4n + 4k]
O1 + O1 + O1 + O2 ⊃ [4 + 4n + k + m, 4n + 5k + m]
O1 + O1 + O2 + O2 ⊃ [4 + 4n + 2k + 2m, 4n + 6k + 2m]
O1 + O2 + O2 + O2 ⊃ [4 + 4n + 3k + 3m, 4n + 7k + 3m]
O2 + O2 + O2 + O2 ⊃ [4 + 4n + 4k + 4m, 4n + 8k + 4m]. (12)
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Finally, we study the sums involving M . We find

O1 + O1 + O1 + M = (O1 + O1 + O1) + M

= [3n + 3, 3n + 3k] + M ⊃ [4n + 3k + 1, 4n + k + m + 3].

This is because the smallest element in M must be at most n + 3k − 2 and the
largest element in M is at least m + n− 2k + 3 (setting the bounds) and, because
M has no runs of 3k− 2 missing elements and 3O1 has 3k− 2 consecutive elements
(closing the gaps). Similarly,

O1 + O1 + O2 + M ⊃ [4n + 4k + m + 1, 4n + 2k + 2m + 3]
O1 + O2 + O2 + M ⊃ [4n + 5k + 2m + 1, 4n + 3k + 3m + 3]
O2 + O2 + O2 + M ⊃ [4n + 6k + 3m + 1, 4n + 4k + 4m + 3]. (13)

Assembling these sums in the following order, and noting that the sums are
contiguous, we get our desired result.

L + L + L + O1 ⊃ [4 + n, 3 + n + k]
L + L + O1 + O1 ⊃ [4 + 2n, 2 + 2n + 2k]

L + O1 + O1 + O1 ⊃ [4 + 3n, 1 + 3n + 3k]
O1 + O1 + O1 + O1 ⊃ [4 + 4n, 4n + 4k]
O1 + O1 + O1 + M ⊃ [4n + 3k + 1, 4n + k + m + 3]
O1 + O1 + O1 + O2 ⊃ [4 + 4n + k + m, 4n + 5k + m]
O1 + O1 + O2 + M ⊃ [4n + 4k + m + 1, 4n + 2k + 2m + 3]
O1 + O1 + O2 + O2 ⊃ [4 + 4n + 2k + 2m, 4n + 6k + 2m]
O1 + O2 + O2 + M ⊃ [4n + 5k + 2m + 1, 4n + 3k + 3m + 3]
O1 + O2 + O2 + O2 ⊃ [4 + 4n + 3k + 3m, 4n + 7k + 3m]
O2 + O2 + O2 + M ⊃ [4n + 6k + 3m + 1, 4n + 4k + 4m + 3]
O2 + O2 + O2 + O2 ⊃ [4 + 4n + 4k + 4m, 4n + 8k + 4m]
O2 + O2 + O2 + R′ ⊃ [5n + 5k + 4m + 3, 5n + 8k + 4m]
O2 + O2 + R′ + R′ ⊃ [6n + 6k + 4m + 2, 6n + 8k + 4m]
O2 + R′ + R′ + R′ ⊃ [7n + 7k + 4m + 1, 7n + 8k + 4m]. (14)

Therefore 4A′ ⊃ [4 + n, 7n + 8k + 4m].
Now consider 2A′ − 2A′. Assembling the following sums (using the same logic
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concerning M):

L + L−R′ −O2 ⊃ [2− 3n− 4k − 2m, 1− 3n− 3k −m]
L + L−O2 −O2 ⊃ [2− 2n− 4k − 2m,−2n− 2k − 2m]

L + O1 −O2 −O2 ⊃ [2− n− 4k − 2m,−1−m− k − 2m]
O1 + O1 −O2 −O2 ⊃ [2− 4k − 2m,−2− 2m]
M + O1 −O2 −O2 ⊃ [−1− k − 2m, 1− 3k −m]
O1 + O2 −O2 −O2 ⊃ [2− 3k −m,k −m− 2]
M + O2 −O2 −O2 ⊃ [−1−m, 1− 2k]
O2 + O2 −O2 −O2 ⊃ [2− 2k,−2 + 2k]. (15)

Since these regions are all contiguous, 2A′ − 2A′ ⊃ [2− 3n− 4k − 2m, 0]. Since
2A′−2A′ must be symmetric about 0, 2A′−2A′ ⊃ [2−3n−4k−2m,−2+3n+4k+2m]
as desired. Therefore A′ is a P 4

n-set.

Using these lemmas, we can now prove Theorem 4.

Proof of Theorem 4. Just as in the proof in [9], we need to count the number of
sets M of the form O1 ∪M ∪ O2 of width r = 2k + m which may be inserted into
a P 4

n-set A with |4A| > |2A − 2A|. We are counting the exact same sets as in
[9], except for them there M could not contain any run of k consecutive elements
whereas ours cannot contain any run of 3k−2 missing elements. They could ensure
their condition was satisfied by requiring each block of k/2 must contain at least
one element; the analogous condition for us is that each block of size 3k

2 − 1 must
contain at least one element. We can ignore the minus 1, since it will not matter as
r gets large.

Following the same logic as in [9], we end up needing the asymptotic behavior of
the sum

r/4∑

k=n

1
22k

(
1− 1

23k/2

) r
3k/2

. (16)

Note the factors of 1/22k arise from taking sets Oi that are k consecutive elements,
and the factor (1− 1

23k/2 ) is due to our condition of M having at least one element
in blocks of size 3k/2.

Fortunately, in anticipation of this work, [9] analyzed the more general sum

r/4∑

k=n

1
2ak

(
1− 1

2bk

)r/ck

, (17)

showing there is a constant C > 0 such that it is at least C/ra/b (see their Lemma
3.1). Our sum is of the same form with parameters a = 2, b = c = 3/2, and thus
our sum is at least 1/r4/3.
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Remark 7. Our density bound above is related to the bounds from [9] for sum-
dominant sets, and an improvement there translates to an improvement here. We
describe a simple improvement one can make to the arguments in [9], which allows
us to replace the 1/r4 they obtained for sum-dominant sets with a 1/r2. While a
similar analysis would improve our results here, we choose not to do so as the real
improvement comes from a better choice of the O’s (described in the next section)
and not the middle.

We appeal to an analysis of the probability m consecutive tosses of a fair coin
has its longest streak of consecutive heads of length " (see [16]). While the expected
value of " grows like log2(m/2), the variance converges to a quantity independent of
m, implying an incredibly tight concentration. If we take O1 and O2 as before and
of length k, we may take a positive percentage of all M ’s of length m to insert in
the middle, so long as k = log2(m/2)− c for some c. The size of A is negligible; the
set has length essentially r = m+2k. Of the 2m+2k possible middles to insert, there
are C2m possibilities (we have a positive percentage of M work, but the two O’s
are completely forced upon us). This gives a percentage on the order of 2m/2m+2k;
as k = log2(m/2) − c, this gives on the order of 1/r2 as a lower bound for the
percentage of sum-dominated sets, much better than the previous 1/r4.

3. Constructing Many A with |2A + 2A| > |2A − 2A|, II

We discuss improvements to the exponent in Theorem 4. The following two obser-
vations are very important in improving our exponent.

• The O’s always show up at least in pairs in the sums and differences used to
prove A′ was a P 4

n-set, except in cases where they show up with L + L + L,
R′ + R′ + R′ or L + L−R′.

• Each of L + L + L, R′ + R′ + R′ and L + L−R′ contain a run of 16 elements
in a row.

These two points allow us to relax our structure for each of the O’s and still have
all of the sums and differences just stated fill the necessary ranges. This greatly
improves our exponent, as we lost a power due to the 1/22k factor from the O’s.
As long as each O contains its first and last possible element, each O has no run of
16 missing elements and 2O = O + O is full for both O’s, A′ will be a P 4

n-set. This
looser structure allows us to replace the 1/22k with a much better factor and thus
greatly improve our density bound.

Theorem 8. There is a constant C > 0 such that as r goes to infinity, the per-
centage of subsets of [1, r] with |4A| > |2A − 2A| is at least C/nr, where r =
1
6 log2(256/255) ≈ .001.
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Proof. Instead of requiring that O1 and O2 contain all elements in their ranges as
before, we now only require that they contain the first 16 elements, the last element,
and no runs of 16 consecutive non-chosen in between. While the old O’s contributed
1/22k to our sum, the new O’s contribute significantly more. For use later in proving
Theorem 1, we analyze this problem more generally, and force each O to contain
the first f elements, the last element, and no run of f missed elements in between.
We again use a crude bound to ensure that each O contains no runs of f blanks
and force each O to contain at least one element in every block of f/2 elements.

In each O we thus have at most 2k/f blocks of length f/2. In each block, there
are 2f/2 options and all but one contain at least one element. The fraction of subsets
that work as O’s is thus at least

(
2f/2 − 1

2f/2

)2k/f

. (18)

To use in our sum, we want to represent this expression as 2−αk. We find

(
2f/2 − 1

2f/2

)2k/f

= 2−αk

2k
f

log2
2f/2 − 1

2f/2
= −αk

α =
−2
f

log2
2f/2 − 1

2f/2
. (19)

Since, for our current purposes, f = 16, we find α = −1
8 log2

255
256 . We know that

our sum guarantees a bound of 1/ra/b, we know from before that b = 3/2 and now
know that a = 2α ≈ 0.00142 (because there are 2 O’s). Thus there exists some
constant C for which the percentage of subsets of [1, n] is greater than C/nr, where
r = 1

6 log2(256/255) ≈ .001

This construction could be pushed further by finding a ‘better’ A. If L + L + L,
R+R+R and L+L−R contained longer runs, we would have more freedom in each
O, and thus could form a better bound. Rather than look for more sets, however, to
allow ourselves to push the bound even further, we modify our construction slightly,
and add two more components to our A′.

Starting with A as in Theorem 4 (a Pn
4 subset of [1, 2n] that contains 1 and 2n)

we form
A′ = L ∪ F1 ∪O1 ∪M ∪O2 ∪ F2 ∪R′, (20)

where

• L ⊂ [1, n] containing 1,

• F1 = [n + 1, n + f ],
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• O1 ⊂ [n + f + 1, n + f + k] containing the first f elements, the last element,
and no runs of f missing elements,

• M ⊂ [n + f + k + 1, n + f + k + m] with no runs of k missing elements,

• O2 ⊂ [n + f + k + m + 1, n + f + 2k + m] containing the first f elements, the
last element, and no runs of f blanks,

• F2 = [n + f + 2k + m + 1, n + 2f + 2k + m],

• R′ ⊂ [n + 2f + 2k + m + 1, 2n + 2f + 2k + m] containing 2n + 2f + 2k + m.

By a method similar to that used in Lemma 6, we can prove that these A′s are
Pn

4 -sets. Since A has |4A| > |2A− 2A|, we have |4A′| > |2A′ − 2A′| (by Lemma 5).
With this new construction, we now prove our best lower bound for the density

of sets with |4A| > |2A− 2A|.

Proof of Theorem 1. For any fixed f , we can form

A′ = L ∪ F1 ∪O1 ∪M ∪O2 ∪ F2 ∪R′, (21)

with A as in the proof of Theorem 8. To ensure there are no overly long runs of
missing elements, we force each O to contain one element in every block of f/2 and
M to contain one element in every block of k/2.4

By allowing k to grow, and summing over our possible sets as we did in Theorems
4 and 8, we know that the proportion of subsets [1, n] that have |4A| > |2A− 2A|
is at least

r/4∑

k=n

1
22α

(
1− 1

2k/2

) r
k/2

, α =
−2
f

log2
2f/2 − 1

2f/2
. (22)

From Lemma 3.1 of [9], this sum is at least C/rp, with

p =
2α
1/2

= 4
−2
f

log2
2f/2 − 1

2f/2
. (23)

Since

lim
f→∞

4
−2
f

log2
2f/2 − 1

2f/2
= 0, (24)

we can force the bound to be better than C/nε for any ε > 0, completing the
proof.

4We could weaken this construction by appealing to results on the length of consecutive heads
in tosses of a fair coin; see Remark 7. As this will not change the form of our final bound, we
prefer to keep the exposition simple.



INTEGERS: 12 (2012) 12

4. Constructing Generalized MSTD Sets with Given Differences

We explore some consequences of our constructions. We first prove that given any
x there is an A with |4A|− |2A− 2A| = x.

Proof of Theorem 3. We first consider negative x. Let

Sx = [1, |x| + 2] ∪ {2|x| + 3}. (25)

Then

4Sx = [4, 7|x| + 11] ∪ {8|x| + 12}, 2Sx − 2Sx = [−4|x|− 4, 4|x| + 4]. (26)

Thus |4Sx|− |2Sx − 2Sx| = (7|x| + 9)− (8|x| + 9) = −|x| = x as desired.
For x = 0, let S0 = {0}. Then |4S0|− |2S0 − 2S0| = 1− 1 = 0.
We are left with positive values of x. Similar to Martin and O’Bryant’s [8] proof

that |A + A|− |A−A| can equal any value, we deal with certain small values of x
explicitly, then offer a method of construction for larger values of x. Let

S1 = {0, 1, 3, 4, 7, 26, 29, 30, 32, 33, 34}; |S1+S1+S1+S1|−|S1+S1−S1−S1| = 1.
(27)

Now consider the positive values of x ≡ 1 mod 4, so x = 4k + 1. Define

S4k+1 = S1 + {0, 137, 274, . . . , 137k}. (28)

Then

4S4k+1 = {0 ≤ s ≤ 137(4k + 1)− 1 : s ,≡ 23 mod 137}
2S4k+1 − 2S4k+1 = {−137(2k + 1/2) < s < 137(2k + 1/2) : s ,≡ 43, 231}.

(29)

Thus |4S4k+1|−|2S4k+1−2S4k+1| = ((4k+1)·136)−((4k+1)·135) = 4k+1 as desired.

Next we consider the positive values of x ≡ 0 mod 4. With S4k+1 as in (28),
define

S4k = S4k+1\{137}. (30)

After some algebra we find that 2S4k − 2S4k = 2S4k+1 − 2S4k+1 but 4S4k =
4S4k+1\{137}. Thus

|4S4k|− |2S4k − 2S4k| = |4S4k+1|− |2S4k+1 − 2S4k+1|− 1 = 4k, (31)

as desired.
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Next, we study the positive values of x ≡ 2 mod 4. Again, with S4k+1 as in (28),
define

S4k−6 = S4k+1\{34}. (32)

We have

4S4k−6 = 4S4k+1\{109, 133, 134, 135, 136, 246, 271, 272, 273, 383, 409,
410, 547}

2S4k−6 − 2S4k−6 = 2S4k+1 − 2S4k+1\{−481,−480,−343, 343, 480, 481}. (33)

Thus

|4S4k−6|−|2S4k−6−S4k−6| = |4S4k+1|−|2S4k+1−S4k+1|+13−6 = 4k+1−7 = 4k−6,
(34)

as desired.

Finally, the take care of the positive values of x ≡ 3 mod 4. Here we set

S4k−1 = S4k+1\{33}, (35)

where as always S4k+1 is as in (28). We have

4S4k−1 = 4S4k+1\{133, 135}
2S4k−1 − 2S4k−1 = 2S4k+1 − 2S4k+1. (36)

Thus

|4S4k−1|− |2S4k−1 − S4k−1| = |4S4k+1|− |2S4k+1 − S4k+1|− 2 = 4k − 1, (37)

completing the proof.

Theorem 9. The minimum span for any set with |4A| > |2A− 2A| is 30.

Proof. There are no subsets of [1, 30] with |4A| > |2A− 2A|, which can be checked
by brute force in a reasonable amount of time as 229 < 109. Thus the minimum span
cannot be less than 29. As A = {1, 2, 3, 5, 9, 24, 28, 30, 31} has |4A| > |2A − 2A|,
the minimum span must be 30.
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