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Abstract
The proof of the existence of infinitely many Carmichael numbers depends heavily
upon the study of the Carmichael lambda function λ. In this paper, we study which
types of forms this quantity can and cannot take. In particular, for a Carmichael
number m, we prove that this λ(m) can never be of the form 2k. Moreover, we
prove that if this λ(m) is of the form 2k · P then either P = 3, 5, 7 or 127 and m is
one of just eight possible values or else m is divisible by a Fermat Prime that is not
currently among the known Fermat Primes.

1. Introduction

Let us begin by defining a Carmichael number:

Definition 1. Let m ∈ N. If m|am− a for every a ∈ Z and m is composite then m
is a Carmichael number.

Such numbers, which answer in the negative the question of whether the converse
of Fermat’s Little Theorem is true, were first discovered by R.D. Carmichael in 1910
and thus bear his name.

The search for Carmichael numbers typically involves the study of the Carmichael
function λ, which is defined as follows. For any prime power pα, α ≥ 1, one has:

λ(pα) =

{
pα−1(p− 1) if p is odd or α ≤ 2,
2α−2 if p = 2 and α ≥ 3.

For arbitrary m ≥ 2 with prime factorization m = pα1
1 ...pαk

k , one has

λ(m) = LCM [λ(pa1
1 ), ....,λ(pαk

k )].
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Finally, λ(1) = 1. In the case that m is a Carmichael number, it is well known that
m is square-free; hence, m = p1....pk, and thus,

λ(m) = LCM [p1 − 1, ...., pk − 1].

In 1994, it was proven by Alford, Granville, and Pomerance [1] that there are
infinitely many Carmichael numbers, thereby resolving a conjecture that had been
open for almost 100 years. This proof, which builds on ideas originally suggested
by Erdős [3], yields Carmichael numbers m for which λ(m) has many distinct prime
factors. It is worth noting, however, that some of our most famous examples of
Carmichael numbers have very simple λ’s; for instance, the first Carmichael number,
561, has λ(m) = 24 · 5, while the taxicab number, 1729, is a Carmichael number
with λ(m) = 22 · 32. It is in this spirit that we ask the following question:

Motivating Question. What can we say about Carmichael numbers if we restrict
the possibilities for λ?

This paper examines the most basic cases: those cases for which λ(m) = 2k

and λ(m) = 2kP for a prime P . The former has an obvious relation to Fermat
(a Carmichael number of this form would be composed entirely of Fermat primes),
while the latter is interesting because, as was stated earlier, the smallest Carmichael
number, 561, has λ of this form.

In section 3, we prove the following:

Main Theorem 1. Let m be a Carmichael number. Then λ(m) can never be a
power of two.

There are two easy corollaries of this theorem: a Carmichael number cannot be
entirely composed of Fermat primes, and a Carmichael number cannot be of the
form m = 2l + 1.

Since λ(m) = 2k is impossible, the next most elementary case is the case of
λ(m) = 2kP for a prime P . In order to make a statement about Carmichael
numbers with such λ(m), we will need some information about Fermat primes. To
this end, we recall the following widely held conjecture:

Fermat Primes Conjecture. The primes 3, 5, 17, 257, and 65537 are the only
primes of the form 2a + 1 with a ≥ 1.

It will be shown that if λ(m) = 2kP then m must have a Fermat prime divisor
(in fact, it must have two). We then find the following theorem about Carmichael
numbers involving known Fermat primes.

Main Theorem 2. Let m be a Carmichael number such that λ(m) = 2kP for a
prime P . If the Fermat Primes Conjecture is true then P must be either 3, 5, 7,
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or 127 and m must be one of the following eight Carmichael numbers:

5 · 13 · 17,
5 · 13 · 193 · 257,

5 · 13 · 193 · 257 · 769,
3 · 11 · 17,
5 · 17 · 29,

5 · 17 · 29 · 113,
5 · 29 · 113 · 65537 · 114689,

5 · 17 · 257 · 509.

If any other m exists with λ(m) = 2kP then m is divisible by a heretofore unknown
Fermat prime.

To prove the theorem above, section 3 will present a theorem that allows us
to narrow the size of the factors of a Carmichael number with given λ(m), while
section 4 and 5 narrow the list of candidates for P . The remainder of the paper sys-
tematically goes through each remaining candidate and determines the Carmichael
numbers resulting from each P .

2. Korselt’s Criterion

Carmichael’s task of finding such a number was aided by an earlier discovery of
A. Korselt, who, in 1899, devised a test to determine whether a number was a
Carmichael number [6]. This criterion (and subsequent reformulations) is known as
Korselt’s Criterion:

Korselt’s Criterion. m divides am − a for all a ∈ Z if and only if λ(m)|m− 1.

In this paper, we will use Korselt’s Criterion to create a criterion of our own
(which we will call the Minimal Powers Argument) that we will use repeatedly.
This new criterion is outlined in the next section.

3. Minimal Power of Two

In order to discuss our criterion, we note first that since the computation of λ(m)
prominently involves the quantity pi − 1, it will be useful for us to write pi as a
number plus one. To this end, we will write primes (and, often, odd integers in
general) in the form 2kiDi +1 (for odd Di) and then study the power of two. Doing
so affords us the following theorem:
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Theorem 2. Let m be a Carmichael number. Write

m =
n∏

i=1

(2kiDi + 1),

where the Di are odd, n ≥ 2, and k1 ≤ k2 ≤ ... ≤ kn. If 2k1+1|λ(m) then k1 = k2.

Proof. Assume k1 < k2. Then

m =
n∏

i=1

(2kiDi + 1) ≡ 2k1D1 + 1 (mod 2k1+1).

As 2k1+1|λ(m) by assumption and λ(m)|m− 1 by Korselt’s criterion,

m ≡ 1 (mod 2k1+1).

Hence
2k1D1 + 1 ≡ 1 (mod 2k1+1),

contradicting that D1 is odd.

This theorem will be referred to as the Minimal Powers Argument, and this k1

referred to as the minimal power of two. We note that although the motivation was
given in terms of p− 1, there is no requirement that the 2kiDi + 1’s are prime.

As an immediate consequence to Theorem 2, we have the following theorem:

Main Theorem 1. If m is a Carmichael number and k ∈ N then λ(m) cannot be
of the form 2k. In particular, no Carmichael number m can be of the form 2s + 1.

Proof. If λ(m) = 2k then each prime pi dividing m is of the form pi = 2ki + 1.
Since m is square-free, one of the ki’s must be minimal and unique, contradicting
Theorem 2. Further, if m is of the form 2s + 1 then λ(m)|2s by Korselt’s criterion,
and hence λ(m) = 2k.

4. λ(m) = 2kP : Prelude

Now, we move on to the case where m is a Carmichael number with λ(m) = 2kP for
a prime P . The remainder of the paper will be devoted to proving Main Theorem
2.

In this section, we prove a couple of lemmas that limit the types of factors that
can show up for each choice of P . These limitations allow us to completely remove
all P ’s that are 1 mod 12.

We begin by noting that in order for λ(m) to have the form 2kP , the prime
factors of m must be of the form pi = 2ki + 1 or qj = 2lj P + 1. We say that primes
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of the form pi = 2ki + 1 are of Type 1 and primes of the form qj = 2lj P + 1 are of
Type 2 (the former will be denoted as p’s and the latter as q’s; the powers of two
appearing in the former will be denoted as ki’s, and those appearing in the latter
will be lj ’s). We note an easy lemma about the parity of these exponents:

Lemma 3. Any ki must itself be two to some power. Any lj is even if P ≡ 1 (mod
3) or odd if P ≡ 2 (mod 3).

Proof. The first statement follows from the definition of a Fermat prime, and the
second follows from examination modulo 3.

Since a Carmichael number is square-free, it follows from Theorem 2 that a
Carmichael number with λ(m) = 2kP must be divisible by at least one prime of
each type. Assume that p1 < p2 < ... and q1 < q2 < ... (or, equivalently, k1 < k2 < ..
and l1 < l2...). Again by Theorem 2, it is clear that k1 = l1.

Using the above, we can prove that P can never be 1 (mod 12):

Theorem 4. Let λ(m) = 2kP . If P ≡ 1 (mod 3) then P &≡ 1 (mod 4).

Proof. Assume P ≡ 1 (mod 3). As noted above, any lj is even while any ki is 1 or
even. Now, let

m = p1...prq1...qs

where r, s ≥ 1 and r + s ≥ 3 (since it is known that any Carmichael number must
be the product of at least three primes). We know that k1 = l1 ≥ 2, which means
that every ki is even.

Next, let P ≡ 1 (mod 4). Then P + 1 = 2D for some odd D. So

m =(2k1 + 1)(2l1P + 1)p2...prq2...qs

= (2k1+1(2k1−1P + D) + 1)p2...prq2...qs,

where it is possible that either p2...pr or q2...qs are empty. Since r + s ≥ 3, we
know that there must be another prime factor, and by Lemma 3, we know that k2

or l2 ≥ k1 + 2. So 2k1+2|λ(m) and 2k1+1 is a unique smallest power of 2, thereby
contradicting Theorem 2.

Theorem 5. Let λ(m) = 2kP with P ≡ 2 (mod 3). Then 5|m if and only if P ≡ 3
(mod 4).

Proof. First, it is clear that P + 1 = 2D for some integer D. Note that D is even
if and only if P ≡ 3 (mod 4). Now, by Theorem 2 and Lemma 3, we see that
k1 = l1 = 1. So

m = 3(2P + 1)p2...prq2...qs

= (22(P + D) + 1)p2...prq2...qs.
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Assume first that D is even. Clearly 22 is the smallest power of two in this expres-
sion. By Theorem 2, it must not be unique. So we must have k2 = 2 or l2 = 2, the
latter of which is impossible by Lemma 3.

Now assume that D is odd. Then 23|22(P +D), which means (again by Theorem
2) that k2 &= 2.

5. Fermat Primes

Now, we can drastically limit the number of permissible P ’s by proving the following
lemma about Fermat prime divisors of a Carmichael number.

Lemma 6. Let p1, p2, ..., pr be the Type 1 prime divisors of m. Then

p1...pn ≡ 1 (mod P ).

Proof. First, we know that P |λ(m)|m− 1. Moreover, for any Type 2 prime divisor
qi, it is clear that qi ≡ 1 (mod P ). So

m =p1...prq1...qs

≡p1...pr (mod P )
≡1 (mod P ).

Corollary 7. Any Carmichael number m with λ(m) = 2kP must be divisible by at
least two Fermat primes.

Proof. We know from before that m is divisible by at least one Fermat prime. If
m is divisible by only one Fermat prime p1 then by the previous lemma, P |p1 − 1,
contradicting the assumption that P is odd.

From here, we may determine the Carmichael numbers with known Fermat
primes by taking all possible products of two or more Fermat primes (call such
a product R), finding the odd prime factors of R − 1, and using Theorem 2 to
identify Carmichael numbers. Table 1 illustrates all of the possible combinations R
of Fermat primes and the prime factorizations for the various R − 1, indicating in
addition what k1 would have to be if a Carmichael number were divisible by R.

Now, since k1 = l1, we can remove any possible P on the table for which 2k1P +1
is not prime; the numbers we remove from the table are all such that 2k1P + 1 is
divisible by 3, 5, 7, 11, 13, 19, or 103. By Theorem 4, we may also remove any
P ≡ 1 (mod 12). Moreover, by Theorem 5, we may also remove P = 11 and 41.
The removed P ’s and k1’s and explanations for their removal are given on Table 2,
while the remaining candidates for P are given on Table 3.
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Table 1: Products of Fermat primes
Combination of Primes (R) Factorization of R− 1 k1

3 ∗ 5 2 ∗ 7 1
3 ∗ 17 2 ∗ 52 1
3 ∗ 257 2 ∗ 5 ∗ 7 ∗ 11 1

3 ∗ 65537 2 ∗ 5 ∗ 19661 1
3 ∗ 5 ∗ 17 2 ∗ 127 1
3 ∗ 5 ∗ 257 2 ∗ 41 ∗ 47 1
3 ∗ 17 ∗ 257 2 ∗ 6553 1
3 ∗ 5 ∗ 65537 2 ∗ 491527 1
3 ∗ 17 ∗ 65537 2 ∗ 127 ∗ 13159 1
3 ∗ 257 ∗ 65537 2 ∗ 25264513 1
3 ∗ 5 ∗ 17 ∗ 257 2 ∗ 7 ∗ 31 ∗ 151 1

3 ∗ 5 ∗ 257 ∗ 65537 2 ∗ 7 ∗ 18046081 1
3 ∗ 5 ∗ 17 ∗ 65537 2 ∗ 8355967 1

3 ∗ 17 ∗ 257 ∗ 65537 2 ∗ 19 ∗ 22605091 1
3 ∗ 5 ∗ 17 ∗ 257 ∗ 65537 2 ∗ 2147483647 1

5 ∗ 17 22 ∗ 3 ∗ 7 2
5 ∗ 257 22 ∗ 3 ∗ 107 2

5 ∗ 65537 22 ∗ 3 ∗ 7 ∗ 47 ∗ 83 2
17 ∗ 257 24 ∗ 33 ∗ 7 ∗ 13 4

17 ∗ 65537 24 ∗ 33 ∗ 2579 4
257 ∗ 65537 28 ∗ 3 ∗ 7 ∗ 13 ∗ 241 8
5 ∗ 17 ∗ 257 22 ∗ 43 ∗ 127 2

5 ∗ 17 ∗ 65537 22 ∗ 131 ∗ 10631 2
5 ∗ 257 ∗ 65537 22 ∗ 467 ∗ 45083 2
17 ∗ 257 ∗ 65537 24 ∗ 29 ∗ 43 ∗ 113 ∗ 127 4

5 ∗ 17 ∗ 257 ∗ 65537 22 ∗ 3 ∗ 7 ∗ 11 ∗ 31 ∗ 151 ∗ 331 2

This removal leaves us with just six possible values for P : 3, 5, 7, 43, 127, and
19661. In the next section, we will prove that two more of these can be removed.

6. The Impossible Cases: P = 43, 19661

The rest of the paper will go through the six remaining P ’s from the previous section
and determine the Carmichael numbers associated to each P . We begin with the
two P ’s above for which no Carmichael numbers exist: 43 and 19661. We will use
essentially the same argument for each of these two cases.

Theorem 8. P &= 43.
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Table 2: Eliminated P and k1

Condition Pairs (P, k1) Removed by Condition
3|2k1P + 1 (7, 1), (19, 1), (31, 1), (127, 1), (151, 1),

(6553, 1), (13159, 1), (491527, 1), (18046081, 1),
(25264513, 1), (8355961, 1), (22605091, 1), (2147483647, 1)

(11, 2), (47, 2), (83, 2), (107, 2), (131, 2),
(10631, 2), (29, 4), (113, 4), (2579, 4),

5|2k1P + 1 (47, 1), (31, 2), (151, 2), (331, 2)
11|2k1P + 1 (7, 8)
13|2k1P + 1 (43, 4)
19|2k1P + 1 (127, 4)
103|2k1P + 1 (241, 8)
Theorem 4 (13, 4), (13, 8)
Theorem 5 (11, 1), (41, 1)

Table 3: Carmichael Candidates
Combination of Primes (R) Permissible Factors of R− 1 k1

3 ∗ 17 5 1
3 ∗ 257 5 1

3 ∗ 65537 5,19661 1
5 ∗ 17 3,7 2
5*257 3 2

5 ∗ 65537 3,7 2
5 ∗ 17 ∗ 257 43,127 2

5 ∗ 17 ∗ 257 ∗ 65537 3,7 2

Proof. From Table 3, if m is a Carmichael number with P = 43,

m = 5 · 17 · 257 · Πs
i=1qi,

where the qi are Type 2 primes. Now, by Theorem 2, l1 = 2. Plugging this in for
l1 and multiplying gives

m = (25 · 27 + 1) · (24 + 1) · 257 · Πs
i=2qi.

Note that 13|24(43) + 1. Since 28|λ(m), 24 is clearly a minimal power of two,
contradicting Theorem 2.

Theorem 9. P &= 19661.

Proof. This theorem is nearly identical to the case of P = 43. In this case,

m = 3 · 65537 · Πs
i=1qi.
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Plugging in q1 with l1 = 1,

m = (24(7373) + 1) · 65537 · Πs
i=2qi.

Note that 11|23(19661)+1 and 3|2l(19661)+1 for any even l. Here 216|λ(m), which
means that 24 is the minimal power of two that contradicts Theorem 2.

7. The Cases of P = 7 and P = 127

Since we have finally removed all of the cases where there are no Carmichael num-
bers, we now turn our attention to the cases for which Carmichael numbers exist.
In this section, we deal with the two P ’s that are 1 modulo 3 for which there exist
Carmichael numbers with λ(m) = 2kP .

Theorem 10. Let m be a Carmichael number with λ(m) = 2k · 7 where all Fermat
prime factors are among the known Fermat primes. Then m is one of the following
three Carmichael numbers:

5 · 17 · 29,
5 · 17 · 29 · 113,

5 · 29 · 113 · 65537 · 114689.

Proof. From the chart, if P = 7 then l1 = 2. Thus, if P = 7 then p1 = 5. Moreover,
again from the chart, there are two possible cases for p2: 17 and 65537.

Case 1. p2 = 17.

Let us consider first the case where p2 = 17. Then

m =5 · 17(22 · 7 + 1)
s∏

j=2

qj = (25 · 77 + 1)
s∏

j=2

qj ,

where the remaining product may be empty.
Now, if the product is empty then λ(m) = 24 · 7|m − 1, which means that

m = 5 · 17 · 29 is a Carmichael number.
If the product is non-empty then l2 ≤ 5. This is only possible if l2 = 4 (i.e.,

q2 = 113), since q2 would not be prime for l2 = 3 or 5. In this case, we have

m = (25 · 77 + 1)(24 · 7 + 1)
s∏

j=3

qj

where the product may again be empty. If the product is non-empty then 24 is the
minimal power of two and 26|λ(m) (since l3 ≥ 6). If the product is empty then
λ(m) = 24 · 7 divides m− 1, and hence m = 5 · 17 · 29 · 113 is a Carmichael number.
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Case 2. p2 = 65537.

In the case of p2 = 65537, we again have l2 = 2, giving us

m = (24 · 9 + 1) · (216 + 1)
s∏

j=2

qj .

Obviously, 216|λ(m). So there must be another prime factor with power of two less
than or equal to 4, else 24 is the minimal power of two. So l2 = 4 (i.e., q2 = 113),
which means that

m = (214 + 1) · (216 + 1)
s∏

j=3

qj .

There must be still another factor with power of two less than or equal to 14, else
214 is the minimal power. Moreover, if l3 < 14 then l3 would be the unique minimal
power of two. So l3 = 14 (i.e., q2 = 114689) and hence

m =(217(211 · 7 + 1) + 1) · (216 + 1)
s∏

j=4

qj

=(216(268458277 · 7) + 1)
s∏

j=4

qj

Now, if there were another prime factor q4 then l4 ≥ 18, since l3 = 14 and q4 would
not be prime with l4 odd (by Lemma 3) or with l4 = 16 (since 79|216 · 7 + 1). So
the remaining product is empty. Clearly, λ(m) = 216 · 7 divides m − 1 for the m
above. So m = 5 · 29 · 113 · 65537 · 114689 is a Carmichael number.

Since all cases have been exhausted, these are the only possible Carmichael num-
bers with known Fermat primes and λ(m) = 2k · 7.

Theorem 11. Let m be a Carmichael number with λ(m) = 2k ·127 where all Fermat
prime factors are among the known Fermat primes. Then

m = 5 · 17 · 257 · 509.

Proof. From the chart, we see that if P = 127 then k1 = l1 = 2 (i.e., q1 = 509) and
the Type 1 primes are 5, 17, and 257. Plugging this information in and manipulating
the arithmetic, we have

m = (29(127 · 171) + 1)
s∏

j=2

qj

where the product may be empty.
Now, assume the product is non-empty. It is clear that p3 − 1 = 28|λ(m).

So if there exists a q2 with l2 < 8 then l2 would be the minimal power of two,
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contradicting Theorem 2. Moreover, if there exists q2 with l2 ≥ 10 then 2l2 |λ(m),
which means that 29 would be the minimal power of two that contradicts Theorem
2. So l2 = 8 or 9, which is impossible since neither would be prime (13|28 · 127 + 1
and 3|29 · 127 + 1). Thus, the remaining product must be empty.

Note that if the remaining product is empty then λ(m) = 28 · 127|m − 1. So
m = 5 · 17 · 257 · 509 is a Carmichael number; in fact, it is the only one with known
Fermat primes and P = 127.

8. The Case of P = 5

In this section, we consider the case of P = 5. This case is interesting for two
reasons: it is the only case with P ≡ 2 (mod 3), and the first Carmichael number,
561, is an example of this case. In this section, we show that 561 is in fact the only
Carmichael number with P = 5 and known Fermat prime divisors.

Theorem 12. Let m be a Carmichael number with λ(m) = 2k · 5 where all Fermat
prime factors are among the known Fermat primes. Then

m = 3 · 11 · 17.

Proof. From Table 2, we see that p1 = 3, p2 = 17, and k1 = l1 = 1 (i.e., q1 = 11).
Combining this information, we have

m = (24(35) + 1)
s∏

j=2

qj

where the product may be empty.
Assume the product is non-empty, i.e., there exist q2 and l2. Note that 24|λ(m).

Since l2 &= 4 by Lemma 3, either l2 = 3 or l2 ≥ 5. In the former case, 23 is the mini-
mal power of two contradicting Theorem 2, while in the latter case, 25|λ(m), which
then means that 24 is the minimal power of two which causes the contradiction.

On the other hand, if the product is empty then m = 3 · 11 · 17, which is clearly
a Carmichael number with λ(m) = 24 · 5.

9. The Special Case P = 3

The final case is that of P = 3. This is the most complicated case, both because
there are several possible combinations of Type 1 primes and because we do not
have the usual restriction that the li must be either all odd or all even. The best
we can do to limit the possible li’s is the following:
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Lemma 13. If 2l · 3 + 1 is prime and l ≥ 2 then l &≡ 1 (mod 3), 3 (mod 4), or 9
(mod 28).

Proof. The first statement follows from examination mod 7, the second from exam-
ination mod 5, and the third from examination mod 29.

Theorem 14. Let m be a Carmichael number with λ(m) = 2k · 3 where all Fermat
prime factors are among the known Fermat primes. Then m is one of the following
three Carmichael numbers:

5 · 13 · 17,
5 · 13 · 193 · 257,

5 · 13 · 193 · 257 · 769.

Proof. We split this into three cases:

Case 1. 17|m.

There are three possibilities for this on the table: either (5,17), (5,17,257) or
(5,17,257,65537) are the Type 1 divisors of m. In all cases, l1 = 2, which means
that q1 = 13. So

m = (24(69) + 1)
r∏

i=3

pi

s∏

j=2

qj ,

where one or both of the products may be empty. Now, 24|λ(m). If there exist p3

or q2 then k3 > 4 or l2 > 4 (by Lemma 13), which would give 24 as the minimal
power that contradicts Theorem 2. So both of these products must be empty, which
means that m = 5 ·13 ·17, which is clearly a Carmichael number with λ(m) = 24 ·3.

Case 2. The Type 1 primes divsors of m are 5 and 257.

In this case, l2 = 5 and

m = (26 + 1)(28 + 1)
s∏

j=2

qj .

Clearly, we have a problem with the minimal power of two (since 28|λ(m)) unless we
have another factor with 26. This can only be done if l2 = 6, or q2 = 193. Plugging
this in for q2, we have

m = (29(153) + 1)
s∏

j=3

qj .

Now, if the product is empty then the remaining m = 5 ·13 ·193 ·257 is a Carmichael
number with λ(m) = 28 · 3.
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If the product is non-empty then l3 > 7 (by Theorem 2) and l3 ≤ 9 (for the same
reason). By Lemma 3, l3 &= 9. So l3 = 8 (i.e., q3 = 769), and hence

m = (29(153) + 1)(28 · 3 + 1)
s∏

j=4

qj .

Clearly, there can be no larger qj (or else 29|λ(m)). So the remaining product is
empty and m = 5 · 13 · 193 · 257 · 769 is a Carmichael number with λ(m) = 28 · 3.

Case 3. The Type 1 primes divsors of m are 5 and 65537.

In this case, l1 = 2. As such, we have

m = (26 + 1)(216 + 1)
s∏

j=2

qj .

To avoid contradicting Theorem 2, we must also have l2 = 6, which gives us

m = (28(49) + 1)(216 + 1)
s∏

j=3

qj .

Again, to escape the ire of Theorem 2, we must multiply by a prime with l3 = 8:

m = (29(49) + 1)(216 + 1)
s∏

j=4

qj .

Here again, Theorem 2 compels us to multiply by a prime with l4 = 9. But this
is impossible, since q4 is then composite by Lemma 3. So there are no Carmichael
numbers for Case 3.

References

[1] W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers,
Annals of Mathematics, 140 (1994), 703-722.

[2] R. D. Carmichael, Note on a new number theory function, Bulletin of the American Mathe-
matical Society, 16 (1910), 232-238.

[3] P. Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen, 4 (1956), 201-
206.

[4] A. Granville, Primality Testing and Carmichael Numbers, Notices of the American Mathe-
matical Society, 39 (September 1992), 696-700.

[5] A. Granville and C. Pomerance, Two Contradictory Conjectures Concerning Carmichael Num-
bers, Mathematics of Computation, 71 (2001), 883908.

[6] A. Korselt, Problème chinois, L’intermédinaire des mathématiciens 6 (1899), 142-143.


