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Abstract
We explore a variation of the isoperimetric problem in which integer subsets take
the role of geometric figures. More specifically, we consider the sequence P (n) in-
troduced by Miller et al. and described in OEIS A186053. We provide the first
exact formulas for P (n) including recursive relations via auxiliary functions as well
as concise and satisfying representations and even quasi-explicit formulas. We also
discuss some of the intricate fractal-like symmetry of the sequence and the devel-
opment of algorithms for computing P (n). We conclude with open questions for
further research.

1. Introduction

One of the most widely-known classical geometry problems is the so-called isoperi-
metric problem, one equivalent variation of which is:

If a figure in the plane has area A, what is the smallest possible value
for its perimeter?

In the Euclidean plane, the optimal configuration is a circle, implying that any
figure with area A has perimeter at least 2

√
Aπ, and this lower bound is obtained

if and only if the figure is a circle.
In 2011, Miller et al. [2] extended the isoperimetric problem in a new direction,

in which integer subsets took the role of geometric figures. For any integer subset
A, they defined its volume as the sum over all its elements, and they defined its
perimeter as the sum of all elements x ∈ A such that {x− 1, x + 1} $⊂ A. Thus, the
volume can be thought of as the sum of all the elements of A, and the perimeter
can be thought of as the sum of all the elements on the “boundary” of A (that is
to say, the elements of A whose successor and predecessor are not both in A).
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The main focus of [2] was to examine the relationships between a set’s perimeter
and its volume. More specifically, the authors wanted to answer the corresponding
“isoperimetric question”1:

If a subset of {0, 1, . . .} has volume n, what is the smallest possible value
for its perimeter?

Adopting their notation, we will let P (n) denote this value throughout this paper2.
Because their work is so recent, Miller et al. are the only ones who have published

on this variation of the isoperimetric problem or on the function P (n). Their work
was to provide bounds for P (n), by which they were able to determine its asymptotic
behavior. Specifically, their main result was

Theorem 1. (Miller et al., 2011) Let P (n) be as defined. Then P (n) ∼
√

2n1/2.
Moreover, for all n ≥ 1,

√
2n1/2 − 1/2 < P (n) <

√
2n1/2 + (2n1/4 + 8) log2 log2 n + 58. (1)

Their proof of the lower bound will be reproduced in following sections. However,
their proof of the upper bound is via a construction argument, which we will not
reproduce here since we will analytically derive a tighter bound in Theorem 12.

Beyond the inequalities in (1) provided by Miller et al., nothing else has been
published on P (n) except for some values for small n. It should be noted that [2]
provides very good bounds on a related function, in which the sets of interest are
allowed to have both negative as well as positive elements. This result was also via
a construction argument and is not relevant to this paper.

1.1. Outline of Results

In this paper, we focus on improving the few results known on P (n), including
deriving multiple exact formulas and developing an understanding of its interesting
long-term behavior. Many of these results are stated in terms of a closely related
function, Q(n), which is briefly defined as

Q(n) := min
A⊆{0,1,...}

{
per(Ac) : vol(A) = n

}
.

Since it proves to be intimately related to P (n), we provide results on Q(n) as well.
We begin in Section 3 with several prelimary lemmas including those used in

[2]. Then in Section 4, we define auxilary functions, with which we combinatorially
derive several recursive formulas for P (n). We then introduce the function Q(n)
and derive similar formulas for it as well.

1They focused on this question in particular because it turns out that all of the other related
extremal questions relating a set’s volume and perimeter are trivial.

2This is sequence A186053 in OEIS.
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In Section 5, we relate the functions P (n) and Q(n) by providing yet more
recurrences for both of them, from which we see that each function completely
determines the other. With this in place, we move on to Section 6, in which we use
these recurrences to determine several analytic results for P (n) and Q(n), including
upper and lower bounds and derivations of their asymptotic behavior.

Our work then culminates in Section 7, in which we state and prove the strongest
results of the paper. By appealing to our analytic bounds on P (n) and Q(n),
we show that for all sufficiently large values of n, the recurrences of Section 5
admit certain drastic simplifications. By then combining this result with rigorous
computer calculations, we arrive at the main theorem of the paper3:

Theorem 18. Let P (n) and Q(n) be as given. Then if n ≥ 0 is not one of the 177
known counterexamples tabulated in Table 1 of the appendix (in particular, for all
n > 149, 894), we have

P (n) = f(n) + Q(g(n)) and Q(n) = 1 + f(n) + P (g(n)),

where the functions f(n) and g(n), given by

f(n) :=
⌊√

2n + 1/2
⌋

=
[√

2n
]
, and g(n) :=

f(n)[f(n) + 1]
2

− n,

are the smallest nonnegative integers satisfying [1 + 2 + 3 + · · ·+ f(n)]− g(n) = n.

With this, we derive several other satisfying and revealing reccurence relations
and quasi-explicit representations for P (n) and Q(n). We also briefly demonstate
and discuss the intricate fractal-like symmetry of the graphs of these functions. We
then conclude in Section 9 by noting applications in the design of algorithms related
to this problem and with some open questions for future research.

For an earlier version of this paper with somewhat more detail, see [?].

2. Definitions and Notation

For the reader’s possible convenience, a brief list of definitions used throughout the
paper is given here. In each definition, A is assumed to be a subset of {0, 1, 2, . . .},
and n and k are assumed to be nonnegative integers.

• The boundary of A, ∂A, is ∂A := {z ∈ A : {z − 1, z + 1} $⊆ A}. In words, it is
the set of elements of A whose successor or predecessor is not in A.

• The volume and perimeter of A are defined as

vol(A) :=
∑

z∈A

z, and per(A) :=
∑

z∈∂A

z,

3More adequate introductions of the functions f and g are given in Section 6.
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respectively. For convention, vol(∅) = per(∅) = 0.

• P (n) := minA⊆{0,1,...}

{
per(A) : vol(A) = n

}
.

• The complement of A is Ac := {0, 1, . . .} \ A = {z ∈ {0, 1, . . .} : z /∈ A}.

• Q(n) := minA⊆{0,1,...}

{
per(Ac) : vol(A) = n

}
.

• The helper functions p(n; k) and q(n; k) are defined as

p(n; k) := min
A⊆{0,1,...,k}

{
per(A) : vol(A) = n

}
,

q(n; k) := min
A⊆{0,1,...,k}

{
per(Ac) : vol(A) = n

}
.

• The special helper function σ(n; k) is

σ(n; k) := min
A⊆{0,1,...,k}

{
per(Ac) : vol(A) = n, and k ∈ A

}
.

• The functions f(n) and g(n) are given by

f(n) =
[√

2n
]
, g(n) =

f(n)[f(n) + 1]
2

− n =
[√

2n
]2

+
[√

2n
]

2
− n,

where [x] denotes the nearest integer function. In Proposition 8, we show
these are the smallest nonnegative integers satisfying [1+· · ·+f(n)]−g(n) = n.

• For N ≥ 1 (e.g., N = 149, 894), φ(n;N) = φ(n) := min{i ≥ 0 : gi(n) ≤ N}.

• The function R(n) is recursively defined as R(0) := 0, and for all n ≥ 1, we
have R(n) := 1/2 + f(n) + R(g(n)).

3. Preliminary Results

The following is used throughout [2] particularly in their lower bound on P (n).

Lemma 2. (Miller et al., 2011) Assume A is a finite nonempty subset of {0, 1, . . .},
and let m denote its maximum element. Then

m ≤ per(A) ≤ vol(A) ≤ m(m + 1)
2

.

Using this lemma, the following lower bound is immediately attained.
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Proposition 3. Assume A ⊆ {0, 1, . . .} is finite. Then we have

√
2vol(A)− 1/2 ≤

−1 +
√

1 + 8vol(A)
2

≤ per(A).

Moreover, for any positive integer n, this implies
√

2n1/2 − 1/2 ≤ P (n).

As stated before, except for the previously mentioned constructive upper bound
on P (n), these two results are all that has been published about P (n). The remain-
der of the paper is devoted to new results.

3.1. Miscellaneous Lemmas

Lemma 4. Let ∅ $= A ⊆ {0, 1, . . .} be finite with maximum element m. Then

m + 1 ≤ per(Ac)

with equality if and only if {1, . . . ,m} ⊆ A.

Proof. Let A be as given. Then m ∈ A, but we know m + 1 /∈ A. Therefore,
m + 1 ∈ ∂Ac implying that m + 1 ≤ per(Ac). Now since m + 1 ∈ ∂Ac, we know
that m + 1 = per(Ac) if and only if ∂Ac is equal to either {m + 1} or {0,m + 1}.
But this happens if and only if {1, 2, . . . ,m} ⊆ A, as desired.

Proposition 5. Assume A ⊆ {0, 1, . . .} is finite. Then we have

√
2vol(A) + 1/2 ≤

−1 +
√

1 + 8vol(A)
2

+ 1 ≤ per(Ac).

Moreover, for any positive integer n, this implies
√

2n1/2 + 1/2 ≤ Q(n).

Proof. This follows from the previous lemma just as Proposition 3.

4. Recurrence Relations using Auxilary Functions

We now derive our first set of recurrence relations for P (n) and Q(n). Although
the relations derived in Section 5 are more revealing, the relations presented here
follow naturally, and they motivate the introduction of important auxilary functions.
Moreover, due to their convenient structure, these relations are used extensively in
the design of algorithms for computing values, as we briefly discuss in Section 9.
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4.1. First Recurrence for P (n)

As is often the case in analyzing discrete functions, we may obtain an exact recur-
rence relation for P (n) in terms of a related auxillary function. In our case, recall
that P (n) is the minimum perimeter among all subsets of {0, 1, . . .} having volume
n. This suggests defining an auxilary function, p(n; k), as

p(n; k) = min
A⊆{0,1,...,k}

{
per(A) : vol(A) = n

}
.

Then for all n ≥ 0, we have

P (n) = min
k∈{0,1,...}

{
min

A⊆{0,1,...,k}

{
per(A) : vol(A) = n

}}
= min

k∈{0,1,...}

{
p(n; k)

}
.

From its definition, it is clear that for all fixed n, the function p(n; k) is mono-
tonically decreasing with k. Moreover, for all K ≥ n, we have p(n;K) = p(n;n)
since any subset of {0, 1, . . .} having volume n must necessarily be a subset of
{0, 1, 2, . . . , n}. Therefore the above equation simplifies to

P (n) = min
k∈{0,1,...}

{
p(n; k)

}
= lim

k→∞
p(n; k) = p(n;n). (2)

Thus, we now seek a recurrence for p(n; k), which will provide us with P (n) by
calculating p(n;n).

For notational convenience, let S(n; k) denote the set of all subsets of {0, 1, . . . , k}
having volume n. Then consider the following paritition of S(n; k)

S(n; k) =
k+1⋃

l=0

{
A ∈ S(n; k) : {l, . . . , k} ⊆ A and l − 1 /∈ A

}
.

From this partition, it follows that

p(n; k) = min
l∈{0,...,k+1}

{
min

A∈S(n;k)

{
per(A) : {l, . . . , k} ⊆ A and l − 1 /∈ A

}}
. (3)

Now let 0 ≤ l ≤ k + 1 be fixed. Then we have

min
A∈S(n;k)

{
per(A) : {l, . . . , k} ⊆ A and l − 1 /∈ A

}

= min
B⊆{0,...,l−2}

{
per(B ∪ {l, l + 1, . . . , k}) : vol(B ∪ {l, l + 1, . . . , k}) = n

}

=






p(n; k − 1) if l = k + 1,
k + p(n− k; k − 2) if l = k,

k + l + p
(
n− [k(k + 1)− l(l − 1)]/2; l − 2

)
if 0 ≤ l < k.
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Therefore, by substituting into (3), we are able to obtain the recurrence

p(n; k) = min

{
p(n; k − 1), k + p(n− k; k − 2),

k + min
l∈{0,...,k−1}

{
l + p

(
n− [k(k + 1)− l(l − 1)]/2; l − 2

)}
}

, (4)

which is valid for all n ≥ 1 and for all k ≥ 1. Moreover, as boundary conditions,
which are clear from its definition, we have that p(n; k) satisfies

p(n; k) =

{
0 if n = 0,
∞ if n < 0 or k ≤ 0 < n.

Thus, this gives the following compact representation for P (n) for all n ≥ 0:

P (n) = min
{
p(n;n− 1), n

}
. (5)

4.2. Introduction of Q(n) and Derivation of First Recurrences

Because of its intimate connections with the function P (n) that will be explored in
subsequent sections, we now introduce the function Q(n), which is defined as

Q(n) = min
A⊆{0,1,...}

{
per(Ac) : vol(A) = n

}
.

The difference between this function and the function P (n) is subtle, and based on
how similarly the two functions are defined, one would expect their behavior to be
very close. As we will see, this is indeed the case, and the connections between P (n)
and Q(n) are actually of fundamental importance. However, it is important for the
reader to keep in mind the difference in how these functions are defined.

As with the function P (n), we define the auxilary function q(n; k) as

q(n; k) = min
A⊆{0,1,...,k}

{
per(Ac) : vol(A) = n

}
,

and just as before, for all n ≥ 0, we have that

Q(n) = q(n;n). (6)

Because of the difference between how the functions P (n) and Q(n) are defined,
we now need to define a special auxilary function, σ(n; k), in order to obtain a
compact recurrence for q(n). This function is defined by

σ(n; k) = min
A⊆{0,1,...,k}

{
per(Ac) : vol(A) = n and k ∈ A

}
.
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Note the similarities between σ(n; k) and q(n; k). In fact, for all n ≥ 1 and k ≥ 0,

q(n; k) = min
l∈{1,2,...,k}

{
σ(n; l)

}
. (7)

Using this equation and (6), we obtain that Q(0) = 0, and for all n ≥ 1

Q(n) = min
l∈{1,2,...,n}

{
σ(n; l)

}
. (8)

Just as was the case for P (n), in order to obtain a useful recurrence relation for
Q(n), it now only remains to find a recurrence for σ(n; k). As before, we accomplish
this by a simple partition yielding

σ(n; k) = k + 1 + min
{
σ(n− k; k− 1)− k,σ(n− k; k− 2), k− 1 + q(n− k; k− 3)

}
,

which we obtain by partitioning the subsets of interest into the three groups (I) sets
containing k − 1, (II) sets containing k − 2 but not k − 1, and (III) sets containing
neither k − 2 nor k − 1.

At this point, we should note that some care must be given to the interpretation
of the above equation, which depends on how we define σ(0; 0). However, if we
note and state as a boundary condition that σ(n, n) = 2n for all n ≥ 1, then these
concerns are effectively removed.

We then have a recurrence for σ. As boundary conditions for σ(n; k), we have

σ(n; k) =






2n if n = k ≥ 0,
∞ if n < 0 or if k ∈ {0, 1} and n > k,
∞ if 0 ≤ k > n ≥ 0,

and for all n ≥ 2, and 2 ≤ k < n, we have

σ(n; k) = k + 1 + min
{
k− 1 + q(n− k; t− 3),σ(n− k; k− 2),σ(n− k; k− 1)− k

}
.

Thus, by using (8) we have a recurrence for Q(n) as well.

5. More Direct Recurrence Relations

Using different partitions of the sets of interest, we derive the following recurrences,
from which we see the first connections between the functions P (n) and Q(n).

5.1. Recurrence for P (n) Involving q(n; k) and σ(n; k)

We may calculate P (n) by a “more direct” recurrence relation, which is found by
partitioning all sets of volume n first according to their maximum element, m, and
then according to the largest integer smaller than m not contained in each set.
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Let A be a set of volume n, let m be its maximum element, and let l be the largest
element of {−1, 0, . . . ,m} not contained in A. Then A may be written uniquely as
A = {0, 1, 2, . . . ,m} \ B for some set B ⊆ {0, 1, . . . , l}, where the volume of B is
equal to (1 + 2 + · · · + m) − n and l ∈ B. If l = m − 1, then per(A) = per(Bc).
Else, we have per(A) = m + per(Bc).

From this observation, we obtain that for all n ≥ 2

P (n) = min
m≥1

{
m+q([1+2+ · · ·+m]−n;m−2),σ([1+2+ · · ·+m]−n;m−1)

}
, (9)

where q(n; k) and σ(n; k) are defined as earlier.

5.2. Recurrence for Q(n) Involving p(n; k)

As before, we also have a simple recurrence that can be used to calculate Q(n)
“more directly.” Let A be a set of volume n and maximum element m. Then the
set A may be written uniquely in the form A = {0, 1, 2, . . . ,m} \ B for some set
B ⊆ {0, 1, . . . ,m−1}, where the volume of B is equal to (1+2+ · · ·+m)−n. Now
we know that for all such sets A and B, we have per(Ac) = per(B) + (m + 1).

This observation leads to the simple and beautiful recurrence that for all n ≥ 2,

Q(n) = 1 + min
m≥1

{
m + p([1 + 2 + · · · + m]− n;m− 1)

}
, (10)

where p(n; k) is as defined earlier.

6. Analysis of Recurrences

Although equations (9) and (10) appear somewhat intractible (and they offer little
or no computational advantage over the first recurrences of Section 4), they turn
out to be crucial in understanding the behavior of P (n) (and of Q(n) as well). In
Section 7, we are able to greatly simplify these recurrences, but in order to do so,
we must first derive some analytic bounds on P (n) and Q(n).

6.1. Relevant Lemmas and Notions

Lemma 6. For all n ∈ {1, 2, . . .}, there are unique integers f(n) and g(n) satisfying

n = [0 + 1 + · · · + f(n)]− g(n),

such that 0 ≤ g(n) < f(n). Moreover, f(n) and g(n) are given by4

f(n) =
⌈
−1 +

√
1 + 8n

2

⌉
, and g(n) =

f(n)[f(n) + 1]
2

− n.

4We will use these representations for f(n) and g(n) so that f(0) = g(0) = 0 is well-defined.
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Having defined these functions, we may now restate previous lemmas involving
P (n) and Q(n) in these terms. The most important result we will use combines
Propositions 3 and 5 as follows:

Corollary 7. Restating earlier results in new notation, for all n ≥ 1, we have that

P (n) ≥ f(n), and Q(n) ≥ f(n) + 1.

Finally, before moving on, we must present two more results on f(n) and g(n).

Proposition 8. Let f(n) be as before. Then for all integers n ≥ 0, we have

f(n) =
⌈
−1 +

√
1 + 8n

2

⌉
=

⌈√
2n− 1/2

⌉
=

[√
2n

]
,

where [x] is the nearest integer function.

Proof. It suffices to show the first part of the stated equation holds, and the fact that√
2n is never a half-integer will complete the proof. Now by way of contradiction,

suppose that the first two representations are not equal. Then this would imply
that there exist integers p ∈ Z and n ∈ {0, 1, . . .} such that

√
2n− 1/2 ≤ p <

√
1 + 8n− 1

2
,

which implies 8n ≤ (2p + 1)2 < 8n + 1. But since n and p are integers, this forces
8n = (2p + 1)2, which taken modulo 2 yields a contradiction.

Proposition 9. Let g(n) be as defined. Then for all integers L ≥ 0 and n ≥ 0,

gL(n) ≤ 2 · (n/2)1/2L

.

Proof. The proof is by induction on L. If L = 0, then the claim is trivially true,
establishing the base case. Suppose the claim holds for L = m. Then for all n ≥ 0,

g(n) ≤ f(n)− 1 <
√

2n− 1/2 <
√

2n,

which implies gm+1(n) = g(gm(n)) <
√

2 · gm(n). Then using the induction hy-
pothesis and that the square root function is increasing completes the proof.

6.2. Upper Bounds and Asymptotics for P (n) and Q(n)

Using the recurrences of Section 5, we now obtain simple upper bounds on P (n)
and Q(n), which taken with the last few lemmas, yield good absolute bounds in n.

Theorem 10. Let f(n) and g(n) be defined as before. Then for all n ≥ 0, we have

P (n) ≤ f(n) + Q(g(n)), and Q(n) ≤ 1 + f(n) + P (g(n)).
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Proof. For n = 0 and n = 1, the two inequalities hold. Then for all n ≥ 2, we may
appeal to (9) to obtain

P (n) = min
m≥1

{
m + q([1 + · · · + m]− n;m− 2),σ([1 + · · · + m]− n;m− 1)

}

≤ f(n) + min
{
q(g(n); f(n)− 2),σ(g(n); f(n)− 1)

}

= f(n) + q(g(n); f(n)− 1) = f(n) + Q(g(n)),

and the corresponding inequality for Q(n) is proven analogously.

Corollary 11. For all nonnegative integers n and L, we have that

P (n) ≤ L + P (g2L(n)) +
2L−1∑

i=0

f(gi(n)), and

Q(n) ≤ L + Q(g2L(n)) +
2L−1∑

i=0

f(gi(n)),

where gi(n) is the i-fold composition of g evaluated at n.

Theorem 12. Let P (n) and Q(n) be as given. Then P (n) ∼ Q(n) ∼
√

2n1/2.
Moreover, for all n > 2,
√

2n1/2 − 1/2 < P (n) ≤
√

2n1/2 + (23/4 · n1/4 + 1)[log2(log2(n/2))− 1] + 7,
√

2n1/2 + 1/2 < Q(n) ≤
√

2n1/2 + (23/4 · n1/4 + 1)[log2(log2(n/2))− 1] + 7.

Proof. The lower bounds in the asserted inequalities have already been proven. To
prove the upper bounds, we merely combine the results in the last corollary with
the past few bounds on f(n) and g(n). More specifically, assuming n > 2, we know
from Proposition 9 that if L ≥ (log2(log2(n/2))− 1)/2, then

g2L(n) ≤ 2 · (n/2)1/2(log2(log2(n/2))−1)
= · · · = 8.

By considering values of P (n) and Q(n) for n ≤ 8, we see that g2L(n) ≤ 8 implies
P (g2L(n)) ≤ 7 and Q(g2L(n)) ≤ 7. Now by the last few results, we have

P (n) ≤ L + P (g2L(n)) +
2L−1∑

i=0

f(gi(n)) ≤ L + P (g2L(n)) +
2L−1∑

i=0

√
2gi(n) + 1/2

≤ 2L + P (g2L(n)) +
√

2n + 2
2L−1∑

i=1

√
(n/2)1/2i

≤ 2L + P (g2L(n)) +
√

2n + 4L(n/2)1/4.

Then taking L = (log2(log2(n/2))−1)/2 proves the bound. The inequality for Q(n)
is proven analogously.
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Note that these bounds on P (n) are slightly better than those of [2] stated in
Theorem 1. Also note that the upper bound on the summation is very crude.
However, these bounds are sufficient for our purposes.

7. Obtaining Good Recurrences for P (n) and Q(n)

Although the bounds in Theorem 12 are rather good, they reveal nothing about
the actual fluctuations of P (n) and Q(n). And although we have already obtained
multiple recurrence relations for finding exact values, these relations all involve
auxilary helper functions, multiple variables, and unweildy minimum functions. In
this section, we combine our analytic bounds and combinatorial results to obtain
surprisingly simple and satisfying recurrence relations for P (n) and Q(n) and even
quasi-explicit formulae.

7.1. New Lower Bounds on P (n) and Q(n)

Lemma 13. Let n and k be positive integers with k < f(n). Then p(n; k), q(n; k),
and σ(n; k) are all infinite.

Proof. If k < f(n), there are no subsets of {0, 1, . . . , k} with volume n.

Lemma 14. Let n and m be positive integers with m > f(n). Then we have

m + p([1 + · · · + m]− n;m− 1) ≥ f(n) +
√

2(g(n) + f(n) + 1) + 1/2
m + q([1 + · · · + m]− n;m− 2) ≥ f(n) +

√
2(g(n) + f(n) + 1) + 3/2.

Proof. Using the simple lower bound in Theorem 12, we obtain

p([1 + · · · + m]− n;m− 1) ≥ P ([1 + · · · + m]− n)
≥

√
2([1 + · · · + m]− n)− 1/2

≥
√

2(g(n) + [f(n) + 1] + · · · + m)− 1/2
≥

√
2(g(n) + f(n) + 1)− 1/2,

which proves the first inequality. The second is proven in the same way.

Lemma 15. Let n and m be positive integers with m ≥ f(n). Then we have

σ([1 + 2 + · · · + m]− n;m− 1) ≥ 2f(n)− 2.

Proof. First, we may assume f(n) ≥ 2. Let A ⊆ {0, 1, . . . ,m − 1} be such that
vol(A) = [1+2+ · · ·+m]−n and m−1 ∈ A. By way of contradiction, suppose that
per(Ac) < 2f(n)−2. Now if m ≥ 2f(n)−2, then since m−1 ∈ ∂A, this would imply
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that per(Ac) ≥ m ≥ 2f(n) − 2. Therefore, we may assume that m ≤ 2f(n) − 3.
Now since m ≥ f(n), the volume of A may be written as

vol(A) = [1 + 2 + · · · + m]− n < f(n) + [f(n) + 1] + · · · + m,

and because m ≤ 2f(n)− 3 = [f(n)− 2] + [f(n)− 1], we also have

vol(A) < [f(n)] + [f(n) + 1] + · · · + [m− 1] + [f(n)− 2] + [f(n)− 1] =
m−1∑

i=f(n)−2

i.

From this, we know there is at least one element of {f(n)−2, f(n)−1, . . . ,m−2}
that is not contained in A, since otherwise vol(A) would be too large. Let l ∈ Ac

be the largest integer satisfying f(n) − 2 ≤ l ≤ m − 2. Then since m − 1 ∈ A, we
know that l ∈ ∂Ac, which implies

per(Ac) ≥ l + m ≥ f(n)− 2 + m ≥ f(n)− 2 + f(n) = 2f(n)− 2.

But this contradicts the assumption that per(Ac) < 2f(n)− 2.

With these lemmas, we are now able to prove the following lower bounds.

Theorem 16. Let P (n) and Q(n) be as given. Then for all n ≥ 2, we have

P (n) ≥ f(n) + min
{
Q(g(n)),

√
2(g(n) + f(n) + 1) + 3/2, f(n)− 2

}

Q(n) ≥ 1 + f(n) + min
{
P (g(n)),

√
2(g(n) + f(n) + 1) + 1/2

}
.

Proof. Starting with (9) and applying Lemmas 13, 14, and 15, we obtain

P (n) = min
m>f(n)

{
f(n) + q(g(n); f(n)− 2),m + q([1 + 2 + · · · + m]− n;m− 2),

σ(g(n); f(n)− 1),σ([1 + 2 + · · · + m]− n;m− 1)
}

≥ f(n) + min
{
Q(g(n)),

√
2(g(n) + f(n) + 1) + 3/2, f(n)− 2

}
.

The second inequality is proven analogously by starting with (10).

7.2. Squeezing an Equation from Inequalities (Eventually)

At this point, we have simple upper bounds on P (n) and Q(n) provided by Theo-
rem 10 and nearly simple lower bounds from Theorem 16, which are complicated by
the “min” operators. Suppose we could show that eventually P (g(n)) and Q(g(n))
happen to be the smallest terms in each minimum. Then our lower bounds would
simplify drastically and our lower and upper bounds would squeeze together, yield-
ing a simple pair of mutual recurrences valid for all sufficiently large n.

As it turns out, we can in fact prove this claim, as follows:
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Proposition 17. Let P (n) and Q(n) be as given. Then there exists an N ∈ Z such
that for all n ≥ N

P (g(n)) = min
{
P (g(n)),

√
2(g(n) + f(n) + 1) + 1/2

}
and

Q(g(n)) = min
{
Q(g(n)),

√
2(g(n) + f(n) + 1) + 3/2, f(n)− 2

}
.

Moreover, these claims hold if we take N to be 2, 500, 000.

Proof. We will first prove there is such an N ∈ Z. Then we will discuss why
we may take N to be 2, 500, 000. We need to show that for sufficiently large n,
P (g(n)) ≤

√
2(g(n) + f(n) + 1) + 1/2. From Theorem 12, we know

P (r) ≤
√

2r + o(
√

r).

Therefore, there exists a constant G such that for all r ≥ G, we have

P (r) ≤
√

2r + o(
√

r) ≤
√

4r.

From this, it follows that for all n, if g(n) ≥ G, then we have

P (g(n)) ≤
√

4g(n) ≤
√

2(g(n) + f(n) + 1) + 1/2.

Let M := max0≤k≤G P (k), and let n ≥ M2(M2 + 1)/2 be arbitrary. Now if
g(n) ≥ G, then we know the claim holds. Therefore, we can assume g(n) < G. But
if this is the case, then we know P (g(n)) ≤ M , which implies

P (g(n)) ≤ M ≤
√

f(n) ≤
√

2(g(n) + f(n) + 1) + 1/2.

Therefore, for all n ≥ M2(M2 + 1)/2 =: NP , the first equation holds. In the
same way, we may find a constant NQ after which the second inequality holds.
Thus, taking N := max{NP , NQ} proves the existence of such an integer N .

Now proving that we may in fact take N to be 2, 500, 000, follows from somewhat
lengthy but routine refinements of the previous argument. In the above notation,
the main idea is to first obtain any analytic upper bound on G, which is then refined
by using computer calculated data to compare P (r) with

√
4r to make G as small

as possible. Using this technique for both NP and NQ then proves the claim.

With this proposition, we are able to prove our main result.

Theorem 18. Let P (n) and Q(n) be as given. Then if n ≥ 0 is not one of the 177
known counterexamples tabulated in Table 1 of the appendix (in particular, for all
n > 149, 894), we have

P (n) = f(n) + Q(g(n)) and Q(n) = 1 + f(n) + P (g(n)),
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where as before, the functions f(n) and g(n), given by

f(n) :=
⌊√

2n + 1/2
⌋

=
[√

2n
]

and g(n) :=
f(n)[f(n) + 1]

2
− n,

are also the smallest nonnegative integers satisfying [1 + 2 + · · ·+ f(n)]− g(n) = n.

Proof. If n ≥ 2, 500, 000, then the result follows by using the previous proposition to
simplify the lower bounds of Theorem 16 and comparing these to the upper bounds
in Theorem 10.

On the other hand, if 0 ≤ n < 2, 500, 000, then the result holds by performing
an exhaustive computer seach for counterexamples5. There are only 177 counterex-
amples in this range, as tabulated in Table 1 of the appendix. In particular, if
n > 149, 894, then the claim holds since 149, 894 is the largest counterexample.

8. Corollaries and Remarks

There are many interesting implications of Theorem 18; from this result, many
things can be discovered about the behavior of P (n) and Q(n), and the intimate
connection between these two functions is made evident. Although these results can
be formulated simply as algebraic statements about the recurrence relations, the
corresponding geometric statements about the graphs of these functions is perhaps
more enlightening.

Figure 1: Graph of P (n) (higher) and P (n)− f(n) = P (n)− [
√

2n] (lower)

Examining Figures 1 and 2 suggests several apparent patterns of the graphs of
these functions. For example, we see that the graphs P (n) and Q(n) are each
“drifting” upwards by a translation of f(n). After compensating for this drift, the
patterns in the graphs become more apparent.

5A brief discussion of the algorithms used for this search is provided in Section 9. Code is
available on request.
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Figure 2: Graph of Q(n) (higher) and Q(n)− f(n)− 1 = Q(n)− [
√

2n]− 1 (lower)

Now the curves P (n) − f(n) and Q(n) − f(n) − 1 (shown as the ‘lower’ curves
in the previous figures) appear to be almost “periodic” in a sense, with zeroes at
0, 1, 3, 6, 10, . . .. This apparent behavior is even more pronounced when the values
of these functions are laid out in the following triangular array

{an}∞n=0

a0

a1

a2 a3

a4 a5 a6

a7 a8 a9 a10

a11 a12 a13 a14 a15
...

...
...

...
...

, yielding

{(f(n), g(n))}∞n=0

(0, 0)
(1, 0)

(2, 1) (2, 0)
(3, 2) (3, 1) (3, 0)

(4, 3) (4, 2) (4, 1) (4, 0)
(5, 4) (5, 3) (5, 2) (5, 1) (5, 0)

...
...

...
...

...

.

Then arranging values in this triangular manner, we have

{P (n)− f(n)}∞n=0

0
0

0 0
1 2 0

2 3 2 0
3 3 4 2 0

4 5 3 4 2 0
4 5 6 3 4 2 0

6 4 5 6 3 4 2 0
7 7 4 5 6 3 4 2 0

6 7 7 4 5 6 3 4 2 0

{Q(n)− f(n)− 1}∞n=0

-1
0

1 0
2 1 0

2 2 1 0
4 2 2 1 0

5 4 2 2 1 0
3 5 4 2 2 1 0

6 3 5 4 2 2 1 0
7 6 3 5 4 2 2 1 0

6 7 6 3 5 4 2 2 1 0

.

Then it appears that the rows (read from right to left) of the triangle for {P (n)−
f(n)} ‘approach’ 0, 2, 4, 3, 6, 5, 4, 7, 7, 6, . . ., and the rows of {Q(n)− f(n)− 1} ‘ap-
proach’ 0, 1, 2, 2, 4, 5, 3, 6, 7, 6, . . .. Moreover, these two sequences seem to be just
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{Q(t)} and {P (t)}, respectively. In fact, this follows as our first corollary of Theo-
rem 18:

Corollary 19. Let {P (n)−f(n)}∞n=0 and {Q(n)−f(n)−1}∞n=0 be arranged in the
triangular manner previously discussed. Then unless n is one of the 177 counterex-
amples in Table 1 of the appendix, reading the rows of {P (n)− f(n)} from to right
to left exactly agrees with Q(t), and reading the rows of {Q(n)− f(n)− 1} exactly
agrees with P (t).

Proof. This follows immediately by how the triangular array was constructed.

Formulating this as a geometric statement is to say that except for 177 particular
points, each “lump” in the graphs of P (n) − f(n) and Q(n) − f(n) − 1 is simply
a reflection of a partial copy of Q(n) or P (n), respectively. Thus, the graph of
P (n) eventually consists solely of “shifted” and reflected partial copies of Q(n),
and similarly the graph of Q(n) eventually consists solely of “shifted” and reflected
partial copies of P (n). This mutual similarity of the two functions also induces
self-similarity as shown in the following results.

Corollary 20. If g(n) < f(n) − 1, and if n and n − f(n) are not one of the 177
values in Table 1,

P (n) = 1 + P (n− f(n)) and Q(n) = 1 + Q(n− f(n)).

Proof. Use Theorem 18 and note if g(n) $= f(n)− 1, then g(n) = g(n− f(n)).

This corollary states that with a finite number of exceptions, unless n is one of
the values at the far left of a row, the value for n in the triangle for {P (n)}∞n=0 (or
{Q(n)}∞n=0) is one more than the value directly above that entry in the triangle.

Corollary 21. If n and g(n) are not one of the 177 values listed in Table 1 of the
appendix (and in particular, if g(n) > 149, 894), then we have

P (n) = 1 + f(n) + f(g(n)) + P (g2(n)) and
Q(n) = 1 + f(n) + f(g(n)) + Q(g2(n)).

Proof. This follows immediately by applying Theorem 18 twice.

This last recurrence is readily ‘solved’ yielding the quasi-explicit equations:

Proposition 22. For all n ≥ 0, let φ(n; 149, 894) = φ(n) denote the smallest
nonnegative integer satisfying gφ(n)(n) ≤ 149, 894. Then for all n ≥ 0, we have

P (n) =

{
P (gφ(n)(n)) +

∑φ(n)
i=1 f(gi−1(n)) + φ(n)/2 if φ(n) is even

Q(gφ(n)(n)) +
∑φ(n)

i=1 f(gi−1(n)) + [φ(n)− 1]/2 if φ(n) is odd,

Q(n) =

{
Q(gφ(n)(n)) +

∑φ(n)
i=1 f(gi−1(n)) + φ(n)/2 if φ(n) is even

P (gφ(n)(n)) +
∑φ(n)

i=1 f(gi−1(n)) + [φ(n) + 1]/2 if φ(n) is odd.



INTEGERS: 12 (2012) 18

Proof. This follows easily from the previous corollary. Although the function φ(n)
is much too elusive for most honest mathematicians to call these equations truly
“explicit”, they ought not be considered recursive. This is because even though P
and Q are referenced on the right-hand side, their arguments are bounded; therefore,
by appealing to Table 1, those terms are effectively known.

This gives rise to the following, perhaps surprising fact:

Corollary 23. Let P (n) and Q(n) be as given. Then for all n ≥ 0, we have

−1 ≤ Q(n)− P (n) ≤ 2.

Proof. For all n ≥ 0, we can appeal to Proposition 22 to obtain that

Q(n)− P (n) =

{
Q(gφ(n)(n))− P (gφ(n)(n)), if φ(n) is even,

P (gφ(n)(n))−Q(gφ(n)(n)) + 1, if φ(n) is odd.

Moreover, for our purposes, we can assume that gφ(n)(n) is one of the 177 coun-
terexamples tabulated in Table 1 or else we could continue to appeal to Theorem
18 until this is the case. But looking at a table of these 177 values, we see that if k
is one of those exceptions, then 0 ≤ Q(k)− P (k) ≤ 2.

Corollary 24. Recursively define the function R(n) by R(0) := 0, and for n ≥ 1,
R(n) := 1/2 + f(n) + R(g(n)). Then for all n ≥ 0, we have

0 ≤ R(n)− P (n) + Q(n)
2

≤ 9,

−1/2 ≤ R(n)− P (n) ≤ 9, and − 1 ≤ R(n)−Q(n) ≤ 8 + 1/2.

Proof. This is proven just as the last corollary.

9. Conclusion

We conclude by discussing applications for computing P (n) and Q(n) and by listing
some open questions.

9.1. “Sufficiently Large” and Computer Algorithms

In Proposition 17, we state results that hold for all sufficiently large values of n
(in particular, for all n ≥ 2, 500, 000). We then use this result to prove Theorem
18, and we use a computer aided search to completely classify all counterexamples,
which brings up a brief discussion of algorithms.
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The most näıve approach to compute P (n) would be simply to list all sets of
volume n and find which has the smallest perimeter. This would require roughly
O (2n) time and O (n) memory, which is much too slow for large n, and a different
approach is needed.

Using the recurrence relations in Section 4, dynamic programming enables us
to design algorithms for computing P (n) and Q(n) taking O

(
n2f(n)

)
= O

(
n2.5

)

time and using O
(
n2

)
memory. We can reduce this memory requirement to roughly

O (n) by employing a custom data structure, which benefits from the fact that for
fixed n, functions such as p(n; k) seem to take very few distinct values. Using
these algorithms, the author was able to check all values of P (n) and Q(n) for
n ≤ 3, 500, 000, which is more than enough to obtain the results of Theorem 18.

These computations were verified on multiple machines, which collectively took
several days of running time and used a few megabytes of memory. However, now
that we have used these results to rigorously prove Theorem 18 and Proposition 22,
we may use these to compute P (n) or Q(n) in only O (φ(n)) ≤ O (log2 log2(n/2))
time using no additional memory, which is a vast improvement. Moreover, we can
compute a list of P (0), P (1), . . . , P (n) [or Q(0), Q(1), . . . , Q(n)] in O (n) time using
only the required O (n) memory.

Thus, one can now simply use Theorem 18 and the 177 values in Table 1 to
compute P (n) and Q(n) extremely quickly, and P (n) and Q(n) can be tabulated
essentially as far out as desired. The author is more than willing to provide anyone
interested with code and calculated results.

10. Open Questions

There are several possible areas of future research. Because the function P (n) was
first introduced so recently, this paper serves as a comprehensive overview of all
that is known.

– Little is known about the behavior of the functions p(n; k), q(n; k), and σ(n; k).

– It appears that for any fixed n ≤ 100, 000 the function p(n; k) takes at most
two finite values as k varies. This may be interesting and might be proveable
by focusing on Proposition 17.

– Very little or nothing whatsoever is known about φ(n;N) from Proposition
22.

– Nothing is known about the function R(n) of Corollary 24.

– Characterizing sets for which P (n) is obtained may be interesting. It seems
likely that the partitions used and the code developed in this paper would
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help with that. Moreover, the result of Theorem 18 seems likely to help with
this.

– Providing more direct (i.e., less analytic) proofs for these results would likely
be quite enlightening.

– There seems to be no pattern or unifying properties for the 177 counterexam-
ples tabulated in Table 1. Alternate proofs of the main results may shed light
on these seemingly sporadic values.

– This paper considered the function minA⊆X{per(A) : vol(A) = n} for X =
{0, 1, 2, . . .}, and [2] also considered this function for the set X = Z. It may be
interesting to consider the corresponding function for different ambient sets X.
For instance, X = {1, 2, 3, . . .} or X = {a1, a2, a3, . . .}, where the boundary
of A ⊆ X is defined as ∂A := {ai : {ai−1, ai+1} $⊆ A} may be interesting.
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Appendix

The 177 counterexamples to Theorem 18 are tabulated below. Entries of the form
(123 ) are not actually counterexamples to the theorem, and they are included here
only for completeness.
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n P(n) Q(n)
(0 ) 0 0
2 2 (4 )
4 4 (6 )
7 6 (7 )
8 7 (7 )
11 8 (10 )
16 10 (12 )
17 11 (11 )
29 14 (15 )
92 (22 ) 23
125 25 (25 )
154 28 28
155 29 (29 )
174 29 29
361 (38 ) 38
390 39 (39 )
441 (42 ) 42
473 43 43
529 (46 ) 46
564 47 47
601 49 (50 )
637 49 49
704 54 (55 )
742 53 53
743 54 55
783 54 54
837 (53 ) 54
1003 (58 ) 59
1147 62 62
1184 (63 ) 64
1340 67 67
1341 68 (69 )
1380 (68 ) 69
1394 68 68
1548 72 72
1549 73 (74 )
1606 73 73
1665 74 74
1771 77 77
1772 78 (79 )
1833 78 78
1896 79 79
2173 (82 ) 82
2241 83 83
2279 86 86

n P(n) Q(n)
2508 (88 ) 88
2581 89 89
2867 (94 ) 94
2945 95 95
3250 (100 ) 100
3333 101 101
3336 (103 ) 104
3503 104 105
3588 104 104
3657 (106 ) 106
3745 107 107
3748 (109 ) 110
3925 110 111
4015 110 110
4016 111 (112 )
4107 111 111
4466 116 116
4467 117 (118 )
4563 117 117
4564 118 (119 )
4661 118 118
5186 (123 ) 124
5289 123 123
5806 (130 ) 131
5915 130 130
6026 131 131
6461 (137 ) 138
6576 137 137
6693 138 138
6811 139 139
7151 (144 ) 145
7272 144 144
7395 145 145
7396 146 (146 )
7436 (143 ) 143
7519 146 146
8003 151 151
8132 152 152
8133 153 (153 )
8262 153 153
8305 (151 ) 151
9222 (159 ) 159
9454 163 163
10086 (163 ) 164
10187 (167 ) 167

(Continued on the next page)
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n P(n) Q(n)
10478 169 (169 )
11200 (175 ) 175
11245 (172 ) 173
11505 177 (177 )
12261 (183 ) 183
12467 (181 ) 182
12580 185 (185 )
12583 (187 ) 188
12904 188 189
13066 188 188
13370 (191 ) 191
13703 193 (193 )
13752 (190 ) 191
14041 196 197
14210 196 196
14381 197 197
15052 204 (205 )
15227 205 (206 )
15402 204 204
15403 205 206
15580 205 205
15759 206 206
16511 (208 ) 209
17254 (214 ) 215
17441 214 214
17985 (217 ) 218
18955 223 223
19152 (224 ) 224
19522 (226 ) 227
20532 (232 ) 232
20533 233 (234 )
20737 233 233
21122 (235 ) 236
21961 (241 ) 242
22172 241 241
22173 242 (243 )
22385 242 242
22654 (241 ) 241
22814 244 (244 )
23656 (250 ) 251
23875 250 250
23876 251 (252 )
24096 251 251
24541 253 (253 )
24598 (251 ) 251

n P(n) Q(n)
26855 262 262
28726 (271 ) 271
28783 (268 ) 269
28968 272 272
30910 (281 ) 281
31161 282 282
33174 (291 ) 291
33434 292 292
35518 (301 ) 301
35787 302 302
36391 (301 ) 302
37147 307 307
39125 (312 ) 313
39625 317 317
39626 318 319
39909 318 318
41958 (323 ) 324
44890 (334 ) 335
47921 (345 ) 346
50126 353 353
51051 (356 ) 357
53326 364 364
53327 365 (365 )
53655 365 365
56625 375 375
56626 376 (376 )
56964 376 376
61851 (389 ) 389
65764 (401 ) 401
66129 402 (402 )
69797 (413 ) 413
70173 414 (414 )
73950 (425 ) 425
74337 426 (426 )
78223 (437 ) 437
78621 438 (438 )
108375 510 510
114014 523 523
129359 (554 ) 554
136036 (568 ) 568
142881 (582 ) 582
149894 (596 ) 596

Table 1: Comprehensive list of exceptions to Theorem 18.


