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Abstract
Let f : Nn → C be an arithmetic function of n variables, where n ≥ 2. We study
the mean-value M(f) of f that is defined to be

lim
x1,...,xn→∞

1
x1 · · ·xn

∑

m1≤x1, ... , mn≤xn

f(m1, . . . , mn),

if this limit exists. We first generalize the Wintner theorem and then consider
the multiplicative case by expressing the mean-value as an infinite product over all
prime numbers. In addition, we study the mean-value of a function of the form
(m1, m2, . . . , mn) #→ g(gcd(m1, m2, . . . , mn)), where g is a multiplicative
function of one variable, and express the mean-value by the Riemann zeta function.

1. Introduction

Let f : N → C be an arithmetic function. The mean-value M(f) of f is de-
fined as limx→∞ x−1

∑
m≤x f(m), if this limit exists. It is well-known that if∑∞

m=1 m−1|
∑

d|m µ(d)f(m/d)| < ∞, where µ is the Möbius function, then M(f) ex-
ists and equals

∑∞
m=1 m−1

∑
d|m µ(d)f(m/d). This is Wintner’s theorem. See, e.g.,

Schwarz and Spilker [4, Cor. 2.2]. Moreover, it is also well-known that if f is a multi-
plicative function satisfying

∑
p∈P p−1|f(p)−1| < ∞ and

∑
p∈P

∑
k≥2 p−k|f(pk)| <

∞, where P is the set of prime numbers, then M(f) exists, and M(f) =
∏

p∈P(1 +∑
k≥1 p−k(f(pk)− f(pk−1))) holds (cf. Schwarz and Spilker [4, Cor. 2.3]).
We extended these theorems in [7] to the case in which f : N2 → C is an

arithmetic function of two variables. In this paper, we extend the aforementioned
theorems to the case of an arithmetic function of n variables, where n ≥ 2.

Toth [5] proved that the natural density of the set of n-tuples such that all pairs

are coprime equals
∏

p∈P

(
1 − 1

p

)n−1(
1 + n−1

p

)
. We show in Corollary 6 that the
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natural density of the set of squarefree (n−1)-tuples such that all pairs are coprime
has the same expression.

Ushiroya [7] also proved the following mean-value theorem. If g is a multiplicative
function of one variable, then f defined by f(m1,m2) = g(gcd(m1,m2)) is a multi-
plicative function of two variables. Assuming

∑
p∈P

∑
k≥1

1
p2k |g(pk)−g(pk−1)| < ∞,

the mean-value M(f) =
∏

p∈P(1+
∑

k≥1
1

p2k (g(pk)−g(pk−1))) exists. In this study,
we extend this theorem to the case in which f is an arithmetic function of n vari-
ables of the form f(m1, m2, . . . , mn) = g(gcd(m1, m2, . . . , mn)), where n ≥ 2,
and express the mean-value in terms of the Riemann zeta function.

Let S be an arbitrary set in N and Nn(x, S) := #{(m1, . . . , mn) ∈ (N ∩

[1, x])n; gcd(m1, . . . , mn) ∈ S}. Cohen [2] proved that Nn(x, S) =
ζS(n)
ζ(n)

xn+Tn(x)

holds, where ζS(n) =
∑∞

m=1, m∈S
1

mn , Tn(x) = O(xn−1) for n > 2, and T2(x) =
O(x log2 x) for n = 2. See also [6]. From this result, it follows that the natural
density of the set of n-tuples (m1, . . . , mn) for which gcd(m1, . . . , mn) belongs

to S equals lim
x→∞

Nn(x, S)
xn

=
ζS(n)
ζ(n)

. We note that when g is the characteristic

function 1S of S, we can obtain Cohen’s result under the condition that 1S is
multiplicative by using a different method. Moreover, we present some examples,
which were not treated in Cohen [2], in which g is not a characteristic function of
a set in N.

2. Notation and Some Facts

Let n ≥ 2 be a fixed integer and f, g : Nn → C be arithmetic functions of n variables.
The mean-value M(f) of the function f is defined as

lim
x1, ... , xn→∞

1
x1 · · ·xn

∑

m1≤x1, ... , mn≤xn

f(m1, . . . , mn),

if this limit exists. Few results are known regarding the mean-values of general
multiplicative functions of several variables. In this study, we investigate those
mean-values by using elementary methods.

The Dirichlet convolution of f and g is defined as follows:

(f ∗ g)(m1, . . . ,mn) =
∑

!1|m1,..., !n|mn

f("1, . . . , "n)g(
m1

"1
, . . . ,

mn

"n
).

We use the same notation µ for the function µ(m1, . . . ,mn) = µ(m1) · · ·µ(mn),
which is the inverse of the constant 1 function under the Dirichlet convolution, i.e.,
(µ ∗ 1)(m1, . . . ,mn) = δ(m1, . . . ,mn), where δ(m1, . . . ,mn) = 1 or 0 according to
whether m1 = . . . = mn = 1 or not.
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We recall that a multiple series
∑∞

m1,...,mn=1 am1,...,mn with terms am1,...,mn ∈ C
is said to be convergent and to have as sum the number A ∈ C if

lim
M1,...,Mn→∞

∑

m1≤M1,...,mn≤Mn

am1,...,mn = A,

i.e., for every ε > 0 there is a positive integer M = M(ε) such that for every
M1, . . . ,Mn ≥ M,

|
∑

m1≤M1,...,mn≤Mn

am1,...,mn −A| < ε.

In case of double series see, e.g., Section 4.7 in [1].
The next theorem is an extension of Wintner’s theorem to the case in which f is

an arithmetic function of n variables.

Theorem 1. Let f : Nn → C be an arithmetic function of n variables. Suppose
∞∑

m1, ... , mn=1

1
m1 · · ·mn

|(f ∗ µ)(m1, . . . , mn)| < ∞. (1)

Then, the mean-value M(f) exists and

M(f) =
∞∑

m1, ... , mn=1

1
m1 · · ·mn

(f ∗ µ)(m1, . . . , mn). (2)

Proof. Since f = f ∗ δ = f ∗ µ ∗ 1, we have

∑

m1≤x1,...,mn≤xn

f(m1, . . . ,mn) =
∑

m1≤x1,...,mn≤xn

(f ∗ µ ∗ 1)(m1, . . . ,mn)

=
∑

m1≤x1,...,mn≤xn

(f ∗ µ)(m1, . . . ,mn)[
x1

m1
] · · · [ xn

mn
]

=
∑

m1≤x1,...,mn≤xn

(f ∗ µ)(m1, . . . ,mn)
( x1

m1
+ O(1)

)
· · ·

( xn

mn
+ O(1)

)
, (3)

where [x] is the integer part of x. Then we have

1
x1 · · ·xn

∑

m1≤x1,...,mn≤xn

f(m1, . . . ,mn)

=
∑

m1≤x1,...,mn≤xn

(f ∗ µ)(m1, . . . ,mn)
m1 · · ·mn

+ Rf (x1, . . . , xn),

where

Rf (x1, . . . , xn) )
∑

u1,...,un

∑

m1≤x1,...,mn≤xn

|(f ∗ µ)(m1, . . . ,mn)|
m1 · · ·mn

(m1

x1

)u1

· · ·
(mn

xn

)un

,
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and where the first sum is over u1, . . . , un ∈ {0, 1} such that at least one ui is 1.
To complete the proof it is sufficient to show that limx1,...,xn→∞Rf (x1, . . . , xn) =

0. To do this, fix some u1, . . . , un ∈ {0, 1}, not all 0, and let I = {i; 1 ≤ i ≤ n, ui =
1} += ∅. For every εi > 0 with i ∈ I,

∑

m1≤x1,...,mn≤xn

|(f ∗ µ)(m1, . . . ,mn)|
m1 · · ·mn

(m1

x1

)u1

· · ·
(mn

xn

)un

≤
∏

i∈I

εi

∑

mi≤εixi for i∈I
mj≤xj for j /∈I

|(f ∗ µ)(m1, . . . ,mn)|
m1 · · ·mn

+
∑

m1≤x1,...,mn≤xn

mk>εkxk for at least one k∈I

|(f ∗ µ)(m1, . . . ,mn)|
m1 · · ·mn

≤
∏

i∈I

εi

∞∑

m1,...,mn=1

|(f ∗ µ)(m1, . . . ,mn)|
m1 · · ·mn

+
∑

m1≤x1,...,mn≤xn

mk>εkxk for at least one k∈I

|(f ∗ µ)(m1, . . . ,mn)|
m1 · · ·mn

.

Here the first term is arbitrarily small (if the εi’s are small) and the second
term is also arbitrarily small if xk is sufficiently large (using the definition of the
convergence of multiple series).

Next, we define the concept of the multiplicative function of n variables, which
was given in Vaidyanathaswamy [8].

Definition 2. Let f : Nn → C be an arithmetic function of n variables. We say
that f is a multiplicative function of n variables if f satisfies

f("1m1, . . . , "nmn) = f("1, . . . , "n) f(m1, . . . , mn)

for any "1, . . . , "n,m1, . . . ,mn ∈ N satisfying gcd("1 · · · "n, m1 · · ·mn) = 1.

It is known that if f and g are multiplicative functions of n variables, f ∗ g is
also a multiplicative function of n variables.

Lemma 3. Let f : Nn → C be a multiplicative function of n variables and mi =∏
j p

!ij

j for 1 ≤ i ≤ n, where pj ∈ P and "ij ≥ 0. Then,

f(m1, . . . , mn) =
∏

j

f(p!1j

j , . . . , p
!nj

j ).

Proof. Since gcd(p!11
1 · · · p!n1

1 ,
∏

j≥2 p
!1j

j · · ·
∏

j≥2 p
!nj

j ) = 1, we have, by the multi-
plicativeness of f , that

f(m1, . . . , mn) = f(
∏

j

p
!1j

j , . . . ,
∏

j

p
!nj

j )

= f(p!11
1 , . . . , p!n1

1 ) f(
∏

j≥2

p
!1j

j , . . . ,
∏

j≥2

p
!nj

j ).
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Now, Lemma 3 follows by induction on n.

For pj1 , pj2 , . . . , pjn ∈ P and "1, "2, . . . , "n ∈ N ∪ {0} we set

∆!1!2···!nf(pj1 , pj2 , . . . , pjn) :=
∑

e1,...,en∈{0,1}

(−1)e1+e2+···+enf(p!1−e1
j1

, p!2−e2
j2

, . . . , p!n−en
jn

),

where we substitute f(p!1−e1
j1

, p!2−e2
j2

, . . . , p!n−en
jn

) = 0 if "i − ei < 0 for some
1 ≤ i ≤ n. Clearly, (f ∗ µ)(p!1

j1
, p!2

j2
, . . . , p!n

jn
) = ∆!1!2···!nf(pj1 , pj2 , . . . , pjn)

holds for any "1, "2, . . . , "n ≥ 0.

Theorem 4. Let f : Nn → C be a multiplicative function of n variables satisfying

∑

p∈P

∑

!1, !2, ..., !n≥0
!1+!2+···+!n≥1

1
p!1+!2+···+!n

|∆!1!2···!nf(p, p, . . . , p)| < ∞. (4)

Then the mean-value M(f) exists and

M(f) =
∏

p∈P

( ∑

!1, !2, ..., !n≥0

1
p!1+!2+···+!n

∆!1!2···!nf(p, p, . . . , p)
)
. (5)

Proof. Since the function : (m1, . . . , mn) #→ 1
m1 ... mn

|f ∗ µ(m1, . . . , mn)| is
a multiplicative function of n variables, according to Lemma 3, we have

∑

m1≤x1, ..., mn≤xn

1
m1 · · ·mn

|(f ∗ µ)(m1, . . . , mn)|

≤
∑

!1,...,!n≥0

(∏

p∈P

1
p!1+···+!n

|(f ∗ µ)(p!1 , . . . , p!n)|
)

=
∑

!1,...,!n≥0

(∏

p∈P

1
p!1+···+!n

|∆!1···!n(p, . . . , p)|
)

≤
∏

p∈P

( ∑

!1,...,!n≥0

1
p!1+···+!n

|∆!1···!nf(p, . . . , p)|
)

=
∏

p∈P

(
1 +

∑

!1,...,!n≥0
!1+···+!n≥1

1
p!1+···+!n

|∆!1···!nf(p, . . . , p)|
)

≤ exp
(∑

p∈P
(

∑

!1,...,!n≥0
!1+···+!n≥1

1
p!1+···+!n

|∆!1···!nf(p, . . . , p)|)
)

< ∞,

where we have used the inequality 1 + x ≤ exp(x) for x > 0. Therefore, according
to Theorem 1, the mean-value M(f) exists and clearly (5) holds.
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Example 5. If f(m1, m2, . . . , mn) = µ2(m1m2 · · ·mn), then f is a multiplicative
function of n variables, and the mean-value M(f) exists and

M(f) =
∏

p∈P

(
1− 1

p

)n(
1 +

n

p

)
. (6)

Proof. Since µ2(p!) = 0 holds for any " ≥ 2, we note that
∆!1···!nf(p, . . . , p) =

∑
e1,..., en∈{0,1}(−1)e1+···+enµ2(p(!1−e1)+···+(!n−en)) is 0 when

("1, . . . , "n) is not a permutation of (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) or (2, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) for

some k ≥ 0. Observing that

∆11 · · · 1︸ ︷︷ ︸
k

0···0f(p, . . . , p)=
∑

e1,..., ek∈{0,1}

(−1)e1+···+ekµ2(p(1−e1)+···+(1−ek))

=
∑

e1,..., ek∈{0,1}

(−1)e1+···+ekµ2(pk−e1−···−ek)

= µ2(pk)−
(

k

1

)
µ2(pk−1) + · · ·

+(−1)k−1

(
k

k − 1

)
µ2(p) + (−1)k

= (−1)k−1k + (−1)k = (−1)k(−k + 1),

and

∆21 · · · 1︸ ︷︷ ︸
k

0···0f(p, . . . , p) =
∑

e1,..., ek+1∈{0,1}

(−1)e1+e2+···+ek+1µ2(p(2−e1)+(1−e2)+···+(1−ek+1))

= (−1)k+1µ2(p) = (−1)k+1,

as well as noting that the number of permutations of (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) is
(n

k

)

and the number of permutations of (2, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) is n
(n−1

k

)
we have

M(f) =
∏

p∈P

( ∑

!1,!2,...,!n≥0

1
p!1+!2+···+!n

∆!1!2···!nf(p, p, . . . , p)
)

=
∏

p∈P

( n∑

k=0

(
n

k

)
(−1)k(−k + 1)

1
pk

+ n
n−1∑

k=0

(
n− 1

k

)
(−1)k+1 1

pk+2

)

=
∏

p∈P

(
−

n∑

k=0

(
n

k

)
k
(
−1

p

)k
+

n∑

k=0

(
n

k

)(
−1

p

)k
− n

p2

n−1∑

k=0

(
n− 1

k

)(
−1

p

)k)
.
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Using the binomial theorem and the formula
∑n

k=0

(n
k

)
kxk = nx(1+x)n−1, we have

M(f) =
∏

p∈P

(
−n

(
−1

p

)(
1− 1

p

)n−1
+

(
1− 1

p

)n
− n

p2

(
1− 1

p

)n−1)

=
∏

p∈P

(
1− 1

p

)n−1(n

p
+ 1− 1

p
− n

p2

)
=

∏

p∈P

(
1− 1

p

)n(
1 +

n

p

)
.

Delange [3] proved that the set of all pairs of coprime positive integers that are
squarefree posseses the natural density

(
6

π2

)2 ∏
p∈P

(
1− 1

(p+1)2

)
, which can also be

written as
∏

p∈P

(
1− 1

p

)2(
1 + 2

p

)
. Ushiroya [7] proved that if we set f(m1,m2) =

µ2(m1m2), f is a multiplicative function of two variables, and the mean-value M(f)

exists and equals
∏

p∈P

(
1− 1

p

)2(
1+ 2

p

)
. This is another proof of Delange’s result.

Since µ2(m1m2 . . .mn) is the characteristic function of the set {(m1, . . . , mn) ∈
Nn : mi is squarefree and gcd(mi,mj) = 1 for any 1 ≤ i += j ≤ n}, Example 5 is
an extension of Delange’s result to the case n ≥ 2. On the other hand, Toth [5]
proved that the natural density of the set where n positive integers are pairwise

relatively prime equals
∏

p∈P

(
1 − 1

p

)n−1(
1 + n−1

p

)
. On the basis of Toth’s result

and Example 5, we have the following corollary.

Corollary 6. The set {(m1, . . . , mn−1) ∈ Nn−1; mi is squarefree and gcd(mi,mj)
= 1 for any 1 ≤ i += j ≤ n− 1}, and the set {(m1, . . . , mn) ∈ Nn : gcd(mi,mj) =
1 for any 1 ≤ i += j ≤ n} have the same natural density of

∏

p∈P

(
1− 1

p

)n−1(
1 +

n− 1
p

)
.

Next, we treat the case in which a multiplicative function of n variables is a
composite function of the gcd function and a multiplicative function of one variable.

Theorem 7. Let g : N → C be a multiplicative function of one variable satisfying

∑

p∈P

|g(p)− 1|
pn

< ∞ (7)

and ∑

p∈P

∑

!≥2

|g(p!)|
pn!

< ∞. (8)

If we set f(m1, m2, . . . , mn) = g(gcd(m1, m2, . . . , mn)), then f is a multi-
plicative function of n variables, and M(f) exists and
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M(f) =
G(n)
ζ(n)

, (9)

where ζ(n) is the Riemann zeta function and G(n) =
∞∑

m=1

g(m)
mn

.

Proof. Clearly, f(m1, m2, . . . , mn) = g(gcd(m1, m2, . . . , mn)) is a multiplicative
function of n variables. Since ∆!1!2···!nf(p, p, . . . , p) += 0 if and only "1 = "2 =
· · · = "n, we need only consider ∆!!···!f(p, p, . . . , p). Since

∆!!···!f(p, p, . . . , p)

=
∑

e1,..., en∈{0,1}

(−1)e1+e2+···+enf(p!−e1 , p!−e2 , . . . , p!−en)

=
∑

e1,..., en∈{0,1}

(−1)e1+e2+···+eng(gcd(p!−e1 , p!−e2 , . . . , p!−en))

= g(p!)−
(

n

1

)
g(p!−1) +

(
n

2

)
g(p!−1)− · · · +

(
n

n

)
(−1)ng(p!−1)

= g(p!)− g(p!−1) + g(p!−1)
n∑

k=0

(
n

k

)
(−1)k = g(p!)− g(p!−1),

we have

∑

p∈P

∑

!1,...,!n≥0
!1+···+!n≥1

1
p!1+!2+···+!n

|∆!1!2···!nf(p, p, . . . , p)|

=
∑

p∈P

∑

!≥1

1
pn!

|g(p!)− g(p!−1)|

=
∑

p∈P

( |g(p)− 1|
pn

+
∑

!≥2

|g(p!)− g(p!−1)|
pn!

)
.

The convergence of the series
∑

p∈P |g(p) − 1|/pn follows from (7) and that of
the series

∑
p∈P

∑
!≥2 |g(p!) − g(p!−1)|/pn! follows from (7) and (8). Therefore,

according to Theorem 4, M(f) exists and equals
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∏

p∈P

( ∑

!1, !2, ... , !n≥0

1
p!1+!2+···+!n

∆!1!2···!nf(p, p, . . . , p)
)

=
∏

p∈P

(
1 +

∑

!≥1

1
pn!

(g(p!)− g(p!−1))
)

=
∏

p∈P

(
1 +

g(p)− 1
pn

+
g(p2)− g(p)

p2n
+ · · ·

)

=
∏

p∈P

(
1− 1

pn

)(
1 +

g(p)
pn

+
g(p2)
p2n

+ · · ·
)

=
G(n)
ζ(n)

.

If g in Theorem 7 is a bounded function, (7) and (8) are obviously satisfied.
Therefore, we have the following corollary.

Corollary 8. If g in Theorem 7 satisfies |g| ≤ C for some C > 0, the mean-value
M(f) exists and (9) holds.

The following corollary is a special case in [2].

Corollary 9 (Cohen [2]). Let S be an arbitrary set in N, where the character-
istic function 1S is multiplicative. Then, the natural density of the set of n-tuples
(m1, . . . ,mn) ∈ N such that gcd(m1, . . . ,mn) is in S equals

ζS(n)
ζ(n)

=
1

ζ(n)

∞∑

m=1, m∈S

1
mn

.

Although Cohen treated a more general case in which 1S is not necessarily mul-
tiplicative, wherein Theorem 7 is not applicable, we can prove Corollary 9 by a
method different from that of Cohen. Moreover, Theorem 7 is applicable to the
case in which g is not a characteristic function.

When g is a multiplicative function such that G is well-known, we have a very
simple expression for the mean-value. Several examples are shown below.

Example 10. If f(m1, m2, . . . , mn) = µ(gcd(m1, m2, . . . , mn)), then f is a
multiplicative function of n variables, and the mean-value M(f) exists and

M(f) =
∏

p∈P

(
1− 1

pn

)2
=

1
ζ2(n)

.

Proof. Since g = µ is a bounded function, the mean-value exists and (9) holds
according to Corollary 8. It is easy to see that

M(f) =
G(n)
ζ(n)

=
1

ζ(n)

∞∑

m=1

µ(m)
mn

=
1

ζ2(n)
with n ≥ 2.
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The proof of the following example is similar to that of the aforementioned ex-
ample.

Example 11. If f(m1, m2, . . . , mn) = µ2(gcd(m1, m2, . . . , mn)), then f is a
multiplicative function of n variables, and M(f) exists and

M(f) =
∏

p∈P

(
1− 1

p2n

)
=

1
ζ(2n)

.

We can also prove the following examples according to Theorem 7.

Example 12. If f(m1, m2, . . . , mn) = σα(gcd(m1, m2, . . . , mn)), where
σα(n) =

∑
d|n dα, then f is a multiplicative function of n variables, and M(f)

exists if n > α + 1 and

M(f) =
∏

p∈P

1
1− pα−n

= ζ(n− α).

Example 13. If f(m1, m2, . . . , mn) = ϕ(gcd(m1, m2, . . . , mn)), where ϕ
is Euler’s totient function, then f is a multiplicative function of n variables, and
M(f) exists if n ≥ 3 and

M(f) =
∏

p∈P

(1− 1
pn )2

(1− 1
pn−1 )

=
ζ(n− 1)
ζ(n)2

.

Example 14. If f(m1, m2, . . . , mn) = K(gcd(m1, m2, . . . , mn)), where
K(n) =

∏
p|n p is the squarefree kernel of an integer n, then f is a multiplicative

function of n variables, and M(f) exists if n ≥ 3 and

M(f) =
∏

p∈P
(1 +

p− 1
pn

) =
1

ζ(n)

∏

p∈P

(
1 +

p

pn − 1

)
.

Example 15. If f(m1, m2, . . . , mn) = (gcd(m1, m2, . . . , mn))α, then f is a
multiplicative function of n variables, and M(f) exists if n > α + 1 and

M(f) =
∏

p∈P

1− 1
pn

1− 1
pn−α

=
ζ(n− α)

ζ(n)
.
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