MEAN-VALUE THEOREMS FOR MULTIPLICATIVE ARITHMETIC FUNCTIONS OF SEVERAL VARIABLES

Noboru Ushiroya
Department of General Education, Wakayama National College of Technology, Gobo, Wakayama, Japan
ushiroya@wakayama-nct.ac.jp

Received: 11/25/11, Revised: 2/9/12, Accepted: 4/22/12, Published: 5/11/12

Abstract

Let $f: \mathbb{N}^{n} \rightarrow \mathbb{C}$ be an arithmetic function of n variables, where $n \geq 2$. We study the mean-value $M(f)$ of f that is defined to be $$
\lim _{x_{1}, \ldots, x_{n} \rightarrow \infty} \frac{1}{x_{1} \cdots x_{n}} \sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}} f\left(m_{1}, \ldots, m_{n}\right)
$$ if this limit exists. We first generalize the Wintner theorem and then consider the multiplicative case by expressing the mean-value as an infinite product over all prime numbers. In addition, we study the mean-value of a function of the form $\left(m_{1}, m_{2}, \ldots, m_{n}\right) \mapsto g\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$, where g is a multiplicative function of one variable, and express the mean-value by the Riemann zeta function.

1. Introduction

Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an arithmetic function. The mean-value $M(f)$ of f is defined as $\lim _{x \rightarrow \infty} x^{-1} \sum_{m \leq x} f(m)$, if this limit exists. It is well-known that if $\sum_{m=1}^{\infty} m^{-1}\left|\sum_{d \mid m} \mu(d) f(m / d)\right|<\infty$, where μ is the Möbius function, then $M(f)$ exists and equals $\sum_{m=1}^{\infty} m^{-1} \sum_{d \mid m} \mu(d) f(m / d)$. This is Wintner's theorem. See, e.g., Schwarz and Spilker [4, Cor. 2.2]. Moreover, it is also well-known that if f is a multiplicative function satisfying $\sum_{p \in \mathcal{P}} p^{-1}|f(p)-1|<\infty$ and $\sum_{p \in \mathcal{P}} \sum_{k \geq 2} p^{-k}\left|f\left(p^{k}\right)\right|<$ ∞, where \mathcal{P} is the set of prime numbers, then $M(f)$ exists, and $M(\bar{f})=\prod_{p \in \mathcal{P}}(1+$ $\left.\sum_{k \geq 1} p^{-k}\left(f\left(p^{k}\right)-f\left(p^{k-1}\right)\right)\right)$ holds (cf. Schwarz and Spilker [4, Cor. 2.3]).

We extended these theorems in [7] to the case in which $f: \mathbb{N}^{2} \rightarrow \mathbb{C}$ is an arithmetic function of two variables. In this paper, we extend the aforementioned theorems to the case of an arithmetic function of n variables, where $n \geq 2$.

Toth [5] proved that the natural density of the set of n-tuples such that all pairs are coprime equals $\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{n-1}\left(1+\frac{n-1}{p}\right)$. We show in Corollary 6 that the
natural density of the set of squarefree $(n-1)$-tuples such that all pairs are coprime has the same expression.

Ushiroya [7] also proved the following mean-value theorem. If g is a multiplicative function of one variable, then f defined by $f\left(m_{1}, m_{2}\right)=g\left(\operatorname{gcd}\left(m_{1}, m_{2}\right)\right)$ is a multiplicative function of two variables. Assuming $\sum_{p \in \mathcal{P}} \sum_{k \geq 1} \frac{1}{p^{2 k}}\left|g\left(p^{k}\right)-g\left(p^{k-1}\right)\right|<\infty$, the mean-value $M(f)=\prod_{p \in \mathcal{P}}\left(1+\sum_{k \geq 1} \frac{1}{p^{2 k}}\left(g\left(p^{k}\right)-g\left(p^{k-1}\right)\right)\right)$ exists. In this study, we extend this theorem to the case in which f is an arithmetic function of n variables of the form $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=g\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$, where $n \geq 2$, and express the mean-value in terms of the Riemann zeta function.

Let S be an arbitrary set in \mathbb{N} and $N_{n}(x, S):=\#\left\{\left(m_{1}, \ldots, m_{n}\right) \in(\mathbb{N} \cap\right.$ $\left.[1, x])^{n} ; \operatorname{gcd}\left(m_{1}, \ldots, m_{n}\right) \in S\right\}$. Cohen $[2]$ proved that $N_{n}(x, S)=\frac{\zeta_{S}(n)}{\zeta(n)} x^{n}+T_{n}(x)$ holds, where $\zeta_{S}(n)=\sum_{m=1, m \in S}^{\infty} \frac{1}{m^{n}}, \quad T_{n}(x)=O\left(x^{n-1}\right)$ for $n>2$, and $T_{2}(x)=$ $O\left(x \log ^{2} x\right)$ for $n=2$. See also [6]. From this result, it follows that the natural density of the set of n-tuples $\left(m_{1}, \ldots, m_{n}\right)$ for which $\operatorname{gcd}\left(m_{1}, \ldots, m_{n}\right)$ belongs to S equals $\lim _{x \rightarrow \infty} \frac{N_{n}(x, S)}{x^{n}}=\frac{\zeta_{S}(n)}{\zeta(n)}$. We note that when g is the characteristic function 1_{S} of S, we can obtain Cohen's result under the condition that 1_{S} is multiplicative by using a different method. Moreover, we present some examples, which were not treated in Cohen [2], in which g is not a characteristic function of a set in \mathbb{N}.

2. Notation and Some Facts

Let $n \geq 2$ be a fixed integer and $f, g: \mathbb{N}^{n} \rightarrow \mathbb{C}$ be arithmetic functions of n variables. The mean-value $M(f)$ of the function f is defined as

$$
\lim _{x_{1}, \ldots, x_{n} \rightarrow \infty} \frac{1}{x_{1} \cdots x_{n}} \sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}} f\left(m_{1}, \ldots, m_{n}\right),
$$

if this limit exists. Few results are known regarding the mean-values of general multiplicative functions of several variables. In this study, we investigate those mean-values by using elementary methods.

The Dirichlet convolution of f and g is defined as follows:

$$
(f * g)\left(m_{1}, \ldots, m_{n}\right)=\sum_{\ell_{1}\left|m_{1}, \ldots, \ell_{n}\right| m_{n}} f\left(\ell_{1}, \ldots, \ell_{n}\right) g\left(\frac{m_{1}}{\ell_{1}}, \ldots, \frac{m_{n}}{\ell_{n}}\right)
$$

We use the same notation μ for the function $\mu\left(m_{1}, \ldots, m_{n}\right)=\mu\left(m_{1}\right) \cdots \mu\left(m_{n}\right)$, which is the inverse of the constant 1 function under the Dirichlet convolution, i.e., $(\mu * 1)\left(m_{1}, \ldots, m_{n}\right)=\delta\left(m_{1}, \ldots, m_{n}\right)$, where $\delta\left(m_{1}, \ldots, m_{n}\right)=1$ or 0 according to whether $m_{1}=\ldots=m_{n}=1$ or not.

We recall that a multiple series $\sum_{m_{1}, \ldots, m_{n}=1}^{\infty} a_{m_{1}, \ldots, m_{n}}$ with terms $a_{m_{1}, \ldots, m_{n}} \in \mathbb{C}$ is said to be convergent and to have as sum the number $A \in \mathbb{C}$ if

$$
\lim _{M_{1}, \ldots, M_{n} \rightarrow \infty} \sum_{m_{1} \leq M_{1}, \ldots, m_{n} \leq M_{n}} a_{m_{1}, \ldots, m_{n}}=A
$$

i.e., for every $\varepsilon>0$ there is a positive integer $M=M(\varepsilon)$ such that for every $M_{1}, \ldots, M_{n} \geq M$,

$$
\left|\sum_{m_{1} \leq M_{1}, \ldots, m_{n} \leq M_{n}} a_{m_{1}, \ldots, m_{n}}-A\right|<\varepsilon
$$

In case of double series see, e.g., Section 4.7 in [1].
The next theorem is an extension of Wintner's theorem to the case in which f is an arithmetic function of n variables.

Theorem 1. Let $f: \mathbb{N}^{n} \rightarrow \mathbb{C}$ be an arithmetic function of n variables. Suppose

$$
\begin{equation*}
\sum_{m_{1}, \ldots, m_{n}=1}^{\infty} \frac{1}{m_{1} \cdots m_{n}}\left|(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\right|<\infty \tag{1}
\end{equation*}
$$

Then, the mean-value $M(f)$ exists and

$$
\begin{equation*}
M(f)=\sum_{m_{1}, \ldots, m_{n}=1}^{\infty} \frac{1}{m_{1} \cdots m_{n}}(f * \mu)\left(m_{1}, \ldots, m_{n}\right) \tag{2}
\end{equation*}
$$

Proof. Since $f=f * \delta=f * \mu * 1$, we have

$$
\begin{align*}
& \sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}} f\left(m_{1}, \ldots, m_{n}\right)=\sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}}(f * \mu * 1)\left(m_{1}, \ldots, m_{n}\right) \\
= & \sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}}(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\left[\frac{x_{1}}{m_{1}}\right] \cdots\left[\frac{x_{n}}{m_{n}}\right] \\
= & \sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}}(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\left(\frac{x_{1}}{m_{1}}+O(1)\right) \cdots\left(\frac{x_{n}}{m_{n}}+O(1)\right), \tag{3}
\end{align*}
$$

where $[x]$ is the integer part of x. Then we have

$$
\begin{aligned}
& \frac{1}{x_{1} \cdots x_{n}} \sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}} f\left(m_{1}, \ldots, m_{n}\right) \\
= & \sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}} \frac{(f * \mu)\left(m_{1}, \ldots, m_{n}\right)}{m_{1} \cdots m_{n}}+R_{f}\left(x_{1}, \ldots, x_{n}\right),
\end{aligned}
$$

where

$$
R_{f}\left(x_{1}, \ldots, x_{n}\right) \ll \sum_{u_{1}, \ldots, u_{n}} \sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}} \frac{\left|(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\right|}{m_{1} \cdots m_{n}}\left(\frac{m_{1}}{x_{1}}\right)^{u_{1}} \cdots\left(\frac{m_{n}}{x_{n}}\right)^{u_{n}}
$$

and where the first sum is over $u_{1}, \ldots, u_{n} \in\{0,1\}$ such that at least one u_{i} is 1 .
To complete the proof it is sufficient to show that $\lim _{x_{1}, \ldots, x_{n} \rightarrow \infty} R_{f}\left(x_{1}, \ldots, x_{n}\right)=$ 0 . To do this, fix some $u_{1}, \ldots, u_{n} \in\{0,1\}$, not all 0 , and let $I=\left\{i ; 1 \leq i \leq n, u_{i}=\right.$ $1\} \neq \emptyset$. For every $\varepsilon_{i}>0$ with $i \in I$,

$$
\begin{aligned}
& \sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}} \frac{\left|(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\right|}{m_{1} \cdots m_{n}}\left(\frac{m_{1}}{x_{1}}\right)^{u_{1}} \cdots\left(\frac{m_{n}}{x_{n}}\right)^{u_{n}} \\
\leq & \prod_{i \in I} \varepsilon_{i} \sum_{\substack{m_{i} \leq \varepsilon_{i} x_{i} \text { for } \\
m_{j} \leq x_{j} \text { for } \\
j \notin I}} \frac{\left|(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\right|}{m_{1} \cdots m_{n}}+\sum_{\substack{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n} \\
m_{k}>\varepsilon_{k} x_{k} \text { for at least one } k \in I}} \frac{\left|(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\right|}{m_{1} \cdots m_{n}} \\
\leq & \prod_{i \in I} \varepsilon_{i} \sum_{m_{1}, \ldots, m_{n}=1}^{\infty} \frac{\left|(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\right|}{m_{1} \cdots m_{n}}+\sum_{\substack{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n} \\
m_{k}>\varepsilon_{k} x_{k} \text { for at least one } k \in I}} \frac{\left|(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\right|}{m_{1} \cdots m_{n}}
\end{aligned}
$$

Here the first term is arbitrarily small (if the ε_{i} 's are small) and the second term is also arbitrarily small if x_{k} is sufficiently large (using the definition of the convergence of multiple series).

Next, we define the concept of the multiplicative function of n variables, which was given in Vaidyanathaswamy [8].

Definition 2. Let $f: \mathbb{N}^{n} \rightarrow \mathbb{C}$ be an arithmetic function of n variables. We say that f is a multiplicative function of n variables if f satisfies

$$
f\left(\ell_{1} m_{1}, \ldots, \quad, \quad \ell_{n} m_{n}\right)=f\left(\ell_{1}, \ldots, \ell_{n}\right) f\left(m_{1}, \ldots, m_{n}\right)
$$

for any $\ell_{1}, \ldots, \ell_{n}, m_{1}, \ldots, m_{n} \in \mathbb{N}$ satisfying $\operatorname{gcd}\left(\ell_{1} \cdots \ell_{n}, m_{1} \cdots m_{n}\right)=1$.
It is known that if f and g are multiplicative functions of n variables, $f * g$ is also a multiplicative function of n variables.

Lemma 3. Let $f: \mathbb{N}^{n} \rightarrow \mathbb{C}$ be a multiplicative function of n variables and $m_{i}=$ $\prod_{j} p_{j}^{\ell_{i j}}$ for $1 \leq i \leq n$, where $p_{j} \in \mathcal{P}$ and $\ell_{i j} \geq 0$. Then,

$$
f\left(m_{1}, \quad \ldots \quad, \quad m_{n}\right)=\prod_{j} f\left(p_{j}^{\ell_{1 j}}, \quad \ldots \quad, \quad p_{j}^{\ell_{n j}}\right)
$$

Proof. Since $\operatorname{gcd}\left(p_{1}^{\ell_{11}} \cdots p_{1}^{\ell_{n 1}}, \quad \prod_{j \geq 2} p_{j}^{\ell_{1 j}} \cdots \prod_{j \geq 2} p_{j}^{\ell_{n j}}\right)=1$, we have, by the multiplicativeness of f, that

$$
\begin{aligned}
& f\left(m_{1}, \ldots, m_{n}\right)=f\left(\prod_{j} p_{j}^{\ell_{1 j}}, \cdots, \prod_{j} p_{j}^{\ell_{n j}}\right) \\
= & f\left(p_{1}^{\ell_{11}}, \cdots, p_{1}^{\ell_{n 1}}\right) f\left(\prod_{j \geq 2} p_{j}^{\ell_{1 j}}, \cdots, \prod_{j \geq 2} p_{j}^{\ell_{n j}}\right)
\end{aligned}
$$

Now, Lemma 3 follows by induction on n.
For $p_{j_{1}}, p_{j_{2}}, \ldots, p_{j_{n}} \in \mathcal{P}$ and $\ell_{1}, \ell_{2}, \ldots, \ell_{n} \in \mathbb{N} \cup\{0\}$ we set
$\Delta_{\ell_{1} \ell_{2} \cdots \ell_{n}} f\left(p_{j_{1}}, p_{j_{2}}, \ldots, p_{j_{n}}\right):=\sum_{e_{1}, \ldots, e_{n} \in\{0,1\}}(-1)^{e_{1}+e_{2}+\cdots+e_{n}} f\left(p_{j_{1}}^{\ell_{1}-e_{1}}, p_{j_{2}}^{\ell_{2}-e_{2}}, \ldots, p_{j_{n}}^{\ell_{n}-e_{n}}\right)$,
where we substitute $f\left(p_{j_{1}}^{\ell_{1}-e_{1}}, p_{j_{2}}^{\ell_{2}-e_{2}}, \ldots, p_{j_{n}}^{\ell_{n}-e_{n}}\right)=0$ if $\quad \ell_{i}-e_{i}<0$ for some $1 \leq i \leq n$. Clearly, $(f * \mu)\left(p_{j_{1}}^{\ell_{1}}, p_{j_{2}}^{\ell_{2}}, \ldots, p_{j_{n}}^{\ell_{n}}\right)=\Delta_{\ell_{1} \ell_{2} \cdots \ell_{n}} f\left(p_{j_{1}}, p_{j_{2}}, \ldots, p_{j_{n}}\right)$ holds for any $\ell_{1}, \ell_{2}, \ldots, \ell_{n} \geq 0$.

Theorem 4. Let $f: \mathbb{N}^{n} \rightarrow \mathbb{C}$ be a multiplicative function of n variables satisfying

$$
\begin{equation*}
\sum_{\substack{p \in \mathcal{P} \\ \ell_{1}, \ell_{2}, \ldots, \ell_{n} \geq 0 \\ \ell_{1}+\ell_{2}+\cdots+\ell_{n} \geq 1}} \frac{1}{p^{\ell_{1}+\ell_{2}+\cdots+\ell_{n}}}\left|\Delta_{\ell_{1} \ell_{2} \cdots \ell_{n}} f(p, p, \ldots, p)\right|<\infty . \tag{4}
\end{equation*}
$$

Then the mean-value $M(f)$ exists and

$$
\begin{equation*}
M(f)=\prod_{p \in \mathcal{P}}\left(\sum_{\ell_{1}, \ell_{2}, \ldots, \ell_{n} \geq 0} \frac{1}{p^{\ell_{1}+\ell_{2}+\cdots+\ell_{n}}} \Delta_{\ell_{1} \ell_{2} \cdots \ell_{n}} f(p, p, \ldots, p)\right) \tag{5}
\end{equation*}
$$

Proof. Since the function : $\left(m_{1}, \ldots, \quad m_{n}\right) \mapsto \frac{1}{m_{1} \ldots m_{n}}\left|f * \mu\left(m_{1}, \ldots, m_{n}\right)\right|$ is a multiplicative function of n variables, according to Lemma 3, we have

$$
\begin{aligned}
\sum_{m_{1} \leq x_{1}, \ldots, m_{n} \leq x_{n}} & \frac{1}{m_{1} \cdots m_{n}}\left|(f * \mu)\left(m_{1}, \ldots, m_{n}\right)\right| \\
& \leq \sum_{\ell_{1}, \ldots, \ell_{n} \geq 0}\left(\prod_{p \in \mathcal{P}} \frac{1}{p^{\ell_{1}+\cdots+\ell_{n}}}\left|(f * \mu)\left(p^{\ell_{1}}, \ldots, p^{\ell_{n}}\right)\right|\right) \\
& =\sum_{\ell_{1}, \ldots, \ell_{n} \geq 0}\left(\prod_{p \in \mathcal{P}} \frac{1}{p^{\ell_{1}+\cdots+\ell_{n}}}\left|\Delta_{\ell_{1} \cdots \ell_{n}}(p, \ldots, p)\right|\right) \\
& \leq \prod_{p \in \mathcal{P}}\left(\sum_{\ell_{1}, \ldots, \ell_{n} \geq 0} \frac{1}{p^{\ell_{1}+\cdots+\ell_{n}}}\left|\Delta_{\ell_{1} \cdots \ell_{n}} f(p, \ldots, p)\right|\right) \\
& =\prod_{p \in \mathcal{P}}\left(1+\sum_{\ell_{1}, \ldots, \ell_{n} \geq 0} \frac{1}{\ell_{1}+\cdots+\ell_{n} \geq 1}\left|\Delta_{\ell_{1} \cdots \ell_{n}} f(p, \ldots, p)\right|\right) \\
& \leq \exp \left(\sum_{p \in \mathcal{P}}\left(\sum_{\substack{\ell_{1}, \ldots, \ell_{n} \geq 0 \\
\ell_{1}+\cdots+\ell_{n} \geq 1}} \frac{1}{p^{\ell_{1}+\cdots+\ell_{n}}}\left|\Delta_{\ell_{1} \cdots \ell_{n}} f(p, \ldots, p)\right|\right)\right)<\infty
\end{aligned}
$$

where we have used the inequality $1+x \leq \exp (x)$ for $x>0$. Therefore, according to Theorem 1, the mean-value $M(f)$ exists and clearly (5) holds.

Example 5. If $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\mu^{2}\left(m_{1} m_{2} \cdots m_{n}\right)$, then f is a multiplicative function of n variables, and the mean-value $M(f)$ exists and

$$
\begin{equation*}
M(f)=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{n}\left(1+\frac{n}{p}\right) \tag{6}
\end{equation*}
$$

Proof. Since $\mu^{2}\left(p^{\ell}\right)=0$ holds for any $\ell \geq 2$, we note that
$\Delta_{\ell_{1} \cdots \ell_{n}} f(p, \ldots, p)=\sum_{e_{1}, \ldots, e_{n} \in\{0,1\}}(-1)^{e_{1}+\cdots+e_{n}} \mu^{2}\left(p^{\left(\ell_{1}-e_{1}\right)+\cdots+\left(\ell_{n}-e_{n}\right)}\right)$ is 0 when $\left(\ell_{1}, \ldots, \ell_{n}\right)$ is not a permutation of $(\underbrace{1, \ldots, 1}_{k}, 0, \ldots, 0)$ or $(2, \underbrace{1, \ldots, 1}_{k}, 0, \ldots, 0)$ for some $k \geq 0$. Observing that

$$
\begin{aligned}
\Delta_{\underbrace{}_{k}}^{11 \cdots 1}{ }_{0 \cdots 0} f(p, \ldots, p) & =\sum_{e_{1}, \ldots, e_{k} \in\{0,1\}}(-1)^{e_{1}+\cdots+e_{k}} \mu^{2}\left(p^{\left(1-e_{1}\right)+\cdots+\left(1-e_{k}\right)}\right) \\
= & \sum_{e_{1}, \ldots, e_{k} \in\{0,1\}}(-1)^{e_{1}+\cdots+e_{k}} \mu^{2}\left(p^{k-e_{1}-\cdots-e_{k}}\right) \\
= & \mu^{2}\left(p^{k}\right)-\binom{k}{1} \mu^{2}\left(p^{k-1}\right)+\cdots \\
& +(-1)^{k-1}\binom{k}{k-1} \mu^{2}(p)+(-1)^{k} \\
= & (-1)^{k-1} k+(-1)^{k}=(-1)^{k}(-k+1)
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta_{2} \underbrace{1 \cdots 1}_{k}{ }_{0 \cdots 0} f(p, \ldots, p) & =\sum_{e_{1}, \ldots, e_{k+1} \in\{0,1\}}(-1)^{e_{1}+e_{2}+\cdots+e_{k+1}} \mu^{2}\left(p^{\left(2-e_{1}\right)+\left(1-e_{2}\right)+\cdots+\left(1-e_{k+1}\right)}\right) \\
& =(-1)^{k+1} \mu^{2}(p)=(-1)^{k+1}
\end{aligned}
$$

as well as noting that the number of permutations of $(\underbrace{1,1, \ldots, 1}_{k}, 0, \ldots, 0)$ is $\binom{n}{k}$ and the number of permutations of $(2, \underbrace{1, \ldots, 1}_{k}, 0, \ldots, 0)$ is $n\binom{n-1}{k}$ we have

$$
\begin{aligned}
M(f) & =\prod_{p \in \mathcal{P}}\left(\sum_{\ell_{1}, \ell_{2}, \ldots, \ell_{n} \geq 0} \frac{1}{p^{\ell_{1}+\ell_{2}+\cdots+\ell_{n}}} \Delta_{\ell_{1} \ell_{2} \cdots \ell_{n}} f(p, p, \ldots, p)\right) \\
& =\prod_{p \in \mathcal{P}}\left(\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(-k+1) \frac{1}{p^{k}}+n \sum_{k=0}^{n-1}\binom{n-1}{k}(-1)^{k+1} \frac{1}{p^{k+2}}\right) \\
& =\prod_{p \in \mathcal{P}}\left(-\sum_{k=0}^{n}\binom{n}{k} k\left(-\frac{1}{p}\right)^{k}+\sum_{k=0}^{n}\binom{n}{k}\left(-\frac{1}{p}\right)^{k}-\frac{n}{p^{2}} \sum_{k=0}^{n-1}\binom{n-1}{k}\left(-\frac{1}{p}\right)^{k}\right)
\end{aligned}
$$

Using the binomial theorem and the formula $\sum_{k=0}^{n}\binom{n}{k} k x^{k}=n x(1+x)^{n-1}$, we have

$$
\begin{aligned}
M(f) & =\prod_{p \in \mathcal{P}}\left(-n\left(-\frac{1}{p}\right)\left(1-\frac{1}{p}\right)^{n-1}+\left(1-\frac{1}{p}\right)^{n}-\frac{n}{p^{2}}\left(1-\frac{1}{p}\right)^{n-1}\right) \\
& =\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{n-1}\left(\frac{n}{p}+1-\frac{1}{p}-\frac{n}{p^{2}}\right)=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{n}\left(1+\frac{n}{p}\right)
\end{aligned}
$$

Delange [3] proved that the set of all pairs of coprime positive integers that are squarefree posseses the natural density $\left(\frac{6}{\pi^{2}}\right)^{2} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{(p+1)^{2}}\right)$, which can also be written as $\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2}\left(1+\frac{2}{p}\right)$. Ushiroya [7] proved that if we set $f\left(m_{1}, m_{2}\right)=$ $\mu^{2}\left(m_{1} m_{2}\right), f$ is a multiplicative function of two variables, and the mean-value $M(f)$ exists and equals $\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2}\left(1+\frac{2}{p}\right)$. This is another proof of Delange's result. Since $\mu^{2}\left(m_{1} m_{2} \ldots m_{n}\right)$ is the characteristic function of the set $\left\{\left(m_{1}, \ldots, m_{n}\right) \in\right.$ $\mathbb{N}^{n}: m_{i}$ is squarefree and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for any $\left.1 \leq i \neq j \leq n\right\}$, Example 5 is an extension of Delange's result to the case $n \geq 2$. On the other hand, Toth [5] proved that the natural density of the set where n positive integers are pairwise relatively prime equals $\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{n-1}\left(1+\frac{n-1}{p}\right)$. On the basis of Toth's result and Example 5, we have the following corollary.

Corollary 6. The set $\left\{\left(m_{1}, \ldots, m_{n-1}\right) \in \mathbb{N}^{n-1} ; m_{i}\right.$ is squarefree and $\operatorname{gcd}\left(m_{i}, m_{j}\right)$ $=1$ for any $1 \leq i \neq j \leq n-1\}$, and the set $\left\{\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}: \operatorname{gcd}\left(m_{i}, m_{j}\right)=\right.$ 1 for any $1 \leq i \neq j \leq n\}$ have the same natural density of

$$
\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{n-1}\left(1+\frac{n-1}{p}\right)
$$

Next, we treat the case in which a multiplicative function of n variables is a composite function of the gcd function and a multiplicative function of one variable.

Theorem 7. Let $g: \mathbb{N} \rightarrow \mathbb{C}$ be a multiplicative function of one variable satisfying

$$
\begin{equation*}
\sum_{p \in \mathcal{P}} \frac{|g(p)-1|}{p^{n}}<\infty \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{p \in \mathcal{P}} \sum_{\ell \geq 2} \frac{\left|g\left(p^{\ell}\right)\right|}{p^{n \ell}}<\infty \tag{8}
\end{equation*}
$$

If we set $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=g\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$, then f is a multiplicative function of n variables, and $M(f)$ exists and

$$
\begin{equation*}
M(f)=\frac{G(n)}{\zeta(n)} \tag{9}
\end{equation*}
$$

where $\zeta(n)$ is the Riemann zeta function and $G(n)=\sum_{m=1}^{\infty} \frac{g(m)}{m^{n}}$.
Proof. Clearly, $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=g\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$ is a multiplicative function of n variables. Since $\Delta_{\ell_{1} \ell_{2} \ldots \ell_{n}} f(p, p, \ldots, p) \neq 0$ if and only $\ell_{1}=\ell_{2}=$ $\cdots=\ell_{n}$, we need only consider $\Delta_{\ell \ell \cdots \ell} f(p, p, \ldots, p)$. Since

$$
\begin{aligned}
\Delta_{\ell \ell \cdots \ell} f & (p, p, \ldots, p) \\
& =\sum_{e_{1}, \ldots, e_{n} \in\{0,1\}}(-1)^{e_{1}+e_{2}+\cdots+e_{n}} f\left(p^{\ell-e_{1}}, p^{\ell-e_{2}}, \ldots, p^{\ell-e_{n}}\right) \\
& =\sum_{e_{1}, \ldots, e_{n} \in\{0,1\}}(-1)^{e_{1}+e_{2}+\cdots+e_{n}} g\left(\operatorname{gcd}\left(p^{\ell-e_{1}}, p^{\ell-e_{2}}, \ldots, p^{\ell-e_{n}}\right)\right) \\
& =g\left(p^{\ell}\right)-\binom{n}{1} g\left(p^{\ell-1}\right)+\binom{n}{2} g\left(p^{\ell-1}\right)-\cdots+\binom{n}{n}(-1)^{n} g\left(p^{\ell-1}\right) \\
& =g\left(p^{\ell}\right)-g\left(p^{\ell-1}\right)+g\left(p^{\ell-1}\right) \sum_{k=0}^{n}\binom{n}{k}(-1)^{k}=g\left(p^{\ell}\right)-g\left(p^{\ell-1}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \sum_{\substack{p \mathcal{P}}} \sum_{\substack{\ell_{1}, \ldots, \ell_{n} \geq 0 \\
\ell_{1}+\cdots+\ell_{n} \geq 1}} \frac{1}{p^{\ell_{1}+\ell_{2}+\cdots+\ell_{n}}}\left|\Delta_{\ell_{1} \ell_{2} \cdots \ell_{n}} f(p, p, \ldots, p)\right| \\
&=\sum_{p \in \mathcal{P}} \sum_{\ell \geq 1} \frac{1}{p^{n \ell}}\left|g\left(p^{\ell}\right)-g\left(p^{\ell-1}\right)\right| \\
&=\sum_{p \in \mathcal{P}}\left(\frac{|g(p)-1|}{p^{n}}+\sum_{\ell \geq 2} \frac{\left|g\left(p^{\ell}\right)-g\left(p^{\ell-1}\right)\right|}{p^{n \ell}}\right)
\end{aligned}
$$

The convergence of the series $\sum_{p \in \mathcal{P}}|g(p)-1| / p^{n}$ follows from (7) and that of the series $\sum_{p \in \mathcal{P}} \sum_{\ell \geq 2}\left|g\left(p^{\ell}\right)-g\left(p^{\ell-1}\right)\right| / p^{n \ell}$ follows from (7) and (8). Therefore, according to Theorem $4, M(f)$ exists and equals

$$
\begin{aligned}
& \prod_{p \in \mathcal{P}}\left(\sum_{\ell_{1}, \ell_{2}}, \ldots, \ell_{n} \geq 0\right. \\
&\left.\frac{1}{p^{\ell_{1}+\ell_{2}+\cdots+\ell_{n}}} \Delta_{\ell_{1} \ell_{2} \cdots \ell_{n}} f(p, p, \ldots, p)\right) \\
&=\prod_{p \in \mathcal{P}}\left(1+\sum_{\ell \geq 1} \frac{1}{p^{n \ell}}\left(g\left(p^{\ell}\right)-g\left(p^{\ell-1}\right)\right)\right) \\
&=\prod_{p \in \mathcal{P}}\left(1+\frac{g(p)-1}{p^{n}}+\frac{g\left(p^{2}\right)-g(p)}{p^{2 n}}+\cdots\right) \\
&=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p^{n}}\right)\left(1+\frac{g(p)}{p^{n}}+\frac{g\left(p^{2}\right)}{p^{2 n}}+\cdots\right)=\frac{G(n)}{\zeta(n)}
\end{aligned}
$$

If g in Theorem 7 is a bounded function, (7) and (8) are obviously satisfied. Therefore, we have the following corollary.
Corollary 8. If g in Theorem 7 satisfies $|g| \leq C$ for some $C>0$, the mean-value $M(f)$ exists and (9) holds.

The following corollary is a special case in [2].
Corollary 9 (Cohen [2]). Let S be an arbitrary set in \mathbb{N}, where the characteristic function 1_{S} is multiplicative. Then, the natural density of the set of n-tuples $\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}$ such that $\operatorname{gcd}\left(m_{1}, \ldots, m_{n}\right)$ is in S equals

$$
\frac{\zeta_{S}(n)}{\zeta(n)}=\frac{1}{\zeta(n)} \sum_{m=1, m \in S}^{\infty} \frac{1}{m^{n}}
$$

Although Cohen treated a more general case in which 1_{S} is not necessarily multiplicative, wherein Theorem 7 is not applicable, we can prove Corollary 9 by a method different from that of Cohen. Moreover, Theorem 7 is applicable to the case in which g is not a characteristic function.

When g is a multiplicative function such that G is well-known, we have a very simple expression for the mean-value. Several examples are shown below.

Example 10. If $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\mu\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$, then f is a multiplicative function of n variables, and the mean-value $M(f)$ exists and

$$
M(f)=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p^{n}}\right)^{2}=\frac{1}{\zeta^{2}(n)}
$$

Proof. Since $g=\mu$ is a bounded function, the mean-value exists and (9) holds according to Corollary 8. It is easy to see that

$$
M(f)=\frac{G(n)}{\zeta(n)}=\frac{1}{\zeta(n)} \sum_{m=1}^{\infty} \frac{\mu(m)}{m^{n}}=\frac{1}{\zeta^{2}(n)} \quad \text { with } n \geq 2
$$

The proof of the following example is similar to that of the aforementioned example.

Example 11. If $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\mu^{2}\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$, then f is a multiplicative function of n variables, and $M(f)$ exists and

$$
M(f)=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p^{2 n}}\right)=\frac{1}{\zeta(2 n)}
$$

We can also prove the following examples according to Theorem 7.
Example 12. If $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\sigma_{\alpha}\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$, where $\sigma_{\alpha}(n)=\sum_{d \mid n} d^{\alpha}$, then f is a multiplicative function of n variables, and $M(f)$ exists if $n>\alpha+1$ and

$$
M(f)=\prod_{p \in \mathcal{P}} \frac{1}{1-p^{\alpha-n}}=\zeta(n-\alpha)
$$

Example 13. If $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\varphi\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$, where φ is Euler's totient function, then f is a multiplicative function of n variables, and $M(f)$ exists if $n \geq 3$ and

$$
M(f)=\prod_{p \in \mathcal{P}} \frac{\left(1-\frac{1}{p^{n}}\right)^{2}}{\left(1-\frac{1}{p^{n-1}}\right)}=\frac{\zeta(n-1)}{\zeta(n)^{2}} .
$$

Example 14. If $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=K\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$, where $K(n)=\prod_{p \mid n} p$ is the squarefree kernel of an integer n, then f is a multiplicative function of n variables, and $M(f)$ exists if $n \geq 3$ and

$$
M(f)=\prod_{p \in \mathcal{P}}\left(1+\frac{p-1}{p^{n}}\right)=\frac{1}{\zeta(n)} \prod_{p \in \mathcal{P}}\left(1+\frac{p}{p^{n}-1}\right) .
$$

Example 15. If $f\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\left(\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)^{\alpha}$, then f is a multiplicative function of n variables, and $M(f)$ exists if $n>\alpha+1$ and

$$
M(f)=\prod_{p \in \mathcal{P}} \frac{1-\frac{1}{p^{n}}}{1-\frac{1}{p^{n-\alpha}}}=\frac{\zeta(n-\alpha)}{\zeta(n)} .
$$

Acknowledgement. The author sincerely thanks the referee, whose comments and suggestions essentially improved this paper.

References

[1] J. C. Burkill and H. Burkill, A Second Course in Mathematical Analysis, Cambridge Univ. Press, 1970.
[2] E. Cohen, Arithmetical functions associated with arbitrary sets of integers, Acta Arith. 5 (1959), 407-415.
[3] H. Delange, On some sets of pairs of integers, J. Number Theory 1 (1969), 261-279.
[4] W. Schwarz and J. Spilker, Arithmetical Functions, Cambridge Univ. Press, 1994.
[5] L. Toth, The probability that k positive integers are pairwise relatively prime, Fibonacci Quart. 40 (2002), 13-18.
[6] L. Toth, On the asymptotic densities of certain subsets of \mathbb{N}^{k}, Riv. Mat. Univ. Parma 6 (2001), 121-131.
[7] N. Ushiroya, On a mean value of a multiplicative function of two variables, Probability and Number Theory - Kanazawa 2005, Adv. Studies in Pure Math. 49, (eds. S. Akiyama, K. Matsumoto, L. Murata H. Sugita), (2007) 507-515.
[8] R. Vaidyanathaswamy, The theory of multiplicative arithmetic functions, Trans. Amer. Math. Soc 33 (1931), 579-662.

