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Abstract
Let f : N® — C be an arithmetic function of n variables, where n > 2. We study
the mean-value M (f) of f that is defined to be

Y e )

L1y =00 L1+ Ty
m1<x1, ... , Mp<Tp

if this limit exists. We first generalize the Wintner theorem and then consider
the multiplicative case by expressing the mean-value as an infinite product over all
prime numbers. In addition, we study the mean-value of a function of the form
(my1, ma, ... , my,) — g(ged(my, ma, ... , my,)), where g is a multiplicative
function of one variable, and express the mean-value by the Riemann zeta function.

1. Introduction

Let f : N — C be an arithmetic function. The mean-value M(f) of f is de-
fined as lim, .oz, ., f(m), if this limit exists. It is well-known that if
S mTY 2dim u(d) f(m/d)| < oo, where j is the Mbius function, then M (f) ex-
ists and equals Y -, m™* >_djm 1(d) f(m/d). This is Wintner’s theorem. See, e.g.,
Schwarz and Spilker [4, Cor. 2.2]. Moreover, it is also well-known that if f is a multi-
plicative function satisfying 3- . p~*[f(p)—1] < 0o and 3 p ZkZQp_k|f(pk)| <
oo, where P is the set of prime numbers, then M (f) exists, and M(f) = [[,ep(1 +
S oy 2 F(f(OF) = F(p*71))) holds (cf. Schwarz and Spilker [4, Cor. 2.3]).

We extended these theorems in [7] to the case in which f : N> — C is an
arithmetic function of two variables. In this paper, we extend the aforementioned
theorems to the case of an arithmetic function of n variables, where n > 2.

Toth [5] proved that the natural density of the set of n-tuples such that all pairs

n—1
are coprime equals HpeP (1 - %) (1 + %) We show in Corollary 6 that the
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natural density of the set of squarefree (n— 1)-tuples such that all pairs are coprime
has the same expression.

Ushiroya [7] also proved the following mean-value theorem. If g is a multiplicative
function of one variable, then f defined by f(mq,ms2) = g(ged(mq, ms)) is a multi-
plicative function of two variables. Assuming > cp > 45 ﬁ lg(p*)—g(P*~1)| < o0,
the mean-value M(f) =[] ,cp(1+3 5,5, p%(g(pk)—g(pk_l))) exists. In this study,
we extend this theorem to the case in which f is an arithmetic function of n vari-
ables of the form f(mq, ma, ... , my,) = g(ged(my, ma, ... , my,)), where n > 2,
and express the mean-value in terms of the Riemann zeta function.

Let S be an arbitrary set in N and N,(z,S5) := #{(m1, ... , my) € (NN
[1,2])™; ged(mq, ..., my) € S}. Cohen [2] proved that Ny, (z, S) = es(n) 2" +T,(x)

¢(n)
holds, where (s(n) = Ziﬁ:L mes mms Tn(z) = O(z"7 1) for n > 2, and Ty(z) =
O(xlog®x) for n = 2. See also [6]. From this result, it follows that the natural
density of the set of n-tuples (m1, ... , m,) for which ged(ms, ... , m,) belongs
Np(x,S
to S equals lim (z,5) = Cs(n)
M T
function 1g of S, we can obtain Cohen’s result under the condition that 1g is

multiplicative by using a different method. Moreover, we present some examples,
which were not treated in Cohen [2], in which g is not a characteristic function of
a set in N.

We note that when g is the characteristic

2. Notation and Some Facts

Let n > 2 be a fixed integer and f, g : N — C be arithmetic functions of n variables.
The mean-value M (f) of the function f is defined as

1
lim R —— e
T1, o Bn—00 T - Ty Z f(mla ) mn)a
m1<x1, .. , Mp<Tp
if this limit exists. Few results are known regarding the mean-values of general
multiplicative functions of several variables. In this study, we investigate those
mean-values by using elementary methods.
The Dirichlet convolution of f and g is defined as follows:
mi m
(f*g)(m177mn): Z f(£177€n)g(Z777n)

éllmlynw enlmn

We use the same notation u for the function p(mq,...,my,) = p(my)--- p(my),
which is the inverse of the constant 1 function under the Dirichlet convolution, i.e.,
(px1)(my,...,myp) = 6(my,...,my), where 6(my,...,m,) =1 or 0 according to
whether m; = ... =m,, = 1 or not.
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We recall that a multiple series Y7
is said to be convergent and to have as sum the number A € C if

lim E Umy,.c.omy, = A?

My,...,M,—00

my=14m1,...,m, with terms sy, ... .m,, € C

i.e., for every ¢ > 0 there is a positive integer M = M (e) such that for every

My,...,M, > M,
| Z Amy ...om,, — 4] <e.
ma<Ma,...;mn <M,
In case of double series see, e.g., Section 4.7 in [1].
The next theorem is an extension of Wintner’s theorem to the case in which f is
an arithmetic function of n variables.

Theorem 1. Let f : N* — C be an arithmetic function of n variables. Suppose

oo

1
Z m\(f*u)(ml, co s, my)| < oo (1)
My, .. , mnzl

Then, the mean-value M(f) exists and

M= Y ————(Frmm o m). @

ml..omn
mi, ... , mp=1

Proof. Since f = f+d = fx*pux1, we have

s m1<x1,...,Mp<Tp
X1 Tn
= mlgg“;mngmn(f * p)(ma, ... ,mn)[m—l} e [m_n]
: > e m (Tos0m) - (T r0m). ()

m1<T1,...,Mnp, Ty,

where [z] is the integer part of z. Then we have

. Z f(my,...,my)

x “ e ‘I
! " mi<z1,...,ma<zn

fxp)(my,...,my,
_ 3 (f * p)( . )

my---Mp

+ Ry(z1,...,2n),

m1<x1,...,Mn<Tp

where

Ry(w1,...,7,) < Z Z [(f *p)(ma,...,my)] (m)ul (%>un’

myp---Mp 1 Tn

UL yeney Up M1 <T1,ec., My <Tp
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and where the first sum is over uq,...,u, € {0,1} such that at least one wu; is 1.

To complete the proof it is sufficient to show that limg, . 5. oo Rf(21,...,2n) =
0. To do this, fix some uq,...,u, € {0,1}, not all 0, and let I = {i;1 <i < n,u; =
1} # 0. For every g; > 0 with i € I,

3 |(f*M)(m1,---,mn)|(E)U1m(%>un

myp---Mp T Tn

my <z, smn <z,

e Y Mmoo g mm)

my---Mp my My

i€l m;<e;xz; for i€l M1 <L yeee,Mp, <y
m;<z; for j¢I mp>eRT) for at least one kel

> [(f *w)(ma,...,my)] [(f *w)(ma,...,my,)]
< ; .
- Hgl Z ml .. .mn + m1<zlzm <x ml .o .mn

my>epry for at least one k€l

i€l my,...,mp=1

Here the first term is arbitrarily small (if the &;’s are small) and the second
term is also arbitrarily small if zj is sufficiently large (using the definition of the
convergence of multiple series). O

Next, we define the concept of the multiplicative function of n variables, which
was given in Vaidyanathaswamy [8].

Definition 2. Let f : N* — C be an arithmetic function of n variables. We say
that f is a multiplicative function of n variables if f satisfies

f(élml, e ann):f(ﬂl, ey gn) f(ml, [ mn)
forany ly,... . ln,my,...,my, € N satisfying gcd(ly - Cpn, my---my) = 1.

It is known that if f and g are multiplicative functions of n variables, f * g is
also a multiplicative function of n variables.

Lemma 3. Let f : N® — C be a multiplicative function of n variables and m; =
I1; pf»” for1 <i<mn, where pj € P and £;; > 0. Then,

f(my, ... mn):Hf(pﬁlj, cee pﬁ”j).
J

Proof. Since ged(pitt - phrt, [Ii>o pﬁ” o | I pﬁ"j) =1, we have, by the multi-
plicativeness of f, that

f(mla e mn):f(Hpﬁlj, e, Hpﬁ”j)
J J

V4 O L1 L j
= Py (TR - T

Jj=2 Jj=2



INTEGERS: 12 (2012) )

Now, Lemma 3 follows by induction on n. O
FOI‘pjl, Pjas --+5 Djn € P and ly, Ly, ..., {, € NU{O} we set
citestoben p(pli—er fo- P
Ahéz”-fnf(pjn Pjas -+ pjn) ::Z (_1)€1+92+ +pnf(pji 617 pjz 825 ey pjn c )7
e1,...,en€{0,1}
where we substitute f(pﬁ_el, p%_ez, cee pﬁ:‘e"’) =0 if ¢ —e; <0 for some
. 14 (4 L
1 <i < n. Clearly, (f *u)(pji, Pits e s pjn) = Aptgetn f(Pjrs Pjar -+ 5 Djn)
holds for any ¢1,45, ..., ¢, > 0.

Theorem 4. Let f : N* — C be a multiplicative function of n variables satisfying

1
> > g | Detse, S0 P - p)| <00 (4)

pEP b1, ba) s £y>0P
Lyl Hln>1

Then the mean-value M(f) exists and
1
M(f) = H( > T Autee, S0 D p))- (5)
PEP b, ba) o L0

Proof. Since the function : (my, ... , my) = e |fx p(ma, ... , my)|is
a multiplicative function of n variables, according to Lemma 3, we have

—_

> ———|(fxp)(ma, .. )|

mi---Mp

m1<x1, ..., Mpn<Tp 1
< X (I g Gemts o)

£1,...,>0 pEP

Z (H Zﬁ|AIZ1-~£n(pa ces P)|>

)

Li,..8n >0 p€EP 1
< H( > W|Aél-~-énf(pa e p)\)
pEP L1,....£n >0
1
= H(1+ > meelmenf(z?, e P)|)
pEP li,...5,>0
511"~+5n21

<on(X0 Y S Bt o) <.

where we have used the inequality 1 + z < exp(z) for > 0. Therefore, according
to Theorem 1, the mean-value M (f) exists and clearly (5) holds. O



INTEGERS: 12 (2012) 6

Example 5. If f(m1, ma, ... , my) = p?(mima---my,), then f is a multiplicative
function of n variables, and the mean-value M(f) exists and
1\™ n
M(f) = H(1——) (1+—). (6)
peEP p p

Proof. Since p?(p*) = 0 holds for any ¢ > 2, we note that

Atrotn By D)= Sar ereqory(~1)H e 2 (e HEn=en)) s 0 when
(€1, ..., £,) is not a permutation of (1,...,1,0,...,0) or (2,1,...,1,0,...,0) for
~—— ~——

some k > 0. Observing that

Al].].OOf(pﬂvp): Z (—1)61+"'+8ku2(p(1*81)+"‘+(178k))
k €1y, ex€{0,1}

= Y (Fnerrredpheaer

€1y, ex€{0,1}

= 12(") - (1)u2(p’”)+~'

and

Byl Louof (o) = D (L) rEE e e )
——

M €1,..., ex+1€{0,1}
= (=)MP(p) = ()M
as well as noting that the number of permutations of (1,1,...,1,0, ..., 0) is (Z)
——
k
and the number of permutations of (2,1,...,1,0,...,0) is n(";l) we have
——

B

M(f) = H( Z mAfl&manc(pv py, ooy p))

pEP L1,l2,...,£, >0

= LS (e ("))
- IS X () -5 ()

peEP 0 k=0

n n
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Using the binomial theorem and the formula >, (})kz* = nz(14z)"~!, we have

wn = L0760
— };[p(l_%)”—l(%+l—%—]%)_ gp(l—%)n(ﬂ-%).

Delange [3] proved that the set of all pairs of coprime positive integers that are

squarefree posseses the natural density (%)2 HpE'P (1 - ﬁ), which can also be

2
written as Hpep(l - %) (1 + %) Ushiroya [7] proved that if we set f(mq,mz2) =
p2(mims), f is a multiplicative function of two variables, and the mean-value M (f)

2
exists and equals [ peP (1 — %) (1 + %) This is another proof of Delange’s result.

Since p?(mymsa...m,) is the characteristic function of the set {(my, ..., m,) €
N™: m, is squarefree and ged(m;, m;) = 1 for any 1 < i # j < n}, Example 5 is
an extension of Delange’s result to the case n > 2. On the other hand, Toth [5]
proved that the natural density of the set where n positive integers are pairwise

n—1
relatively prime equals HpeP (1 — %) (1 + "le> On the basis of Toth’s result

and Example 5, we have the following corollary.

Corollary 6. The set {(m1, ..., mu—1) € N""1; m; is squarefree and ged(m;, m;)
=1 for any 1 <1i+# j <n—1}, and the set {(m1, ..., my) € N*: ged(m;, m;) =
1 for any 1 <i # j < n} have the same natural density of

H(l—%)n_l(l—kn;l).

pEP

Next, we treat the case in which a multiplicative function of n variables is a
composite function of the ged function and a multiplicative function of one variable.

Theorem 7. Let g : N — C be a multiplicative function of one variable satisfying

peEP

and .
Syl ®)
pepis2 P

If we set f(my, ma, ... , my) = g(ged(my, ma, ... , my)), then f is a multi-

plicative function of n variables, and M (f) exists and
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G(n)
M(f) =22, 9
=G Q
o g(m)
where ((n) is the Riemann zeta function and G(n) = Z gmn .
m=1
Proof. Clearly, f(my, ma, ..., my) = g(ged(my, ma, ..., my)) is a multiplicative
function of n variables. Since Ay, ¢,...0, f(p, , ... , p) # 0 if and only ¢; = ¢y =
-+ ={,, we need only consider Ay...of(p, p, ... , p). Since
Afé-uéf(p7 b, - p)
= Z (71)61+62+"'+enf(p4761’ pifez’ e péfen)
€1,..., en€{0,1}
_ Z (71)61+eg+-~+eng(gcd(plfel7 pZ7627 e pffen))

€1,..., en€{0,1}
= g - (T)g(p“) + (Z)g(p“) — (Z)(—l)”g(p“)

= o) =90+ DS (1) 0 =00 - g

k=0

we have

1
>y Imﬂelezwenf@, Py v D)

PEP L1,...,£n 20
bt tlp>1

Yy 2%m(pf) oY)

peEP £>1
_ lg(p) — 1| lg(p") — 9P|
- pezp( p + ZZZQ pné )

The convergence of the series )  p[g(p) — 1|/p" follows from (7) and that of
the series > p > 5o lg(p?) — g(p*=1)|/p™* follows from (7) and (8). Therefore,
according to Theorem 4, M(f) exists and equals
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H( Z mAhb'“@nf(pv p, - p))

pEP Ly, Lo, ..., enzop
= T1(1+ 3 et - a0 )
pEP £>1
_ gp) =1 g(*) —g(p)
= gp(l—i— o + T _|_>
1 9p) | 9(v®) G(n)
B gp(l_ﬁ)(l—i_—n_'_ p2n +) - C(n)’

O

If g in Theorem 7 is a bounded function, (7) and (8) are obviously satisfied.
Therefore, we have the following corollary.

Corollary 8. If g in Theorem 7 satisfies |g| < C for some C > 0, the mean-value
M(f) exists and (9) holds.

The following corollary is a special case in [2].

Corollary 9 (Cohen [2]). Let S be an arbitrary set in N, where the character-
istic function 1g is multiplicative. Then, the natural density of the set of n-tuples
(m1,...,my) €N such that gcd(my, ..., my,) is in S equals

Cs(n) _ 1 i 1
() ¢(n) mn

m=1, meS

Although Cohen treated a more general case in which 1g is not necessarily mul-
tiplicative, wherein Theorem 7 is not applicable, we can prove Corollary 9 by a
method different from that of Cohen. Moreover, Theorem 7 is applicable to the
case in which ¢ is not a characteristic function.

When g is a multiplicative function such that G is well-known, we have a very
simple expression for the mean-value. Several examples are shown below.

Example 10. If f(m1, ma, ... , my) = p(ged(my, ma, ... , my)), then f is a
multiplicative function of n variables, and the mean-value M(f) exists and

M) =11 (1—i)2= %

n
peP p

Proof. Since g = p is a bounded function, the mean-value exists and (9) holds
according to Corollary 8. It is easy to see that

My =& _ 1 g~ im) 1 with n > 2.

¢(n)  ((n) m" - (3(n)

m=1
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O

The proof of the following example is similar to that of the aforementioned ex-
ample.

Example 11. If f(m1, ma, ... , m,) = p?(ged(my, ma, ... , my)), then f is a
multiplicative function of n variables, and M(f) exists and

v = TL( ) = gy

peP

We can also prove the following examples according to Theorem 7.

Example 12. If f(my, ma, ... , my) = oa(ged(my, ma, ... , my)), where
oa(n) = de d*, then f is a multiplicative function of n variables, and M(f)
exists if n > a+1 and

(1) = I y—ms ==

pEP

Example 13. If f(mi, ma, ... , m,) = p(ged(my, me, ... , my)), where ¢
1s Euler’s totient function, then f is a multiplicative function of n variables, and
M(f) exists if n > 3 and

(1*,%)2 n—1
e =11 g% )_C(C(n)2)'

pn—l

Example 14. If f(my, ma, ... , my,) = K(ged(mi, ma, ... , my)), where
K(n) = lenp 1s the squarefree kernel of an integer n, then f is a multiplicative
function of n variables, and M (f) exists if n > 3 and

p—1 1 p
M(f) = [+ ):@H<1+pn_1).

T
peEP p peEP

Example 15. If f(m1, ma, ... , my) = (ged(my, ma, ... , my,))®, then f is a
multiplicative function of n variables, and M(f) exists if n > a+ 1 and

1- L n—a
vin = I =™

pEP T opne
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