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Abstract
Let R1, . . . , Rp be subsets of the set [n] = {1, . . . , n} with |Ri| = ri and Ri∩Rj = ∅
for all i, j = 1, . . . , p, i "= j. The (r1, . . . , rp)-Stirling number of the second kind,
p ≥ 1, introduced in this paper and denoted by

{n
k

}
r1,...,rp

, counts the number of
partitions of the set [n] into k classes (or blocks) such that the elements in each
Ri, i = 1, . . . , p, are in different classes (or blocks). Combinatorial and algebraic
properties of these numbers are explored.

1. Introduction

The (r1, . . . , rp)-Stirling numbers of the second kind represent a certain generaliza-
tion of the Stirling and r-Stirling numbers of the second kind. The Stirling number
of the second kind, denoted by

{n
k

}
, counts the number of partitions of the set [n]

into k non-empty disjoint subsets. An excellent introduction to these numbers can
be found in [8]. The r-Stirling number of the second kind, denoted by

{n
k

}
r
, counts

the number of partitions of the set [n] into k non-empty disjoint subsets such that
the numbers 1, 2, . . . , r are in different subsets. Combinatorial interpretations and
algebraic properties of these numbers can be found in [3]. Several authors stud-
ied these numbers and their role in probability, approximations, congruences and
other frameworks. For example, Chrysaphinou [5] studied Touchard polynomials
and their connections with the r-Stirling numbers and other numbers, Hsu et al. [9]
studied the properties and approximations for a family of Stirling numbers, Mező

1This research is supported by the PNR project 8/u160/3172.
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[11, 10] studied the r-Bell numbers and the maximum of the r-Stirling numbers and
Mihoubi et al. [12] gave some properties with respect to the r-Stirling numbers.
One can see the references [4, 6, 13] for more applications and results on these num-
bers. Our generalization leads us to study an extension of the r-Stirling numbers,
in which we may establish

• a generalization of the Dobiński and Stirling formulas,

• a combinatorial interpretation of the coefficient of zk, k = 0, 1, 2, . . . , in the
polynomial (z + rp)

n (z + rp)
r1 · · · (z + rp)

rp−1 , where
zn = z (z − 1) · · · (z − n + 1) , n ≥ 1, and z0 = 1,

• inequalities generalize those given by Bouroubi [2] on the single variable Bell
polynomials,

• some properties for the (r1, . . . , rp)-Stirling numbers of the second kind.

The (r1, . . . , rp)-Stirling numbers of the second kind are defined as follows:

Definition 1. Let R1, . . . , Rp be subsets of the set [n] with |Ri| = ri and Ri∩Rj =
∅ for all i, j = 1, . . . , p, i "= j. The (r1, . . . , rp)-Stirling number of the second kind,
p ≥ 1, denoted by

{n
k

}
r1,...,rp

, counts the number of partitions of the set [n] into k

non-empty subsets such that the elements of each of the p sets

R1 := [r1] , R2 := [r1 + r2] \ [r1] , . . . , Rp := [r1 + · · · + rp] \ [r1 + · · · + rp−1]

are in distinct subsets.

From this definition, one can verify easily that the (r1, . . . , rp)-Stirling numbers of
the second kind satisfy

{
n

k

}

r1,...,rp

= 0, n < r1 + · · · + rp or k < max (r1, . . . , rp) ,

{
n

k

}

r1,...,rp

=
{

n

k

}
if r1, . . . , rp ∈ {0, 1} ,

{
n

k

}

r1,...,rp

=
{

n

k

}

rp

if r1, . . . , rp−1 ∈ {0, 1} ,

{
n

k

}

r1,...,rp

=
{

n

k

}

r1,...,rp,0

=
{

n

k

}

r1,...,rp,1

,

{
n

k

}

r1,...,rp

=
{

n

k

}

rσ(1),...,rσ(p)

for all permutations σ on the set {1, . . . , p} .

Therefore, by the symmetry of the (r1, . . . , rp)-Stirling numbers to respect to r1, . . . ,
rp, we can suppose r1 ≤ r2 ≤ · · · ≤ rp and throughout this paper we use the
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notations

Dn
z=z0

:=
dn

dzn
|z=z0 , rp := (r1, . . . , rp) , |rp| := r1 + · · · + rp, and

Pt (z; rp) := (z + rp)
t (z + rp)

r1 · · · (z + rp)
rp−1 , t ∈ R.

2. The rp-Stirling Numbers of the Second Kind

2.1. Combinatorial Recurrence Relations

Broder [3] introduced the r-Stirling numbers of the second kind and showed that
these numbers satisfy

{
n

k

}

r

= 0, n < r,

{
r

k

}

r

= δr,k,

{
n

k

}

r

=
{

n

k

}

r−1

− (r − 1)
{

n− 1
k

}

r−1

, n ≥ r ≥ 1,
{

n

k

}

r

= k

{
n− 1

k

}

r

+
{

n− 1
k − 1

}

r

, n > r.

The rp-Stirling numbers of the second kind satisfy recurrence relations similar to
those of the r-Stirling and the regular Stirling numbers of the second kind with
modified initial conditions; see Theorems 4 and 5 given below. To start, we give a
theorem in which we express the r-Stirling numbers in terms of the Stirling numbers.

Theorem 2. We have
{

n

k

}

r

=
1

(k − r)!

r∑

i=0

(
r

i

){
n− r

k − i

}
(k − i)!.

Proof. For i = 0, . . . , r, there are
(r

i

)
ways to form i singletons using the elements

in {1, . . . , r} and
{n−r

k−i

}
ways to partition the set {r + 1, . . . , n} into k − i subsets.

The r − i elements of the set {1, . . . , r} not already used can be inserted in the
k − i subsets in (k − i) · · · ((k − i)− (r − i) + 1) = (k−i)!

(k−r)! ways. Then, the number
of partitions of the set {1, . . . , n} into k subsets such that the elements of the set

{1, . . . , r} are in different subsets is
{n

k

}
r

=
r∑

i=0

(r
i

){n−r
k−i

} (k−i)!
(k−r)! , n ≥ r.

Theorem 2 can be translated to the rp-case as follows:
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Theorem 3. Let rp,α = (r1, . . . , rα−1, rα+1, . . . , rp) , 1 ≤ α ≤ p. The rp-Stirling
numbers of the second kind satisfy

{
n

k

}

rp

=
1

(k − rα)!

rα∑

j=0

(
rα

j

){
n− rα

k − j

}

rp,α

(k − j)!.

Proof. By the symmetry of r1, . . . , rp, we consider only the case α = p. For i =
0, . . . , rp, there are

(rp

i

)
ways to form i singletons using the elements in Rp and{n

k

}
rp−1

ways to partition the set [n] \Rp into k− i subsets such that the elements of
each Ri, i = 1, . . . , p− 1, are in different subsets. The rp − i elements of the set Rp

not already used can be inserted in the k − i subsets in (k−i)!
(k−rp)! ways. Then, the

number of partitions of the set [n] into k subsets such that the elements in each Ri,

i = 1, . . . , p, are in different subsets is
{n

k

}
rp

=
rα∑

j=0

(rα

j

){n−rα

k−j

}
rp,α

(k−j)!
(k−rα)! .

Theorem 4. The rp-Stirling numbers of the second kind satisfy
{

n

k

}

rp

= k

{
n− 1

k

}

rp

+
{

n− 1
k − 1

}

rp

, n > |rp| .

Proof. To form a partition of the set [n] into k non-empty subsets, we can form a
partition of the set [n− 1] into k non-empty subsets by adding the element n to
any of the k subsets, or we form a partition of the set [n− 1] into k− 1 non-empty
subsets by adding the subset {n} . Obviously, for n > |rp| , the distribution of the
elements of the sets Ri, i = 1, . . . , p, into different subsets is not influenced by this
process.

Theorem 5. Let ei be the ith vector of the canonical basis of Rp. Then, for all
i = 1, . . . , p, the rp-Stirling numbers of the second kind satisfy

{
n

k

}

rp

=
{

n

k

}

rp−ei

− (ri − 1)
{

n− 1
k

}

rp−ei

, n ≥ |rp| , r1 · · · rp ≥ 1.

Proof. For all i = 1, . . . , p, the identity of the theorem can be written as

(ri − 1)
{

n− 1
k

}

rp−ei

=
{

n

k

}

rp−ei

−
{

n

k

}

rp

, n ≥ |rp| , r1 · · · rp ≥ 1.

The number
{n

k

}
rp−ei

−
{n

k

}
rp

counts the number of partitions of [n] into k non-empty
subsets such that the sets R1, · · · , Ri−1, Ri\ {|ri|} , Ri+1, . . . , Rp are in different
subsets but |ri| is not. But this number is equal to (ri − 1)

{n−1
k

}
rp−ei

because
such partitions can be obtained in ri − 1 ways from partitions of [n] \ {|ri|} into
k non-empty subsets such that the above sets are in different subsets by including
|ri| in any of the |ri| − 1 subsets of the subsets containing the elements of the set
Ri\ {|ri|} .
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2.2. Generating Functions for the rp-Stirling Numbers

Broder [3] showed that the exponential generating function of the r-Stirling numbers
is given by

∑

n≥0

{
n + r

k + r

}

r

tn

n!
=

1
k!

(
et − 1

)k exp (rt)

and these numbers satisfy
{

n + r

k + r

}

r

=
1
k!

k∑

j=0

(
k

j

)
(−1)k−j (j + r)n ,

After that, Mező [10, 11] defined the r-Bell polynomial by

Bn (z; r) =
n∑

k=0

{
n + r

k + r

}

r

zk

and showed that it can be written as

Bn (z; r) = exp (−z)
∞∑

i=0

(i + r)n

i!
zi.

These two last identities represent, respectively, extensions of the known Stirling
and Dobiński formulas and can be written in the rp-case as it is showed in Theorem
8 given below. Now, to give the exponential generating function of the rp-Stirling
numbers, let us give it for p = 2.

Theorem 6. For r ≤ s we have
∑

n≥0

{
n + r + s

k + s

}

r,s

tn

n!
=

1
k!

exp (rt)Dr
x=exp(t)−1

(
xk (x + 1)s) .

Proof. For k ≤ r we have

∑

n≥0

{
n + r + s

k + s

}

r,s

tn

n!
=

∑

n≥0

1
k!

s∑

j=0

(
s

j

)
(k + s− j)!

{
n + r

k + s− j

}

r

tn

n!

=
∑

n≥0

1
k!

s∑

j=r−k

(
s

j

)
(k + j)!

{
n + r

k + j

}

r

tn

n!

=
1
k!

s∑

j=r−k

(
s

j

)
(k + j)!

∑

n≥k+j−r

{
n + r

k + j − r + r

}

r

tn

n!

=
1
k!

exp (rt)
s∑

j=r−k

(
s

j

)
(k + j)!

(k + j − r)!
(exp (t)− 1)k+j−r

=
1
k!

exp (rt)Dr
x=exp(t)−1

(
xk (x + 1)s) ,
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and for k > r we have

∑

n≥0

{
n + r + s

k + s

}

r,s

tn

n!
=

∑

n≥k−r

{
n + r + s

k + s

}

r,s

tn

n!

=
∑

n≥k−r

1
k!

s∑

j=0

(
s

j

)
(k + s− j)!

{
n + r

k + s− j

}

r

tn

n!

=
∑

n≥k−r

1
k!

s∑

j=0

(
s

j

)
(k + j)!

{
n + r

k + j

}

r

tn

n!

=
1
k!

s∑

j=0

(
s

j

)
(k + j)!

∑

n≥k−r+j

{
n + r

k + j

}

r

tn

n!

=
1
k!

exp (rt)
s∑

j=0

(
s

j

)
(k + j)!

(k + j − r)!
(exp (t)− 1)k+j−r

=
1
k!

exp (rt)Dr
x=exp(t)−1

(
xk (x + 1)s) .

Theorem 6 can be written to the rp-case as follows:

Theorem 7. For r1 ≤ · · · ≤ rp we have

∑

n≥0

{
n + |rp|
k + rp

}

rp

tn

n!

=
1
k!

exp (r1t)Dr1
x1=exp(t)−1D

r2
x2=x1

· · ·Drp−1
xp−1=xp−2

(
xk

p−1

p−1∏

i=1

(xi + 1)ri+1

)
.

Proof. By induction on p. By using Theorem 6, the theorem is true for p = 2.
Assuming that the assertion is true for p ≥ 2 and let

A =
1
k!

exp (r1t)Dr1
x1=exp(t)−1D

r2
x2=x1

· · ·Drp
xp=xp−1

(
xk

p

p∏

i=1

(xi + 1)ri+1

)
.
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For p + 1 we have

A =
1
k!

rp+1∑

j=0

(
rp+1

j

)
exp (r1t)×

Dr1
x1=exp(t)−1D

r2
x2=x1

· · ·Drp
xp=xp−1

(
xk+j

p

p−1∏

i=1

(xi + 1)ri+1

)

=
1
k!

rp+1∑

j=0

(
rp+1

j

)
(k + j)! exp (r1t)

(k + j − rp)!
×

Dr1
x1=exp(t)−1D

r2
x2=x1

· · ·Drp−1
xp−1=xp−2

(
x

k+j−rp

p−1

p−1∏

i=1

(xi + 1)ri+1

)
.

By the induction hypothesis, we have

1
(k + j − rp)!

Dr1
x1=exp(t)−1D

r2
x2=x1

· · ·Drp−1
xp−1=xp−2

(
x

k+j−rp

p−1

p−1∏

i=1

(xi + 1)ri+1

)

=
∑

n≥0

{
n + |rp|

k + j − rp + rp

}

rp

tn

n!
=

∑

n≥0

{
n + |rp|
k + j

}

rp

tn

n!
.

Then

A =
rp+1∑

j=0

(
rp+1

j

)
(k + j)!

k!

∑

n≥0

{
n + |rp|
k + j

}

rp

tn

n!

=
∑

n≥0

tn

n!

rp+1∑

j=0

(
rp+1

j

){
n + |rp|
k + j

}

rp

(k + j)!
k!

=
∑

n≥0

{
n + |rp+1|
k + rp+1

}

rp+1

tn

n!
.

The last equality is justified by Theorem 3.

The Dobiński and Stirling formulas can be written to the rp-case as follows:

Theorem 8. Let

Bn (z; rp) :=
n+|rp−1|∑

k=0

{
n + |rp|
k + rp

}

rp

zk, n ≥ 0.
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For r1 ≤ · · · ≤ rp we have

Bn (z; rp) = exp (−z)
∑

k≥0

Pn (k; rp)
zk

k!
,

{
n + |rp|
k + rp

}

rp

=
1
k!

k∑

j=0

(
k

j

)
(−1)k−j Pn (j; rp) .

Proof. Use Theorem 8 to get
∑

n≥0

Bn (z; rp)
tn

n!
= exp (r1t− z)Dr1

x1=exp(t)−1D
r2
x2=x1

· · ·Drp−1
xp−1=xp−2

×
(

exp (z (xp−1 + 1))
p−1∏

i=1

(xi + 1)ri+1

)
.

The expansion of exp (z (xp−1 + 1)) and differentiation with respect to xp−1 give
∑

n≥0

Bn (z; rp)
tn

n!
=

∑

j≥0

exp (r1t− z)Dr1
x1=exp(t)−1D

r2
x2=x1

· · ·Drp−1
xp−1=xp−2

×
(

zj

j!
(xp−1 + 1)j

p−1∏

i=1

(xi + 1)ri+1

)

= exp (r1t− z)Dr1
x1=exp(t)−1D

r2
x2=x1

· · ·Drp−2
xp−2=xp−3

×




∑

j≥0

(j + rp)
rp−1 (xp−2 + 1)j+rp

zj

j!

p−3∏

i=1

(xi + 1)ri+1





and by successive differentiation we obtain

∑

n≥0

Bn (z; rp)
tn

n!
= exp (r1t− z)

∑

j≥0

P0 (j; rp) (x1 + 1)j+rp−r1 zj

j!

∣∣∣∣∣∣
x1=exp(t)−1

= exp (−z)
∑

j≥0

P0 (j; rp)
zj

j!
exp ((j + rp) t)

= exp (−z)
∑

n≥0

tn

n!

∑

j≥0

Pn (j; rp)
zj

j!
.

Then, by identification, the first identity of the theorem results. The second identity
of the theorem results upon using the expansion:

Bn (z; rp) =
∑

i,j≥0
(−1)i Pn (j; rp) zi+j

i!j! =
∑
k≥0

zk

k!

k∑
j=0

(k
j

)
(−1)k−j Pn (j; rp) .

From Theorem 8 we may state that:
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Corollary 9. For r1 ≤ · · · ≤ rp we have

∑

n≥0

{
n + |rp|
k + rp

}

rp

tn

n!
=

exp (rpt)
k!

k∑

j=0

(
k

j

)
(−1)k−j P0 (j; rp) exp (jt) ,

∑

n,k≥0

{
n + |rp|
k + rp

}

rp

zk tn

n!
= exp (rpt− z)

∑

j≥0

P0 (j; rp)
(z exp (t))j

j!
.

2.3. Identities and Consequences

A combinatorial interpretation of the r-Stirling numbers of the coefficient of zk in
the polynomial (z + r)n is given in [3] by

(z + r)n =
n∑

k=0

{
n + r

k + r

}

r

zk.

In Theorem 10 given below, we generalize this result on giving a combinatorial
interpretation by the rp-Stirling numbers of the coefficient of zk in the polynomial
Pn (z; rp) . In other words, we write the polynomial Pn (z; rp) as a linear combination
of falling factorials, proving that the rp-Stirling numbers can be interpreted as
connection constants, see for instance [7].

Theorem 10. For r1 ≤ · · · ≤ rp, we have

Pn (z; rp) =
n+|rp−1|∑

k=0

{
n + |rp|
k + rp

}

rp

zk.

Proof. Uponn using Theorem 8, the two expressions of Bn (z; rp) give

Dm
z=0 (exp (z)Bn (z; rp)) =

m∑

l=0

(
m

l

)
Dl

z=0 (Bn (z; rp)) =
m∑

k=0

{
n + |rp|
k + rp

}

rp

mk,

Dm
z=0 (exp (z)Bn (z; rp)) = (m + rp)

r1 · · · (m + rp)
rp−1 (m + rp)

n = Pn (m; rp) .

These imply that

Pn (m; rp) =
m∑

k=0

{
n + |rp|
k + rp

}

rp

mk.

Then, the polynomial Pn (z; rp) −
m∑

k=0

{n+|rp|
k+rp

}
rp

zk vanishes for all non-negative in-

teger z = m. It results that Pn (z; rp) =
n+|rp−1|∑

k=0

{n+|rp|
k+rp

}
rp

zk.

The three corollaries given below present consequences of Theorems 8 and 10. The
first one gives an expression of

{n+|rp|
k+rp

}
rp

in terms of
{ |rp|

k+rp

}
rp

and the r-Stirling
numbers.
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Corollary 11. For r1 ≤ · · · ≤ rp we have

{
n + |rp|
k + rp

}

rp

=
k∑

j=0

{
|rp|

j + rp

}

rp

{
n + j + rp

k + rp

}

j+rp

, 0 ≤ k ≤ n + |rp−1| .

In particular, for p = 2 and r ≤ s, we obtain

{
n + r + s

k + s

}

r,s

=
min(k,r)∑

j=0

(
s

j

)(
r

j

){
n + r + s− j

k + s

}

r+s−j

j!, 0 ≤ k ≤ n + r.

Proof. From Theorems 8 and 10 we have

Bn (z; rp) = exp (−z)
∑

k≥0

(k + rp)
n P0 (k; rp)

zk

k!

= exp (−z)
∑

k≥0

(k + rp)
n zk




k∑

j=0

{
|rp|

j + rp

}

rp

1
(k − j)!





= exp (−z)
|rp−1|∑

j=0

{
|rp|

j + rp

}

rp

zj
∑

k≥0

(k + j + rp)
n

k!
zk

=
|rp−1|∑

j=0

{
|rp|

j + rp

}

rp

zj
n∑

i=0

{
n + j + rp

i + j + rp

}

j+rp

zi

=
n+|rp−1|∑

j=0

zk
k∑

j=0

{
|rp|

j + rp

}

rp

{
n + j + rp

k + rp

}

j+rp

.

The corollary follows from the definition of the polynomial Bn (z; rp) .

Theorem 8 implies the following corollary:

Corollary 12. For r1 ≤ · · · ≤ rp we have

z
d

dz
(zrp exp (z)Bn (z; rp)) = zrp exp (z)Bn+1 (z; rp) ,

d

dz
(exp (z)Bn (z; rp)) = exp (z)Bn (z; rp + ep) ,

Bn+1 (z; rp) = zBn (z; rp + ep) + rpBn (z; rp) .

Corollary 13. For r1 ≤ · · · ≤ rp we have

{
n + |rp| + k

rp + j + k

}

rp+kep

=
k∑

i=0

(
k

i

){
n + |rp|

rp + j + i

}

rp

(j + i)i .
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Proof. Use Corollary 12 and the Leibnitz rule to get

exp (−z)
dk

dzk
(exp (z)Bn (z; rp)) = Bn (z; rp + kep) =

k∑

j=0

(
k

j

)
dj

dzj
(Bn (z; rp)) .

The corollary follows from the definitions of the polynomials Bn (z; rp + kep) and
Bn (z; rp) in the last identity.

Theorem 8 can be used to generalize the discrete Poisson distribution and the
inequalities given by Bouroubi [2] on the single variable Bell polynomials as follows:

Proposition 14. Let t be a real number, α,β be positive real numbers with 1
α+ 1

β = 1
and for r1 ≤ · · · ≤ rp let

Bt (λ; rp) := exp (−λ)
∑

k≥0

Pt (k; rp)
λk

k!
, t ∈ R, rp ≥ 1.

For λ > 0, let X be a random variable defined by its discrete probability

P (X = k) =
Pt (k; rp)
Bt (λ; rp)

exp (−λ)
λk

k!
, k = 0, 1, 2, . . . .

Then
E (X + rp)

x =
Bt+x (λ; rp)
Bt (λ; rp)

, x ∈ R

and

Bt+x+y (λ; rp)Bt (λ; rp) ≥ Bt+x (λ; rp)Bt+y (λ; rp) , x, y ≥ 0,

Bt+x+y (λ; rp) ≤ (Bt+αx (λ; rp))
1/α (Bt+βy (λ; rp))

1/β , x, y ∈ R,

(Bt+x (λ; rp))
1/x ≤ (Bt+y (λ; rp))

1/y (Bt (λ; rp))
1/x−1/y , 0 < x ≤ y,

(Bt+y (λ; rp))
2 ≤ Bt+y−x (λ; rp)Bt+y+x (λ; rp) , 0 ≤ x ≤ y.

Proof. The expectation’s equality is evident. The first inequality follows from the
inequality

E (X + s)x+y ≥ E (X + s)x E (X + s)y , x, y ≥ 0

and to obtain the second inequality use Hölder’s inequality

E (X + s)x+y ≤ (E (X + s)αx)1/α
(
E (X + s)βy

)1/β
, x, y ∈ R.

The third inequality follows from Lyapunov’s inequality

(E (X + s)x)1/x ≤ (E (X + s)y)1/y
, 0 < x ≤ y

and the fourth inequality follows from Schwarz’s inequality

(E (X + s)y)2 ≤ E (X + s)y−x E (X + s)y+x , 0 ≤ x ≤ y.

For these inequalities you can see [1].
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