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Abstract
Let R1,..., Ry, be subsets of the set [n] = {1,...,n} with |R;| =r; and R,NR; = &
for all 4,5 = 1,...,p, i # j. The (rq,...,rp)-Stirling number of the second kind,
p > 1, introduced in this paper and denoted by {Z}m“’rp, counts the number of
partitions of the set [n] into k classes (or blocks) such that the elements in each
R;, i = 1,...,p, are in different classes (or blocks). Combinatorial and algebraic
properties of these numbers are explored.

1. Introduction

The (71, ...,7p)-Stirling numbers of the second kind represent a certain generaliza-
tion of the Stirling and r-Stirling numbers of the second kind. The Stirling number
of the second kind, denoted by {}}, counts the number of partitions of the set [n]
into k£ non-empty disjoint subsets. An excellent introduction to these numbers can
be found in [8]. The r-Stirling number of the second kind, denoted by {Z}r, counts
the number of partitions of the set [n] into & non-empty disjoint subsets such that
the numbers 1,2,...,7 are in different subsets. Combinatorial interpretations and
algebraic properties of these numbers can be found in [3]. Several authors stud-
ied these numbers and their role in probability, approximations, congruences and
other frameworks. For example, Chrysaphinou [5] studied Touchard polynomials
and their connections with the r-Stirling numbers and other numbers, Hsu et al. [9]
studied the properties and approximations for a family of Stirling numbers, Mez&
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[11, 10] studied the r-Bell numbers and the maximum of the r-Stirling numbers and
Mihoubi et al. [12] gave some properties with respect to the r-Stirling numbers.
One can see the references [4, 6, 13] for more applications and results on these num-
bers. Our generalization leads us to study an extension of the r-Stirling numbers,
in which we may establish

e a generalization of the Dobinski and Stirling formulas,

e a combinatorial interpretation of the coefficient of 2, k = 0,1,2,..., in the
polynomial (z +rp)" (z +rp)=- - (2 + rp) 2=, where
M=z(z—1)---(z—n+1), n>1,and 22 =1,

e inequalities generalize those given by Bouroubi [2] on the single variable Bell

polynomials,
e some properties for the (r1,...,rp)-Stirling numbers of the second kind.
The (r1,...,rp)-Stirling numbers of the second kind are defined as follows:

Definition 1. Let Ry, ..., R, be subsets of the set [n] with |R;| =r; and R,NR; =
@foralli,j=1,...,p, i # j. The (rq,...,r,)-Stirling number of the second kind,
p > 1, denoted by {Z}rlr , counts the number of partitions of the set [n] into k
non-empty subsets such that the elements of each of the p sets

Ry:=[r], Ry:=[r1+ra]\[r1],..., Rp:=1[ri+---+rp]\[r1 4+ +71p 1]
are in distinct subsets.

From this definition, one can verify easily that the (rq,...,r,)-Stirling numbers of
the second kind satisfy

{Z} =0, n<ri+---+r,ork<max(ry,...,rp),
T1,.-Tp

n n
{k‘} {k‘} ifre,...,m €{0,1},

T, p

n n
T A
- {”} { |

k T1,e5Tp k <5 Tp,0 rl,“.,rp,l,

,,,,,,,,,,,

Therefore, by the symmetry of the (rq,...,r,)-Stirling numbers to respect to rq,. . .,
Tp, We can suppose 1 < rg < --- < 7, and throughout this paper we use the
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notations

dn
Dl_,, ::@P:zm rp = (r1,...,rp), |rpl:=r1+---+1rp, and

P (z;rp) = (z+1p) (2 4+71p)% (2 +1rp) 2=t teR.

2. The rp-Stirling Numbers of the Second Kind

2.1. Combinatorial Recurrence Relations

Broder [3] introduced the r-Stirling numbers of the second kind and showed that
these numbers satisfy

{Z}TO, n <,

()

n n n—1
L U SRS
S A T S

k). k. k—1]’

The r)-Stirling numbers of the second kind satisfy recurrence relations similar to
those of the r-Stirling and the regular Stirling numbers of the second kind with
modified initial conditions; see Theorems 4 and 5 given below. To start, we give a
theorem in which we express the r-Stirling numbers in terms of the Stirling numbers.

Theorem 2. We have

i} - (e

Proof. For i = 0,...,r, there are (:) ways to form ¢ singletons using the elements
in {1,...,r} and {,"7} ways to partition the set {r +1,...,n} into k — i subsets.
The r — i elements of the set {1,...,r} not already used can be inserted in the

k—isubsetsin (k—id)---((k—i)—(r—i)+1) = % ways. Then, the number
of partitions of the set {1,...,n} into k subsets such that the elements of the set

{1,...,r} are in different subsets is {Z}T => (:) Z::} ((::?)',, n>r. O
i=0

Theorem 2 can be translated to the rj,-case as follows:
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Theorem 3. Letr, o = (11,...,Ta-1Ta+1,---,7p), 1 < a < p. The r,-Stirling
numbers of the second kind satisfy

n 1 - (T‘a) {n—ra}
S T
G, = e )00,
Proof. By the symmetry of r1,...,7,, we consider only the case a = p. For ¢ =
0,...,7p, there are (Tf) ways to form 4 singletons using the elements in R, and
ik _ ways to partition the set [n] \R,, into k —i subsets such that the elements of
o
each R;, 1 =1,...,p—1, are in different subsets. The r, — i elements of the set R,

not already used can be inserted in the k — ¢ subsets in (%k_jlz)', ways. Then, the

number of partitions of the set [n] into k subsets such that the elements in each R;,

To .
i=1,...,p, are in different subsets is {}'} = > ("*){". =} &k_;]))!,. O
P =0 J J Tp, o o)t

Theorem 4. The ry,-Stirling numbers of the second kind satisfy

n ke n—1 n n—1 > In,|
A U S VRS Y AR

P
Proof. To form a partition of the set [n] into k non-empty subsets, we can form a
partition of the set [n — 1] into k non-empty subsets by adding the element n to
any of the k subsets, or we form a partition of the set [n — 1] into k& — 1 non-empty
subsets by adding the subset {n}. Obviously, for n > |r,|, the distribution of the
elements of the sets R;, i = 1,...,p, into different subsets is not influenced by this
process. ]

Theorem 5. Let e; be the ith wvector of the canonical basis of RP. Then, for all

i=1,...,p, the r,-Stirling numbers of the second kind satisfy

n n n—1
{k} :{k} —(ri—l){ f } , m>rpl, ooy > 1L

p—€i

Proof. For all i =1,...,p, the identity of the theorem can be written as

n—1 n n
(r; — 1){ L }rpm = {k}rpei - {k}r , n>rp|, reeerp > 1

P

The number {Z}rp_ei - {Z}rp counts the number of partitions of [n] into k non-empty
subsets such that the sets Ry, -, Ri—1, R\ {|r;|}, Rit1,..., Rp are in different
subsets but |r;| is not. But this number is equal to (r; — 1) {"gl}rpiei because
such partitions can be obtained in r; — 1 ways from partitions of [n]\ {|r;|} into
k non-empty subsets such that the above sets are in different subsets by including
|r;| in any of the |r;| — 1 subsets of the subsets containing the elements of the set

Ri\ {|rs]} O
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2.2. Generating Functions for the r,-Stirling Numbers

Broder [3] showed that the exponential generating function of the r-Stirling numbers

is given by
Z ntr ﬁ—i(et—l)kex (rt)
k—|—7’rn!_k! P

n>0

and these numbers satisfy

(-5 e

After that, Mez6 [10, 11] defined the r-Bell polynomial by

" (n+r
Bn(Z;T)_Z{k—i—r}Zk

k=0
and showed that it can be written as
oo - n
1+ ;
By, (z;7) = exp (—2) 2 ( f ) z*.
i—

These two last identities represent, respectively, extensions of the known Stirling
and Dobinski formulas and can be written in the r,-case as it is showed in Theorem
8 given below. Now, to give the exponential generating function of the r,-Stirling
numbers, let us give it for p = 2.

Theorem 6. For r < s we have

n+r+s)| t" 1 .
Z{ k +s } E = y exXp (Tt) D;:exp(t)fl (.’L‘k (.I' —+ 1) ) .
n>0 T,8

Proof. For k <r we have

n+r+s] t" 1 S . n+r t"
R _ — | —
Z{ k+s }n' Zk!Z(j) (ks J)'{ms—j}rn!

n>0 n>0 j=0
1< )t
= 7l (S> (k‘ +j)!{z T} —
n>0" j=r—k N )
1 & (s n+r tn
= kD { . } —
| _ |
k.j:r_k j e k+j—r+rj.n!
1 °L (5\  (k+j)! fti
= — t S t) —1)¥T
e (r )j_%_:k@ Gty 0 ) 1)

1 s
= 27 X (rt) D;:exp(t)q (xk (x+1) ) ,
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and for k > r we have

Z n+r—+s ﬁi Z n+r—+s ﬁ
k+s ”,n!i k+s |  n!

n>0 n>k—r

T %Z@ (k+s _j)!{kil_rj}r%n!

n>k—r

= 'Z<> i
k‘z<> SUID IR

n2k7r+j

- % exp (rt) Y <j) % (exp (t) —

Jj=0

1 s
k" eXp(T't)DT exp(t)— 1( k(x+1) )

Theorem 6 can be written to the r,-case as follows:

Theorem 7. Forry <--- <r, we have

Z n+rpl] "
k+m, ). n!
p

n>0
1 . o .
= 4 &P (r1t) Dzl —exp(t)— Dy Dy, xp,ln(xi—i-l) KA I

Proof. By induction on p. By using Theorem 6, the theorem is true for p = 2.
Assuming that the assertion is true for p > 2 and let

1 . , : i
A= 7 €XP (r1t) Dm —exp(t)— 1Dy - Difa, (x];H (i +1)" “) :

i=1
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For p+ 1 we have
<rpf1) exp (r1t) x
J

1 Tp+1

k!
§=0

A:

p—1
r T T k+j . Tit+1
R 0 R
i=1

i’r‘p+1 (rp+1) (k + ])' exXp (Tlt) %

0 J (k+j—rp)!

<.

i=1

p—1
k+j—r T
DT1 D’r‘g DT’ —1 P . i+1
z1=exp(t)—1""z2=x1 961;71:21;—2 (xp—l l I (.231 + 1) > :

By the induction hypothesis, we have

—1
1 Kt j—r
T Doy -1 Datman DT, |t [ @i )
(k+ ) p(t)

J p): i=1

_Z{ n + [rp| } ﬁ_z{n"‘hﬂ} ﬁ
= E+j—rp+mp rpn! = k+j 1Ppn!
Then

Ry (k + 7)! n+ry,|] t"
A: p+1 Ny JI p z
()T

j=0 n>0
_ t—Z(*) {n+|rp|} (k +4)!
- ! 1 1 !
nzon'jzo J k+j v, k!

{n—|—|rp+1|} r
‘ k+rpi rpﬂn!

The last equality is justified by Theorem 3.

v

n

The Dobinski and Stirling formulas can be written to the rp-case as follows:

Theorem 8. Let

nt{rp_1]
n+rp] Lk
B, (z;r)p) = Z { p}z, n > 0.
— ktrp )
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Forry <--- <1, we have

B, (z;rp) = exp ( ZP (k;rp) %
k>0

k
n—+ |I‘p|} 1 (k) k—j .
=7 ) (DT P (i) -
i) n (45
{ k+mrp v, k'j:o J
Proof. Use Theorem 8 to get
tn T T
ZB" (z;1p) = exp (rt—2z) D7} _ —exp(t)—1DPra=ay - Dl s,

X (exp (z(zp_1+1)) 1:[ (@ + 1)”“) .

The expansion of exp (z (x,—1 + 1)) and differentiation with respect to z,_1 give

_ T1 T2 Tp—1
E B, (z;rp) — E exp (rit — z Dgﬁ1 —exp(t)— 1D, DIP P

n>0 n! i>0
j p-l
xS @per + 07 I i+ 1)
j' p—1 T )
’ i=1

=exp (rit —z)D"? D2 <. Dlr—2

z1=exp(t)— T2=1T1 Tp_2=Tp_3
S DOETRCTAESRILES s PRRTES
J P p—2 ]' i
§>0 i=1

and by successive differentiation we obtain

27
ZB z;rp) — =exp (rt —z ZPO (j;rp) (@1 + 1)j+r1’_r1 il

n>0 7>0 z1=exp(t)—1

=exp(—2) > Py (jirp) GXP (G +7rp)t)

3>0
= exp ( g E n (J31p) =
n>0 j>0

Then, by identification, the first identity of the theorem results. The second identity
of the theorem results upon using the expansion

B, (Z§rp) = Z (_l)ipn (j?rp) lr]| Z T Z( )(_1)k_j P, (j§rp)- U

1,520

From Theorem 8 we may state that:
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Corollary 9. Forr; <--- <r, we have

Z{”ki'ij'}rp% = #i(k) (1" By ey exp (1)

n>0 i=o N
n+rpl| k" _ L (zexp ()’
Z { b+, } 2 —exp(rpt—z)ZPo(j,rp)T.
n,k>0 Tp 3=>0

2.3. Identities and Consequences

A combinatorial interpretation of the r-Stirling numbers of the coefficient of z£ in
the polynomial (z + )" is given in [3] by

n_ i n+r k
(z+7) —I;){k_Hﬂ}rz.

In Theorem 10 given below, we generalize this result on giving a combinatorial
interpretation by the r,-Stirling numbers of the coefficient of 2% in the polynomial
P, (z;r},) . In other words, we write the polynomial P, (z;r,) as a linear combination
of falling factorials, proving that the r,-Stirling numbers can be interpreted as
connection constants, see for instance [7].

Theorem 10. Forr <--- <1y, we have

ntlrp_1|
n+[rp|
P, (zr,) = Z {kJrrp} 2E,
P Jr,

k=0
Proof. Uponn using Theorem 8, the two expressions of B,, (z;r,) give
m L (m (4 r
Dy (exp () Ba (5:7) = (M) DL (B (i) = S Il s
1=0 ! k=0 kot rp
D (exp (2) By (z31p)) = (m+1p)™ - (m+1rp) 2= (m +1,)" = P, (ms1,) .

These imply that

P, (m; _ S n+ |rp| k
nm,rp)—z bt me.
P Jr,

k=0

m
Then, the polynomial P, (z;r,) — > {"‘Hr’"} 2k vanishes for all non-negative in-
k=0 Tp

k+rp
nt|rp 1|
teger z = m. It results that P, (z;r,) = {",’C‘ﬂﬁpl} 2k O
k=0 P Tp

The three corollaries given below present consequences of Theorems 8 and 10. The
first one gives an expression of {"kﬂiﬁl}rp in terms of { k':_”r‘p}rp and the r-Stirling

numbers.
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Corollary 11. Forr; <--- <r, we have
k .
{n+|1‘p|} _Z{.|I‘p| } {n+]+7“p} 7 0§k§n+\rp_1|.
k+r1’ r, j=0 ]+Tp r, k—"_?ﬁp J+rp
In particular, for p =2 and r < s, we obtain
n+r+s min(k,r) s\ (r\ (n+r+s—j
= Z (. jl, 0<k<n-+r
k+s s = YAV k+s ts—j

Proof. From Theorems 8 and 10 we have

k

n z
B, (z;rp) = exp (—2) Z (k+rp)" Py (k;rp) o
k>0 ’
[l
=exp(—=z) (k4rp)" 2~ { i } YA
2 ) 2 S, G
[rp—1] . n
|rp] } j (k+j+m)" &
=exp(—2z) { 2y
jzz:o JjH+rp v kgz:o k!
[rp—1] n .
_ P 1{‘|rp } ij{T-L"‘?'FTp} i
j=0 I+ Ty rp =0 LEI T J+Tp
n+\1‘p,1| k .
_ Z ZkZ{.lrM } {n+3+7“p} .
= Ut Uk )

The corollary follows from the definition of the polynomial B,, (z;r)) .
Theorem 8 implies the following corollary:
Corollary 12. Forr; < --- <r, we have
d
5 (77 exp (2) Ba (1)) = 277 exp () Buga (517

d
L (exp(2) By (5,) = exp (2) B (257, + €5)
Bpti1(z;1p) = 2By (z51p +€p) + 1By (251p)

Corollary 13. Forr; <--- <r, we have

k
TP +-] + k r,+kep, i=0 i ’I"p +]+Z ry

10
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Proof. Use Corollary 12 and the Leibnitz rule to get

d* "R\ di
exp (~2) o (exp () By (s57,)) = By (s, + key) = z_j(j) & (B (zmy).
The corollary follows from the definitions of the polynomials B, (z;r, + ke,) and

B, (z;r},) in the last identity. O
Theorem 8 can be used to generalize the discrete Poisson distribution and the
inequalities given by Bouroubi [2] on the single variable Bell polynomials as follows:

Proposition 14. Lett be a real number, a, 3 be positive real numbers with é—l—% =1
and forry < --- <rp let
)\k
By (A1) i=exp (—A) Y P (ki) T LER mp 1L
k>0
For A > 0, let X be a random variable defined by its discrete probability

_ Pi(k;ry) AP

P(X=k)= —*¢ —)) — =0,1,2,....
( k) By Oury) exp (—A) R k=0,1,2,
Then B (hry)
E X z: t+ax ;rp R
(X +7p) B nr) Oiry) T €
and

Bitary (Nitp) Be (\srp) = Braa (Aip) Bryy (i), 2,y 20,
Bitaty (Ni1p) < (Bryas (A1) (Biagy (Nirp))Y7, 2,y €R,
(Beyw N1p))™ < (Biay ()Y (B (Nrp) VoYY 0<a <y,
(Bity ()‘3rp))2 < Bigy—o (A1) Bigyta (A1), 02 <y

Proof. The expectation’s equality is evident. The first inequality follows from the
inequality
EX+s)""" >E(X +s)"E(X +5s)Y, z,y>0

and to obtain the second inequality use Holder’s inequality
E(X + )™ < (B(X +5)°)/* (E (X + s)"y) Y7 yeR
The third inequality follows from Lyapunov’s inequality
EX+5))" <EX+s)"), 0<az<y
and the fourth inequality follows from Schwarz’s inequality
EX+5)") <EX+s)! "EX+s)"™, 0<z<y.

For these inequalities you can see [1]. O
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