THE $\left(r_{1}, \ldots, r_{p}\right)$-STIRLING NUMBERS OF THE SECOND KIND

Miloud Mihoubi ${ }^{1}$
Faculty of Mathematics, University of Science and Technology Houari
Boumediene, Algiers, Algeria.
mmihoubi@usthb.dz or miloudmihoubi@gmail.com
Mohammed Said Maamra ${ }^{1}$
Faculty of Mathematics, University of Science and Technology Houari
Boumediene, Algiers, Algeria. mmaamra@usthb.dz or mmaamra@yahoo.fr

Received: 12/18/11, Revised: 4/1/12, Accepted: 5/18/12, Published: 5/25/12

Abstract

Let R_{1}, \ldots, R_{p} be subsets of the set $[n]=\{1, \ldots, n\}$ with $\left|R_{i}\right|=r_{i}$ and $R_{i} \cap R_{j}=\varnothing$ for all $i, j=1, \ldots, p, i \neq j$. The $\left(r_{1}, \ldots, r_{p}\right)$-Stirling number of the second kind, $p \geq 1$, introduced in this paper and denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r_{1}, \ldots, r_{p}}$, counts the number of partitions of the set $[n]$ into k classes (or blocks) such that the elements in each $R_{i}, i=1, \ldots, p$, are in different classes (or blocks). Combinatorial and algebraic properties of these numbers are explored.

1. Introduction

The $\left(r_{1}, \ldots, r_{p}\right)$-Stirling numbers of the second kind represent a certain generalization of the Stirling and r-Stirling numbers of the second kind. The Stirling number of the second kind, denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, counts the number of partitions of the set $[n]$ into k non-empty disjoint subsets. An excellent introduction to these numbers can be found in [8]. The r-Stirling number of the second kind, denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}$, counts the number of partitions of the set $[n]$ into k non-empty disjoint subsets such that the numbers $1,2, \ldots, r$ are in different subsets. Combinatorial interpretations and algebraic properties of these numbers can be found in [3]. Several authors studied these numbers and their role in probability, approximations, congruences and other frameworks. For example, Chrysaphinou [5] studied Touchard polynomials and their connections with the r-Stirling numbers and other numbers, Hsu et al. [9] studied the properties and approximations for a family of Stirling numbers, Mező

[^0]$[11,10]$ studied the r-Bell numbers and the maximum of the r-Stirling numbers and Mihoubi et al. [12] gave some properties with respect to the r-Stirling numbers. One can see the references $[4,6,13]$ for more applications and results on these numbers. Our generalization leads us to study an extension of the r-Stirling numbers, in which we may establish

- a generalization of the Dobiński and Stirling formulas,
- a combinatorial interpretation of the coefficient of $z^{\underline{k}}, k=0,1,2, \ldots$, in the polynomial $\left(z+r_{p}\right)^{n}\left(z+r_{p}\right)^{\underline{r_{1}} \cdots\left(z+r_{p}\right)^{\underline{r_{p-1}}} \text {, where }}$ $z^{\underline{n}}=z(z-1) \cdots(z-n+1), n \geq 1$, and $z^{\underline{0}}=1$,
- inequalities generalize those given by Bouroubi [2] on the single variable Bell polynomials,
- some properties for the $\left(r_{1}, \ldots, r_{p}\right)$-Stirling numbers of the second kind.

The $\left(r_{1}, \ldots, r_{p}\right)$-Stirling numbers of the second kind are defined as follows:
Definition 1. Let R_{1}, \ldots, R_{p} be subsets of the set $[n]$ with $\left|R_{i}\right|=r_{i}$ and $R_{i} \cap R_{j}=$ \varnothing for all $i, j=1, \ldots, p, i \neq j$. The (r_{1}, \ldots, r_{p})-Stirling number of the second kind, $p \geq 1$, denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r_{1}, \ldots, r_{p}}$, counts the number of partitions of the set $[n]$ into k non-empty subsets such that the elements of each of the p sets

$$
R_{1}:=\left[r_{1}\right], R_{2}:=\left[r_{1}+r_{2}\right] \backslash\left[r_{1}\right], \ldots, R_{p}:=\left[r_{1}+\cdots+r_{p}\right] \backslash\left[r_{1}+\cdots+r_{p-1}\right]
$$

are in distinct subsets.
From this definition, one can verify easily that the $\left(r_{1}, \ldots, r_{p}\right)$-Stirling numbers of the second kind satisfy

$$
\begin{aligned}
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r_{1}, \ldots, r_{p}}=0, \quad n<r_{1}+\cdots+r_{p} \text { or } k<\max \left(r_{1}, \ldots, r_{p}\right), \\
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r_{1}, \ldots, r_{p}}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { if } r_{1}, \ldots, r_{p} \in\{0,1\}, \\
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r_{1}, \ldots, r_{p}}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r_{p}} \quad \text { if } r_{1}, \ldots, r_{p-1} \in\{0,1\}, \\
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r_{1}, \ldots, r_{p}}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r_{1}, \ldots, r_{p}, 0}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r_{1}, \ldots, r_{p}, 1}, \\
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r_{1}, \ldots, r_{p}}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r_{\sigma(1)}, \ldots, r_{\sigma(p)}} \text { for all permutations } \sigma \text { on the set }\{1, \ldots, p\} .
\end{aligned}
$$

Therefore, by the symmetry of the $\left(r_{1}, \ldots, r_{p}\right)$-Stirling numbers to respect to r_{1}, \ldots, r_{p}, we can suppose $r_{1} \leq r_{2} \leq \cdots \leq r_{p}$ and throughout this paper we use the
notations

$$
\begin{aligned}
D_{z=z_{0}}^{n} & :=\left.\frac{d^{n}}{d z^{n}}\right|_{z=z_{0}}, \quad \mathbf{r}_{p}:=\left(r_{1}, \ldots, r_{p}\right), \quad\left|\mathbf{r}_{p}\right|:=r_{1}+\cdots+r_{p}, \quad \text { and } \\
P_{t}\left(z ; \mathbf{r}_{p}\right) & :=\left(z+r_{p}\right)^{t}\left(z+r_{p}\right)^{\underline{r_{1}}} \cdots\left(z+r_{p}\right)^{r_{p-1}}, \quad t \in \mathbb{R} .
\end{aligned}
$$

2. The \mathbf{r}_{p}-Stirling Numbers of the Second Kind

2.1. Combinatorial Recurrence Relations

Broder [3] introduced the r-Stirling numbers of the second kind and showed that these numbers satisfy

$$
\begin{aligned}
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r}=0, \quad n<r, \\
& \left\{\begin{array}{l}
r \\
k
\end{array}\right\}_{r}=\delta_{r, k}, \\
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r-1}-(r-1)\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{r-1}, \quad n \geq r \geq 1, \\
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r}=k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{r}+\left\{\begin{array}{c}
n-1 \\
k-1
\end{array}\right\}_{r}, \quad n>r .
\end{aligned}
$$

The \mathbf{r}_{p}-Stirling numbers of the second kind satisfy recurrence relations similar to those of the r-Stirling and the regular Stirling numbers of the second kind with modified initial conditions; see Theorems 4 and 5 given below. To start, we give a theorem in which we express the r-Stirling numbers in terms of the Stirling numbers.

Theorem 2. We have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r}=\frac{1}{(k-r)!} \sum_{i=0}^{r}\binom{r}{i}\left\{\begin{array}{l}
n-r \\
k-i
\end{array}\right\}(k-i)!.
$$

Proof. For $i=0, \ldots, r$, there are $\binom{r}{i}$ ways to form i singletons using the elements in $\{1, \ldots, r\}$ and $\left\{\begin{array}{c}n-r \\ k-i\end{array}\right\}$ ways to partition the set $\{r+1, \ldots, n\}$ into $k-i$ subsets. The $r-i$ elements of the set $\{1, \ldots, r\}$ not already used can be inserted in the $k-i$ subsets in $(k-i) \cdots((k-i)-(r-i)+1)=\frac{(k-i)!}{(k-r)!}$ ways. Then, the number of partitions of the set $\{1, \ldots, n\}$ into k subsets such that the elements of the set $\{1, \ldots, r\}$ are in different subsets is $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}=\sum_{i=0}^{r}\binom{r}{i}\left\{\begin{array}{l}n-r \\ k-i\end{array}\right\} \frac{(k-i)!}{(k-r)!}, \quad n \geq r$.
Theorem 2 can be translated to the \mathbf{r}_{p}-case as follows:

Theorem 3. Let $\mathbf{r}_{p, \alpha}=\left(r_{1}, \ldots, r_{\alpha-1}, r_{\alpha+1}, \ldots, r_{p}\right), \quad 1 \leq \alpha \leq p$. The \mathbf{r}_{p}-Stirling numbers of the second kind satisfy

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\mathbf{r}_{p}}=\frac{1}{\left(k-r_{\alpha}\right)!} \sum_{j=0}^{r_{\alpha}}\binom{r_{\alpha}}{j}\left\{\begin{array}{c}
n-r_{\alpha} \\
k-j
\end{array}\right\}_{\mathbf{r}_{p, \alpha}}(k-j)!.
$$

Proof. By the symmetry of r_{1}, \ldots, r_{p}, we consider only the case $\alpha=p$. For $i=$ $0, \ldots, r_{p}$, there are $\binom{r_{p}}{i}$ ways to form i singletons using the elements in R_{p} and $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{\mathbf{r}_{p-1}}$ ways to partition the set $[n] \backslash R_{p}$ into $k-i$ subsets such that the elements of each $R_{i}, i=1, \ldots, p-1$, are in different subsets. The $r_{p}-i$ elements of the set R_{p} not already used can be inserted in the $k-i$ subsets in $\frac{(k-i)!}{\left(k-r_{p}\right)!}$ ways. Then, the number of partitions of the set $[n]$ into k subsets such that the elements in each R_{i}, $i=1, \ldots, p$, are in different subsets is $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r_{p}}=\sum_{j=0}^{r_{\alpha}}\binom{r_{\alpha}}{j}\left\{\begin{array}{c}n-r_{\alpha} \\ k-j\end{array}\right\}_{r_{p, \alpha}} \frac{(k-j)!}{\left(k-r_{\alpha}\right)!}$.

Theorem 4. The \mathbf{r}_{p}-Stirling numbers of the second kind satisfy

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\mathbf{r}_{p}}=k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{\mathbf{r}_{p}}+\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}_{\mathbf{r}_{p}}, \quad n>\left|\mathbf{r}_{p}\right|
$$

Proof. To form a partition of the set $[n]$ into k non-empty subsets, we can form a partition of the set $[n-1]$ into k non-empty subsets by adding the element n to any of the k subsets, or we form a partition of the set $[n-1]$ into $k-1$ non-empty subsets by adding the subset $\{n\}$. Obviously, for $n>\left|\mathbf{r}_{p}\right|$, the distribution of the elements of the sets $R_{i}, i=1, \ldots, p$, into different subsets is not influenced by this process.

Theorem 5. Let \mathbf{e}_{i} be the $i^{t h}$ vector of the canonical basis of \mathbb{R}^{p}. Then, for all $i=1, \ldots, p$, the \mathbf{r}_{p}-Stirling numbers of the second kind satisfy

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\mathbf{r}_{p}}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\mathbf{r}_{p}-\mathbf{e}_{i}}-\left(r_{i}-1\right)\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{\mathbf{r}_{p}-\mathbf{e}_{i}} \quad, \quad n \geq\left|\mathbf{r}_{p}\right|, r_{1} \cdots r_{p} \geq 1
$$

Proof. For all $i=1, \ldots, p$, the identity of the theorem can be written as

$$
\left(r_{i}-1\right)\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{\mathbf{r}_{p}-\mathbf{e}_{i}}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\mathbf{r}_{p}-\mathbf{e}_{i}}-\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\mathbf{r}_{p}}, \quad n \geq\left|\mathbf{r}_{p}\right|, r_{1} \cdots r_{p} \geq 1
$$

The number $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{\mathbf{r}_{p}-\mathbf{e}_{i}}-\left\{\begin{array}{l}n \\ k\end{array}\right\}_{\mathbf{r}_{p}}$ counts the number of partitions of $[n]$ into k non-empty subsets such that the sets $R_{1}, \cdots, R_{i-1}, R_{i} \backslash\left\{\left|\mathbf{r}_{i}\right|\right\}, R_{i+1}, \ldots, R_{p}$ are in different subsets but $\left|\mathbf{r}_{i}\right|$ is not. But this number is equal to $\left(r_{i}-1\right)\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}_{\mathbf{r}_{p}-\mathbf{e}_{i}}$ because such partitions can be obtained in $r_{i}-1$ ways from partitions of $[n] \backslash\left\{\left|\mathbf{r}_{i}\right|\right\}$ into k non-empty subsets such that the above sets are in different subsets by including $\left|\mathbf{r}_{i}\right|$ in any of the $\left|\mathbf{r}_{i}\right|-1$ subsets of the subsets containing the elements of the set $R_{i} \backslash\left\{\left|\mathbf{r}_{i}\right|\right\}$.

2.2. Generating Functions for the \mathbf{r}_{p}-Stirling Numbers

Broder [3] showed that the exponential generating function of the r-Stirling numbers is given by

$$
\sum_{n \geq 0}\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r} \frac{t^{n}}{n!}=\frac{1}{k!}\left(e^{t}-1\right)^{k} \exp (r t)
$$

and these numbers satisfy

$$
\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r}=\frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j}(j+r)^{n}
$$

After that, Mező $[10,11]$ defined the r-Bell polynomial by

$$
B_{n}(z ; r)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r} z^{k}
$$

and showed that it can be written as

$$
B_{n}(z ; r)=\exp (-z) \sum_{i=0}^{\infty} \frac{(i+r)^{n}}{i!} z^{i}
$$

These two last identities represent, respectively, extensions of the known Stirling and Dobiński formulas and can be written in the \mathbf{r}_{p}-case as it is showed in Theorem 8 given below. Now, to give the exponential generating function of the \mathbf{r}_{p}-Stirling numbers, let us give it for $p=2$.

Theorem 6. For $r \leq s$ we have

$$
\sum_{n \geq 0}\left\{\begin{array}{c}
n+r+s \\
k+s
\end{array}\right\}_{r, s} \frac{t^{n}}{n!}=\frac{1}{k!} \exp (r t) D_{x=\exp (t)-1}^{r}\left(x^{k}(x+1)^{s}\right)
$$

Proof. For $k \leq r$ we have

$$
\begin{aligned}
\sum_{n \geq 0}\left\{\begin{array}{c}
n+r+s \\
k+s
\end{array}\right\}_{r, s} \frac{t^{n}}{n!} & =\sum_{n \geq 0} \frac{1}{k!} \sum_{j=0}^{s}\binom{s}{j}(k+s-j)!\left\{\begin{array}{c}
n+r \\
k+s-j
\end{array}\right\}_{r} \frac{t^{n}}{n!} \\
& =\sum_{n \geq 0} \frac{1}{k!} \sum_{j=r-k}^{s}\binom{s}{j}(k+j)!\left\{\begin{array}{l}
n+r \\
k+j
\end{array}\right\}_{r} \frac{t^{n}}{n!} \\
& =\frac{1}{k!} \sum_{j=r-k}^{s}\binom{s}{j}(k+j)!\sum_{n \geq k+j-r}\left\{\begin{array}{c}
n+r \\
k+j-r+r
\end{array}\right\} \frac{t^{n}}{n!} \\
& =\frac{1}{k!} \exp (r t) \sum_{j=r-k}^{s}\binom{s}{j} \frac{(k+j)!}{(k+j-r)!}(\exp (t)-1)^{k+j-r} \\
& =\frac{1}{k!} \exp (r t) D_{x=\exp (t)-1}^{r}\left(x^{k}(x+1)^{s}\right)
\end{aligned}
$$

and for $k>r$ we have

$$
\begin{aligned}
\sum_{n \geq 0}\left\{\begin{array}{c}
n+r+s \\
k+s
\end{array}\right\}_{r, s} \frac{t^{n}}{n!} & =\sum_{n \geq k-r}\left\{\begin{array}{c}
n+r+s \\
k+s
\end{array}\right\}_{r, s} \frac{t^{n}}{n!} \\
& =\sum_{n \geq k-r} \frac{1}{k!} \sum_{j=0}^{s}\binom{s}{j}(k+s-j)!\left\{\begin{array}{c}
n+r \\
k+s-j
\end{array}\right\}_{r} \frac{t^{n}}{n!} \\
& =\sum_{n \geq k-r} \frac{1}{k!} \sum_{j=0}^{s}\binom{s}{j}(k+j)!\left\{\begin{array}{l}
n+r \\
k+j
\end{array}\right\}_{r} \frac{t^{n}}{n!} \\
& =\frac{1}{k!} \sum_{j=0}^{s}\binom{s}{j}(k+j)!\sum_{n \geq k-r+j}\left\{\begin{array}{l}
n+r \\
k+j
\end{array}\right\}_{r} \frac{t^{n}}{n!} \\
& =\frac{1}{k!} \exp (r t) \sum_{j=0}^{s}\binom{s}{j} \frac{(k+j)!}{(k+j-r)!}(\exp (t)-1)^{k+j-r} \\
& =\frac{1}{k!} \exp (r t) D_{x=\exp (t)-1}^{r}\left(x^{k}(x+1)^{s}\right) .
\end{aligned}
$$

Theorem 6 can be written to the \mathbf{r}_{p}-case as follows:
Theorem 7. For $r_{1} \leq \cdots \leq r_{p}$ we have

$$
\begin{aligned}
& \sum_{n \geq 0}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} \frac{t^{n}}{n!} \\
& =\frac{1}{k!} \exp \left(r_{1} t\right) D_{x_{1}=\exp (t)-1}^{r_{1}} D_{x_{2}=x_{1}}^{r_{2}} \cdots D_{x_{p-1}=x_{p-2}}^{r_{p-1}}\left(x_{p-1}^{k} \prod_{i=1}^{p-1}\left(x_{i}+1\right)^{r_{i+1}}\right)
\end{aligned}
$$

Proof. By induction on p. By using Theorem 6, the theorem is true for $p=2$. Assuming that the assertion is true for $p \geq 2$ and let

$$
A=\frac{1}{k!} \exp \left(r_{1} t\right) D_{x_{1}=\exp (t)-1}^{r_{1}} D_{x_{2}=x_{1}}^{r_{2}} \cdots D_{x_{p}=x_{p-1}}^{r_{p}}\left(x_{p}^{k} \prod_{i=1}^{p}\left(x_{i}+1\right)^{r_{i+1}}\right) .
$$

For $p+1$ we have

$$
\begin{aligned}
& A= \frac{1}{k!} \sum_{j=0}^{r_{p+1}}\binom{r_{p+1}}{j} \\
& \qquad D_{x_{1}=\exp (t)-1}^{r_{1}} D_{x_{2}=x_{1}}^{r_{2}} \cdots D_{x_{p}=x_{p-1}}^{r_{p}}\left(r_{1} t\right) \times \\
&= \frac{1}{k!} \sum_{j=0}^{r_{p+1}}\binom{r_{p+1}}{j} \frac{(k+j)!\exp \left(r_{1} t\right)}{\left(k+j-r_{p}\right)!} \times \\
&\left.D_{i=1}^{p-1}\left(x_{i}+1\right)^{r_{i+1}}\right) \\
& x_{1}=\exp (t)-1 \\
& r_{x_{2}=x_{1}}^{r_{2}} \cdots D_{x_{p-1}=x_{p-2}}^{r_{p-1}}\left(x_{p-1}^{k+j-r_{p}} \prod_{i=1}^{p-1}\left(x_{i}+1\right)^{r_{i+1}}\right)
\end{aligned}
$$

By the induction hypothesis, we have

$$
\begin{aligned}
& \frac{1}{\left(k+j-r_{p}\right)!} D_{x_{1}=\exp (t)-1}^{r_{1}} D_{x_{2}=x_{1}}^{r_{2}} \cdots D_{x_{p-1}=x_{p-2}}^{r_{p-1}}\left(x_{p-1}^{k+j-r_{p}} \prod_{i=1}^{p-1}\left(x_{i}+1\right)^{r_{i+1}}\right) \\
& =\sum_{n \geq 0}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+j-r_{p}+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} \frac{t^{n}}{n!}=\sum_{n \geq 0}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+j
\end{array}\right\}_{\mathbf{r}_{p}} \frac{t^{n}}{n!} .
\end{aligned}
$$

Then

$$
\begin{aligned}
A & =\sum_{j=0}^{r_{p+1}}\binom{r_{p+1}}{j} \frac{(k+j)!}{k!} \sum_{n \geq 0}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+j
\end{array}\right\}_{\mathbf{r}_{p}} \frac{t^{n}}{n!} \\
& =\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{j=0}^{r_{p+1}}\binom{r_{p+1}}{j}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+j
\end{array}\right\}_{\mathbf{r}_{p}} \frac{(k+j)!}{k!} \\
& =\sum_{n \geq 0}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p+1}\right| \\
k+r_{p+1}
\end{array}\right\}_{\mathbf{r}_{p+1}} \frac{t^{n}}{n!} .
\end{aligned}
$$

The last equality is justified by Theorem 3.
The Dobiński and Stirling formulas can be written to the \mathbf{r}_{p}-case as follows:
Theorem 8. Let

$$
B_{n}\left(z ; \mathbf{r}_{p}\right):=\sum_{k=0}^{n+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{k}, \quad n \geq 0
$$

For $r_{1} \leq \cdots \leq r_{p}$ we have

$$
\begin{gathered}
B_{n}\left(z ; \mathbf{r}_{p}\right)=\exp (-z) \sum_{k \geq 0} P_{n}\left(k ; \mathbf{r}_{p}\right) \frac{z^{k}}{k!} \\
\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}=\frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} P_{n}\left(j ; \mathbf{r}_{p}\right) .
\end{gathered}
$$

Proof. Use Theorem 8 to get

$$
\begin{aligned}
& \sum_{n \geq 0} B_{n}\left(z ; \mathbf{r}_{p}\right) \frac{t^{n}}{n!}=\exp \left(r_{1} t-z\right) D_{x_{1}=\exp (t)-1}^{r_{1}} D_{x_{2}=x_{1}}^{r_{2}} \cdots D_{x_{p-1}=x_{p-2}}^{r_{p-1}} \\
& \times\left(\exp \left(z\left(x_{p-1}+1\right)\right) \prod_{i=1}^{p-1}\left(x_{i}+1\right)^{r_{i+1}}\right)
\end{aligned}
$$

The expansion of $\exp \left(z\left(x_{p-1}+1\right)\right)$ and differentiation with respect to x_{p-1} give

$$
\begin{aligned}
& \sum_{n \geq 0} B_{n}\left(z ; \mathbf{r}_{p}\right) \frac{t^{n}}{n!}=\sum_{j \geq 0} \exp \left(r_{1} t-z\right) D_{x_{1}=\exp (t)-1}^{r_{1}} D_{x_{2}=x_{1}}^{r_{2}} \cdots D_{x_{p-1}=x_{p-2}}^{r_{p-1}} \\
& \times\left(\frac{z^{j}}{j!}\left(x_{p-1}+1\right)^{j} \prod_{i=1}^{p-1}\left(x_{i}+1\right)^{r_{i+1}}\right) \\
&=\exp \left(r_{1} t-z\right) D_{x_{1}=\exp (t)-1}^{r_{1}} D_{x_{2}=x_{1}}^{r_{2}} \cdots D_{x_{p-2}=x_{p-3}}^{r_{p-2}} \\
& \times\left(\sum_{j \geq 0}\left(j+r_{p}\right)^{r_{p-1}}\left(x_{p-2}+1\right)^{j+r_{p}} \frac{z^{j}}{j!} \prod_{i=1}^{p-3}\left(x_{i}+1\right)^{r_{i+1}}\right)
\end{aligned}
$$

and by successive differentiation we obtain

$$
\begin{aligned}
\sum_{n \geq 0} B_{n}\left(z ; \mathbf{r}_{p}\right) \frac{t^{n}}{n!} & =\left.\exp \left(r_{1} t-z\right) \sum_{j \geq 0} P_{0}\left(j ; \mathbf{r}_{p}\right)\left(x_{1}+1\right)^{j+r_{p}-r_{1}} \frac{z^{j}}{j!}\right|_{x_{1}=\exp (t)-1} \\
& =\exp (-z) \sum_{j \geq 0} P_{0}\left(j ; \mathbf{r}_{p}\right) \frac{z^{j}}{j!} \exp \left(\left(j+r_{p}\right) t\right) \\
& =\exp (-z) \sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{j \geq 0} P_{n}\left(j ; \mathbf{r}_{p}\right) \frac{z^{j}}{j!}
\end{aligned}
$$

Then, by identification, the first identity of the theorem results. The second identity of the theorem results upon using the expansion:
$B_{n}\left(z ; \mathbf{r}_{p}\right)=\sum_{i, j \geq 0}(-1)^{i} P_{n}\left(j ; \mathbf{r}_{p}\right) \frac{z^{i+j}}{i!j!}=\sum_{k \geq 0} \frac{z^{k}}{k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} P_{n}\left(j ; \mathbf{r}_{p}\right)$.
From Theorem 8 we may state that:

Corollary 9. For $r_{1} \leq \cdots \leq r_{p}$ we have

$$
\begin{gathered}
\sum_{n \geq 0}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} \frac{t^{n}}{n!}=\frac{\exp \left(r_{p} t\right)}{k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} P_{0}\left(j ; \mathbf{r}_{p}\right) \exp (j t), \\
\sum_{n, k \geq 0}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{k} \frac{t^{n}}{n!}=\exp \left(r_{p} t-z\right) \sum_{j \geq 0} P_{0}\left(j ; \mathbf{r}_{p}\right) \frac{(z \exp (t))^{j}}{j!}
\end{gathered}
$$

2.3. Identities and Consequences

A combinatorial interpretation of the r-Stirling numbers of the coefficient of $z^{\underline{k}}$ in the polynomial $(z+r)^{n}$ is given in [3] by

$$
(z+r)^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r} z^{\underline{k}}
$$

In Theorem 10 given below, we generalize this result on giving a combinatorial interpretation by the \mathbf{r}_{p}-Stirling numbers of the coefficient of $z^{\underline{k}}$ in the polynomial $P_{n}\left(z ; \mathbf{r}_{p}\right)$. In other words, we write the polynomial $P_{n}\left(z ; \mathbf{r}_{p}\right)$ as a linear combination of falling factorials, proving that the \mathbf{r}_{p}-Stirling numbers can be interpreted as connection constants, see for instance [7].

Theorem 10. For $r_{1} \leq \cdots \leq r_{p}$, we have

$$
P_{n}\left(z ; \mathbf{r}_{p}\right)=\sum_{k=0}^{n+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{k}
$$

Proof. Uponn using Theorem 8, the two expressions of $B_{n}\left(z ; \mathbf{r}_{p}\right)$ give

$$
\begin{aligned}
& D_{z=0}^{m}\left(\exp (z) B_{n}\left(z ; \mathbf{r}_{p}\right)\right)=\sum_{l=0}^{m}\binom{m}{l} D_{z=0}^{l}\left(B_{n}\left(z ; \mathbf{r}_{p}\right)\right)=\sum_{k=0}^{m}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} m^{\underline{k}} \\
& D_{z=0}^{m}\left(\exp (z) B_{n}\left(z ; \mathbf{r}_{p}\right)\right)=\left(m+r_{p}\right)^{\underline{r_{1}}} \cdots\left(m+r_{p}\right)^{\underline{r_{p-1}}}\left(m+r_{p}\right)^{n}=P_{n}\left(m ; \mathbf{r}_{p}\right)
\end{aligned}
$$

These imply that

$$
P_{n}\left(m ; \mathbf{r}_{p}\right)=\sum_{k=0}^{m}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} m^{\underline{k}}
$$

Then, the polynomial $P_{n}\left(z ; \mathbf{r}_{p}\right)-\sum_{k=0}^{m}\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}} z^{\underline{k}}$ vanishes for all non-negative integer $z=m$. It results that $P_{n}\left(z ; \mathbf{r}_{p}\right)=\sum_{k=0}^{n+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}} z^{\underline{k}}$.

The three corollaries given below present consequences of Theorems 8 and 10. The first one gives an expression of $\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}}$ in terms of $\left\{\begin{array}{c}\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}}$ and the r-Stirling numbers.

Corollary 11. For $r_{1} \leq \cdots \leq r_{p}$ we have

$$
\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}=\sum_{j=0}^{k}\left\{\begin{array}{c}
\left|\mathbf{r}_{p}\right| \\
j+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}\left\{\begin{array}{c}
n+j+r_{p} \\
k+r_{p}
\end{array}\right\}_{j+r_{p}} \quad, \quad 0 \leq k \leq n+\left|\mathbf{r}_{p-1}\right| .
$$

In particular, for $p=2$ and $r \leq s$, we obtain

$$
\left\{\begin{array}{c}
n+r+s \\
k+s
\end{array}\right\}_{r, s}=\sum_{j=0}^{\min (k, r)}\binom{s}{j}\binom{r}{j}\left\{\begin{array}{c}
n+r+s-j \\
k+s
\end{array}\right\}_{r+s-j} j!, \quad 0 \leq k \leq n+r .
$$

Proof. From Theorems 8 and 10 we have

$$
\begin{aligned}
B_{n}\left(z ; \mathbf{r}_{p}\right) & =\exp (-z) \sum_{k \geq 0}\left(k+r_{p}\right)^{n} P_{0}\left(k ; \mathbf{r}_{p}\right) \frac{z^{k}}{k!} \\
& =\exp (-z) \sum_{k \geq 0}\left(k+r_{p}\right)^{n} z^{k}\left(\sum_{j=0}^{k}\left\{\begin{array}{c}
\left|\mathbf{r}_{p}\right| \\
j+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} \frac{1}{(k-j)!}\right) \\
& =\exp (-z) \sum_{j=0}^{\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
\left|\mathbf{r}_{p}\right| \\
j+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{j} \sum_{k \geq 0} \frac{\left(k+j+r_{p}\right)^{n}}{k!} z^{k} \\
& =\sum_{j=0}^{\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
\left|\mathbf{r}_{p}\right| \\
j+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{j} \sum_{i=0}^{n}\left\{\begin{array}{c}
n+j+r_{p} \\
i+j+r_{p}
\end{array}\right\}_{j+r_{p}} z^{i} \\
& =\sum_{j=0}^{n+\left|\mathbf{r}_{p-1}\right|} z^{k} \sum_{j=0}^{k}\left\{\begin{array}{c}
\left|\mathbf{r}_{p}\right| \\
j+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}\left\{\begin{array}{c}
n+j+r_{p} \\
k+r_{p}
\end{array}\right\}_{j+r_{p}} .
\end{aligned}
$$

The corollary follows from the definition of the polynomial $B_{n}\left(z ; \mathbf{r}_{p}\right)$.
Theorem 8 implies the following corollary:
Corollary 12. For $r_{1} \leq \cdots \leq r_{p}$ we have

$$
\begin{aligned}
z \frac{d}{d z}\left(z^{r_{p}} \exp (z) B_{n}\left(z ; \mathbf{r}_{p}\right)\right) & =z^{r_{p}} \exp (z) B_{n+1}\left(z ; \mathbf{r}_{p}\right) \\
\frac{d}{d z}\left(\exp (z) B_{n}\left(z ; \mathbf{r}_{p}\right)\right) & =\exp (z) B_{n}\left(z ; \mathbf{r}_{p}+\mathbf{e}_{p}\right) \\
B_{n+1}\left(z ; \mathbf{r}_{p}\right) & =z B_{n}\left(z ; \mathbf{r}_{p}+\mathbf{e}_{p}\right)+r_{p} B_{n}\left(z ; \mathbf{r}_{p}\right)
\end{aligned}
$$

Corollary 13. For $r_{1} \leq \cdots \leq r_{p}$ we have

$$
\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right|+k \\
r_{p}+j+k
\end{array}\right\}_{\mathbf{r}_{p}+k \mathbf{e}_{p}}=\sum_{i=0}^{k}\binom{k}{i}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
r_{p}+j+i
\end{array}\right\}_{\mathbf{r}_{p}}(j+i)^{\underline{i}} .
$$

Proof. Use Corollary 12 and the Leibnitz rule to get

$$
\exp (-z) \frac{d^{k}}{d z^{k}}\left(\exp (z) B_{n}\left(z ; \mathbf{r}_{p}\right)\right)=B_{n}\left(z ; \mathbf{r}_{p}+k \mathbf{e}_{p}\right)=\sum_{j=0}^{k}\binom{k}{j} \frac{d^{j}}{d z^{j}}\left(B_{n}\left(z ; \mathbf{r}_{p}\right)\right)
$$

The corollary follows from the definitions of the polynomials $B_{n}\left(z ; \mathbf{r}_{p}+k \mathbf{e}_{p}\right)$ and $B_{n}\left(z ; \mathbf{r}_{p}\right)$ in the last identity.

Theorem 8 can be used to generalize the discrete Poisson distribution and the inequalities given by Bouroubi [2] on the single variable Bell polynomials as follows:
Proposition 14. Let t be a real number, α, β be positive real numbers with $\frac{1}{\alpha}+\frac{1}{\beta}=1$ and for $r_{1} \leq \cdots \leq r_{p}$ let

$$
B_{t}\left(\lambda ; \mathbf{r}_{p}\right):=\exp (-\lambda) \sum_{k \geq 0} P_{t}\left(k ; \mathbf{r}_{p}\right) \frac{\lambda^{k}}{k!}, \quad t \in \mathbb{R}, \quad r_{p} \geq 1
$$

For $\lambda>0$, let X be a random variable defined by its discrete probability

$$
P(X=k)=\frac{P_{t}\left(k ; \mathbf{r}_{p}\right)}{B_{t}\left(\lambda ; \mathbf{r}_{p}\right)} \exp (-\lambda) \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots
$$

Then

$$
\mathrm{E}\left(X+r_{p}\right)^{x}=\frac{B_{t+x}\left(\lambda ; \mathbf{r}_{p}\right)}{B_{t}\left(\lambda ; \mathbf{r}_{p}\right)}, \quad x \in \mathbb{R}
$$

and

$$
\begin{aligned}
B_{t+x+y}\left(\lambda ; \mathbf{r}_{p}\right) B_{t}\left(\lambda ; \mathbf{r}_{p}\right) & \geq B_{t+x}\left(\lambda ; \mathbf{r}_{p}\right) B_{t+y}\left(\lambda ; \mathbf{r}_{p}\right), \quad x, y \geq 0 \\
B_{t+x+y}\left(\lambda ; \mathbf{r}_{p}\right) & \leq\left(B_{t+\alpha x}\left(\lambda ; \mathbf{r}_{p}\right)\right)^{1 / \alpha}\left(B_{t+\beta y}\left(\lambda ; \mathbf{r}_{p}\right)\right)^{1 / \beta}, \quad x, y \in \mathbb{R} \\
\left(B_{t+x}\left(\lambda ; \mathbf{r}_{p}\right)\right)^{1 / x} & \leq\left(B_{t+y}\left(\lambda ; \mathbf{r}_{p}\right)\right)^{1 / y}\left(B_{t}\left(\lambda ; \mathbf{r}_{p}\right)\right)^{1 / x-1 / y}, \quad 0<x \leq y \\
\left(B_{t+y}\left(\lambda ; \mathbf{r}_{p}\right)\right)^{2} & \leq B_{t+y-x}\left(\lambda ; \mathbf{r}_{p}\right) B_{t+y+x}\left(\lambda ; \mathbf{r}_{p}\right), \quad 0 \leq x \leq y
\end{aligned}
$$

Proof. The expectation's equality is evident. The first inequality follows from the inequality

$$
\mathrm{E}(X+s)^{x+y} \geq \mathrm{E}(X+s)^{x} \mathrm{E}(X+s)^{y}, \quad x, y \geq 0
$$

and to obtain the second inequality use Hölder's inequality

$$
\mathrm{E}(X+s)^{x+y} \leq\left(\mathrm{E}(X+s)^{\alpha x}\right)^{1 / \alpha}\left(\mathrm{E}(X+s)^{\beta y}\right)^{1 / \beta}, \quad x, y \in \mathbb{R}
$$

The third inequality follows from Lyapunov's inequality

$$
\left(\mathrm{E}(X+s)^{x}\right)^{1 / x} \leq\left(\mathrm{E}(X+s)^{y}\right)^{1 / y}, \quad 0<x \leq y
$$

and the fourth inequality follows from Schwarz's inequality

$$
\left(\mathrm{E}(X+s)^{y}\right)^{2} \leq \mathrm{E}(X+s)^{y-x} \mathrm{E}(X+s)^{y+x}, \quad 0 \leq x \leq y
$$

For these inequalities you can see [1].

References

[1] P. Billingsley, Probability and Measure, second Ed., Wiley, New York, 1986.
[2] S. Bouroubi, Bell numbers and Engel's conjecture. Rostock. Math. Kolloq. 62 (2007), 61-70.
[3] A. Z. Broder, The r-Stirling numbers. Discrete Math. 49 (1984), 241-259.
[4] Ch. A. Charalambides, Enumerative Combinatorics. Chapman \& Hall/CRC, A CRC Press Company, 2001.
[5] O. Chrysaphinou, On Touchard polynomials. Discrete Math. 54 (1985), 143-152.
[6] L. Comtet, Advanced Combinatorics. D. Reidel, 1974.
[7] O. M. D'Antona and E. Munarini, A combinatorial interpretation of the connection constants for persistent sequences of polynomials. European J. Combin. 26 (2005), 1105-1118.
[8] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1989.
[9] L. C. Hsu and P. J. S. Shiue, A unified approach to generalized Stirling numbers. Adv. Appl. Math. 20 (1998), 366-384.
[10] I. Mező, On the maximum of r-Stirling numbers. Adv. Appl. Math. 41 (2008), 293-306.
[11] I. Mező, The r-Bell numbers. J. Integer Seq. 14 (2011), Article 11.1.1.
[12] M. Mihoubi and M. S. Maamra, Touchard polynomials, partial Bell polynomials and polynomials of binomial type. J. Integer Seq. 14 (2011), Article 11.3.1.
[13] J. Riordan, Combinatorial Identities. R. E. Krieger, 1979.

[^0]: ${ }^{1}$ This research is supported by the PNR project $8 / \mathrm{u} 160 / 3172$.

