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Abstract
Lehmer’s totient problem consists of determining the set of positive integers n such
that ϕ(n) | (n−1) where ϕ is Euler’s totient function. In this paper we introduce the
concept of k-Lehmer number. A k-Lehmer number is a composite number such that
ϕ(n) | (n− 1)k. The relation between k-Lehmer numbers and Carmichael numbers
leads to a new characterization of Carmichael numbers and to some conjectures
related to the distribution of Carmichael numbers which are also k-Lehmer numbers.

1. Introduction

Lehmer’s totient problem asks about the existence of a composite number such
that ϕ(n) | (n − 1), where ϕ is Euler’s totient function. Some authors refer to
these numbers as Lehmer numbers. In 1932, Lehmer [14] showed that every Lehmer
number n must be odd and square-free, and that the number of distinct prime
factors of n, ω(n), must satisfy ω(n) > 6. This bound was subsequently extended
to ω(n) > 10. The current best result, due to Cohen and Hagis [10], is that n
must have at least 14 prime factors and the biggest lower bound obtained for such
numbers is 1030 [18]. It is known that there are no Lehmer numbers in certain
sets, such as the Fibonacci sequence [16], the sequence of repunits in base g for any
g ∈ [2, 1000] [9] or the Cullen numbers [12]. In fact, no Lehmer numbers are known
up to date. For further results on this topic we refer the reader to [4, 5, 17, 19].

A Carmichael number is a composite positive integer n satisfying the congruence
bn−1 ≡ 1 (mod n) for every integer b relatively prime to n. Korselt [13] was the first
to observe the basic properties of Carmichael numbers, the most important being
the following characterization:
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Proposition 1. (Korselt, 1899) A composite number n is a Carmichael number if

and only if n is square-free, and for each prime p dividing n, p− 1 divides n− 1.

Nevertheless, Korselt did not find any example and it was Robert Carmichael
in 1910 [7] who found the first and smallest of such numbers (561) and hence the
name “Carmichael number” (which was introduced by Beeger [6]). In the same
paper Carmichael presents a function λ defined in the following way:

• λ(2) = 1, λ(4) = 2.

• λ(2k) = 2k−2 for every k ≥ 3.

• λ(pk) = ϕ(pk) for every odd prime p.

• λ(pk1
1 · · · pkm

m ) = lcm
�
λ(pk1

1 ), . . . ,λ(pkm
m )

�
.

With this function he gave the following characterization:

Proposition 2. (Carmichael, 1910) A composite number n is a Carmichael number

if and only if λ(n) divides (n− 1).

In 1994 Alford, Granville and Pomerance [1] answered in the affirmative the long-
standing question whether there were infinitely many Carmichael numbers. From a
more computational viewpoint, an algorithm to construct large Carmichael numbers
has been given [15]. Also the distribution of certain types of Carmichael numbers
is studied [3].

In this work we introduce the condition ϕ(n) | (n − 1)k (that we shall call k-

Lehmer property and the associated concept of k-Lehmer numbers. In Section 2
we give some properties of the sets Lk (the set of numbers satisfying the k-Lehmer
property) and L∞ :=

�

k≥1

Lk, characterizing this latter set. In Section 3 we show

that every Carmichael number is also a k-Lehmer number for some k. Finally, in
Section 4 we use Chernick’s formula to construct Camichael numbers in Lk \ Lk−1

and we give some related conjectures.

2. A Generalization of Lehmer’s Totient Property

Recall that a Lehmer number is a composite integer n such that ϕ(n) | (n − 1).
Following this idea we present the definition below.

Definition 3. Given k ∈ N, a k-Lehmer number is a composite integer n such that
ϕ(n) | (n− 1)k. If we denote by Lk the set:

Lk := {n ∈ N : ϕ(n) | (n− 1)k
},

it is clear that k-Lehmer numbers are the composite elements of Lk.
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Once we have defined the family of sets {Lk}k≥1 and since Lk ⊆ Lk+1 for every
k, it makes sense to define a set L∞ in the following way:

L∞ :=
∞�

k=1

Lk.

The set L∞ is easily characterized in the following proposition.

Proposition 4. The set L∞ defined above admits the following characterization:

L∞ = {n ∈ N : rad(ϕ(n)) | (n− 1)}.

Proof. Let n ∈ L∞. Then n ∈ Lk for some k ∈ N. Now, if p is a prime dividing
ϕ(n), it follows that p divides (n− 1)k and, being prime, it also divides n− 1. This
proves that rad(ϕ(n)) | (n− 1).

On the other hand, if rad(ϕ(n)) | (n− 1) it is clear that ϕ(n) | (n− 1)k for some
k ∈ N. Thus n ∈ Lk ⊆ L∞ and the proof is complete.

Obviously, the composite elements of L1 are precisely the Lehmer numbers and
the Lehmer property asks whether L1 contains composite numbers or not. Never-
theless, for all k > 1, Lk always contains composite elements. For instance, the first
few composite elements of L2 are (sequence A173703 in OEIS):

{561, 1105, 1729, 2465, 6601, 8481, 12801, 15841, 16705, 19345, 22321, 30889, 41041, . . . }.

Observe that in the previous list of elements of L2 there are no products of two
distinct primes. We will now prove this fact, which is also true for Carmichael
numbers. Observe that this property is no longer true for L3 since, for instance,
15 ∈ L3 and also the product of two Fermat primes lies in L∞.

In order to show that no product of two distinct odd primes lies in L2 we will
give a stronger result which determines when an integer of the form n = pq (with
p �= q odd primes) lies in a given Lk.

Proposition 5. Let p and q be distinct odd primes and let k ≥ 2. Put p = 2adα+1
and q = 2bdβ + 1 with d, α, β odd and gcd(α,β) = 1. We can assume without loss

of generality that a ≤ b. Then n = pq ∈ Lk if and only if a + b ≤ ka and αβ | dk−2.

Proof. By definition pq ∈ Lk if and only if ϕ(pq) = (p − 1)(q − 1) = 2a+bd2αβ

divides (pq − 1)k =
�
2a+bd2αβ + 2adα + 2bdβ

�k. If we expand the latter using the
multinomial theorem it easily follows that pq ∈ Lk if and only if 2a+bd2αβ divides
2kadkαk + 2kbdkβk = 2kadk

�
αk + 2k(b−a)βk

�
.

Now, if a �= b observe that
�
αk + 2k(b−a)βk

�
is odd and, since gcd(α,β) = 1, it

follows that gcd(α,αk +2k(b−a)βk) = gcd(β,αk +2k(b−a)βk) = 1. This implies that
pq ∈ Lk if and only if a + b ≤ ka and αβ divides dk−2, as claimed.

If a = b then pq ∈ Lk if and only if αβ divides dk−2
�
αk + βk

�
and the result

follows as in the previous case. Observe that in this case the condition a + b ≤ ka
is vacuous since k ≥ 2.
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Corollary 6. If p and q are distinct odd primes, then pq �∈ L2.

Proof. By the previous proposition and using the same notation, pq ∈ L2 if and
only if a + b ≤ 2a and αβ divides 1. Since a ≤ b the first condition implies that
a = b and the second condition implies that α = β = 1. Consequently p = q, a
contradiction.

It would be interesting to find an algorithm to construct elements in a given Lk.
The easiest step in this direction, using similar ideas to those in Proposition 6, is
given in the following result.

Proposition 7. Let pr = 2r · 3 + 1. If pN and pM are primes and M −N is odd,

then n = pNpM ∈ LK for K = min{k : kN ≥M + N} and n �∈ LK−1.

We will end this section with a table showing some values of the counting function
for some Lk. If

Ck(x) := �{n ∈ Lk : n ≤ x},

we have the following data:

n 1 2 3 4 5 6 7 8
C2(10n) 5 26 170 1236 9613 78535 664667 5761621
C3(10n) 5 29 179 1266 9714 78841 665538 5763967
C4(10n) 5 29 182 1281 9784 79077 666390 5766571
C5(10n) 5 30 184 1303 9861 79346 667282 5769413
C∞(10n) 5 30 188 1333 10015 80058 670225 5780785

In the light of the table above, it seems that the asymptotic behavior of Ck does
not depend on k. It is also reasonable to think that the relative asymptotic density
of the set of prime numbers in Lk is zero and that the relative asymptotic density
of Lk in the set of cyclic numbers (see Lemma 9 below) is zero in turn. These ideas
motivate the following conjecture:

Conjecture 8. The following hold:

i) Ck(n) ≈ C∞(n) for every k ∈ N,

ii) lim
n→∞

n

C∞(n) log log log n
=∞,

iii) lim
n→∞

n

C∞(n) log n
= 0,

iv) C∞(n) ∈ O

�
n

log log n

�
.
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3. Relation with Carmichael Numbers

This section will study the relation of L∞ with square-free integers and with Car-
michael numbers. The characterization of L∞ given in Proposition 4 allows us to
present the following straightforward lemma which, in particular, implies that L∞
has zero asymptotic density (like the set of cyclic numbers, whose counting function
is O

�
x

log log log x

�
[11].

Lemma 9. If n ∈ L∞, then n is a cyclic number; i.e., gcd(n,ϕ(n)) = 1 and

consequently square-free.

Recall that every Lehmer number (if any exists) must be a Carmichael number.
The converse is clearly false but, nevertheless, we can see that every Carmichael
number is a k-Lehmer number for some k ∈ N.

Proposition 10. If n is a Carmichael number, then n ∈ L∞

Proof. Let n be a Carmichael number. By Korselt’s criterion n = p1 · · · pm and pi−1
divides n−1 for every i ∈ {1, . . . ,m}. We have that ϕ(n) = (p1−1) · · · (pm−1) and
we can put rad(ϕ(n)) = q1 · · · qr with qj distinct primes. Now let j ∈ {1, . . . , r};
since qj divides ϕ(n) it follows that qj divides pi − 1 for some i ∈ {1, . . . ,m} and
also that qj divides n− 1. This implies that rad(ϕ(n)) divides n− 1 and the result
follows.

The two previous results lead to a characterization of Carmichael numbers which
slightly modifies Korselt’s criterion. Namely, we have the following result.

Theorem 11. A composite number n is a Carmichael number if and only if rad(ϕ(n))
divides n− 1, and p− 1 divides n− 1, for every prime divisor p of n.

Proof. We have already seen in Proposition 10 that if n is a Carmichael number,
then rad(ϕ(n)) divides n−1 and, by Korselt’s criterion p−1 divides n−1 for every
prime divisor p of n.

Conversely, if rad(ϕ(n)) divides n−1 then by Lemma 9 we have that n is square-
free, so it is enough to apply Korselt’s criterion again.

The set L∞ not only contains every Carmichael number (which are pseudoprimes
to all bases). It is known that every odd composite n (with the exception of the
powers fo 3) has the property that it is a pseudoprime to base b for some b in
[2, n − 2]. In fact there is a formula [2] for the total number of such bases. In our
case the elements of L∞ are pseudoprimes to many different bases. Some of them
are explicitly described in the following proposition.

Proposition 12. Let n ∈ L∞ be a composite integer and let b be an integer such

that b ≡ a
ϕ(n)

rad(ϕ(n)) (mod n) for some a with gcd(a, n) = 1. Then n is a Fermat

pseudoprime to base b.
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Proof. Since n ∈ L∞, it is odd and rad(ϕ(n)) divides n − 1. Thus: bn−1 ≡

a
ϕ(n)(n−1)
rad(ϕ(n)) = aϕ(n) n−1

rad(ϕ(n)) ≡ 1 (mod n).

4. Carmichael Numbers in Lk\Lk−1. Some Conjectures.

Recall the list of elements from L2 given in the previous section:

{561,1105,1729,2465,6601, 8481, 12801,15841, 16705, 19345, 22321, 30889, 41041 . . . }.

Here, numbers in boldface are Carmichael numbers. Observe that not every Car-
michael number lies in L2, the smallest absent one being 2821. Although 2821 doe
not lie in L2 in is easily seen that 2821 lies in L3.

It would be interesting to study the way in that Carmichael numbers are dis-
tributed among the sets Lk. In this section we will present a first result in this
direction together with some conjectures.

Recall Chernick’s formula [8]:

Uk(m) = (6m + 1)(12m + 1)
k−2�

i=1

(9 · 2im + 1).

Uk(m) is a Carmichael number provided all the factors are prime and 2k−4 divides
m. Whether this formula produces an infinity quantity of Carmichael numbers is
still not known, but we will see that it behaves quite nicely with respect to our sets
Lk.

Proposition 13. Let k > 2. If (6m+1), (12m+1) and (9·2im+1) for i = 1, . . . , k−
2 are primes and m ≡ 0 (mod 2k−4) is not a power of 2, then Uk(m) ∈ Lk \ Lk−1.

Proof. It can be easily seen by induction (we give no details) that

Uk(m)− 1 = 2232m

�
2k−3 +

k−1�

i=1

aim
i

�
.

On the other hand we have that

ϕ (Uk(m)) = 2
k2−3k+8

2 32k−2mk.

We now show that Uk(m) ∈ Lk. To do so we study two cases:
Case 1. 3 ≤ k ≤ 5. In this case k2−3k+8

2 < 2k and, consequently:

ϕ (Uk(m)) = 2
k2−3k+8

2 32k−2mk
�� (2232m)k

�� (Uk(m)− 1)k.

Case 2. k ≥ 6. Since 2k−4 divides m we have that 2k−4 divides 2k−3 +
�k−1

i=1 aimi.
Consequently, since 2k(k − 4) ≥ k2−3k+8

2 in this case, we get that:

ϕ (Uk(m)) = 2
k2−3k+8

2 32k−2mk
�� 22k(k−4)32k−2mk

�� (Uk(m)− 1)k.
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Now, we will see that Uk(m) �∈ Lk−1. Since

(Uk(m)− 1)k−1 = 22k−232k−2

�
2k−3 +

k−1�

i=1

aim
i

�k−1

,

it follows that Uk(m) ∈ Lk−1 if and only if 2
(k−3)(k−4)

2 m divides
��k−1

i=1 aimi
�k−1

.
If we put m = 2hm� with m� odd this latter condition implies that m� | 2k−3k − 1
which is clearly a contradiction because m is not a power of 2. This ends the
proof.

This result motivates the following conjecture.

Conjecture 14. For every k ∈ N, Lk+1 \ Lk contains infinitely many Carmichael
numbers.

Now, given k ∈ N, let us denote by α(k) the smallest Carmichael number n such
that n �∈ Lk:

α(k) = min{n : n is a Carmichael number, n �∈ Lk}.

The following table presents the first few elements of this sequence (A207080 in
OEIS):

k α(k) Prime Factors
1 561 3
2 2821 3
3 838201 4
4 41471521 5
5 45496270561 6
6 776388344641 7
7 344361421401361 8
8 375097930710820681 9
9 330019822807208371201 10

These observations motivate the following conjectures which close the paper:

Conjecture 15. For every k ∈ N, α(k) ∈ Lk+1.

Conjecture 16. For every 2 < k ∈ N, α(k) has k + 1 prime factors.
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