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Abstract
In this paper we focus on two new families of polynomials which are connected
with exponential polynomials φn (x) and geometric polynomials Fn (x). We discuss
their generalizations and show that these new families of polynomials and their
generalizations are useful to obtain closed forms of some series related to harmonic
numbers.

1. Introduction

In this work we are interested in two new families of polynomials, namely
harmonic-exponential polynomials and harmonic-geometric polynomials. We intro-
duce these polynomials and discuss several interesting generalizations of them with
the help of Theorem 1.

Suppose we are given an entire function f and a function g, analytic in a region
containing the annulus K = {z : r < |z| < R} where 0 < r < R. Hence these
functions have the following series expansions,

f (x) =
∞�

n=0

pnx
n and g (x) =

∞�

n=−∞
qnx

n
.

Now we are ready to state Boyadzhiev’s theorem.

Theorem 1. ([7]) Let the functions f and g be described as above. If the series
∞�

n=−∞
qnf (n)x

n

1This work was supported by the Akdeniz University Scientific Research project Unit.
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converges absolutely on K, then

∞�

n=−∞
qnf (n)x

n =
∞�

m=0

pm

m�

k=0

�
m

k

�
x

k
g
(k) (x) (1)

holds for all x ∈ K.

If we consider the function g in Theorem 1 as an analytic function on the disk
K = {z : |z| < R}, then the formula (1) turns out to be

∞�

n=0

g
(n) (0)
n!

f (n)x
n =

∞�

n=0

f
(n) (0)
n!

n�

k=0

�
n

k

�
x

k
g
(k) (x) . (2)

We show that families of polynomials and their generalizations presented in this
paper are considerably useful to obtain closed forms of some series related to har-
monic numbers. For instance we obtain the following closed forms:

∞�

n=1

�
n�

k=1

kHk

�
x

n =
x (1− ln (1− x))

(1− x)3
, (3)

∞�

n=1

�
n�

k=1

k
2
Hk

�
x

n =
x (1 + 2x− (1 + x) ln (1− x))

(1− x)4
, (4)

∞�

n=1

�
n

2

2!
+ n + 1

�
Hnx

n =
3x−

�
−2 + x− x

2
�
ln (1− x)

2 (1− x)2
. (5)

Also for hyperharmonic series, one of our results is

∞�

n=1

�
n�

k=1

kH
(α)
k

�
x

n =
x (1− α ln (1− x))

(1− x)α+2 (6)

where α is a nonnegative integer.
In the rest of this section we will introduce some important notions.

1.1. Stirling Numbers of the First and Second Kind

Stirling numbers of the first kind denoted by
�n
k

�
and Stirling numbers of the second

kind denoted by
�n

k

�
are defined by means of

(x)n = x (x− 1) . . . (x− n + 1) =
n�

k=0

�
n

k

�
x

k (7)

and

x
n =

n�

k=0

�
n

k

�
(x)k (8)
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respectively (see [1, 17]). These numbers are quite common in combinatorics; see,
e.g., [4, 5, 12, 20].

We note that for n ≥ k ≥ 1 the following identity holds;
�

n

k

�
=

�
n− 1
k − 1

�
+ k

�
n− 1

k

�
. (9)

There is a certain generalization of these numbers, namely r-Stirling numbers
(see [9]), which are similar to the weighted Stirling numbers [10, 11]. Combinatorial
meanings, recurrence relations, generating functions and several properties of these
numbers are given in [9]. The concepts of r-geometric polynomials, r-exponential
polynomials and their harmonic versions concerning the r-Stirling numbers are given
in [16].

1.2. Exponential Polynomials and Numbers

Exponential polynomials (or single variable Bell polynomials) [2, 20], φn (x) , are
defined by

φn (x) :=
n�

k=0

�
n

k

�
x

k
. (10)

Grunert expressed these polynomials in terms of Stirling numbers of the second
kind and obtained some fundamental formulas [18]. Besides the work of Grunert
[18], some other well-known studies on these polynomials may be found in [2], [6],
and [23]. We refer the reader to [8] for comprehensive information on exponential
polynomials.

The first few exponential polynomials are:

φ0 (x) = 1, φ1 (x) = x, φ2 (x) = x + x
2,

φ3 (x) = x + 3x2 + x
3, φ4 (x) = x + 7x2 + 6x3 + x

4. (11)

The well-known exponential numbers (or Bell numbers) are obtained by setting
x = 1 in φn (x) i.e.,

φn := φn (1) =
n�

k=0

�
n

k

�
, (12)

(see [3, 12, 13]). The first few exponential numbers are:

φ0 = 1, φ1 = 1, φ2 = 2, φ3 = 5, φ4 = 15. (13)

1.3. Geometric Polynomials and Numbers

Geometric polynomials are defined in [21, 22] as follows:

Fn (x) :=
n�

k=0

�
n

k

�
k!xk

. (14)
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We use Fn, one of the most common notations for these polynomials in the honor
of Guido Fubini [24]. These polynomials are also called as Fubini polynomials [7]
or ordered Bell polynomials [22].

The first few geometric polynomials are:

F0 (x) = 1, F1 (x) = x, F2 (x) = x + 2x2,
F3 (x) = x + 6x2 + 6x3, F4 (x) = x + 14x2 + 36x3 + 24x4

. (15)

In particular, setting x = 1 in (14) we get the n-th geometric number (or ordered
Bell number) Fn as:

Fn := Fn (1) =
n�

k=0

�
n

k

�
k! (16)

(see [7, 22]).
The first few geometric numbers are:

F0 = 1, F1 = 1, F2 = 3, F3 = 13, F4 = 75. (17)

Boyadzhiev [7] introduced “the general geometric polynomials” as:

Fn,r (x) =
1

Γ (r)

n�

k=0

�
n

k

�
Γ (k + r)x

k, (18)

where Re(r) > 0. In the third section we will deal with the general geometric
polynomials.

Exponential and geometric polynomials are connected by the relation

Fn (x) =
� ∞

0
φn (xλ) e

−λ
dλ (19)

(see [7]).
In [15] the authors obtained some fundemental properties of exponential and

geometric polynomials and numbers using Euler-Seidel matrices.

1.4. Harmonic and Hyperharmonic Numbers

The n-th harmonic number is the n-th partial sum of the harmonic series:

Hn :=
n�

k=1

1
k

, (20)

where H0 = 0.
For an integer α > 1, let

H
(α)
n :=

n�

k=1

H
(α−1)
k (21)
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with H
(1)
n := Hn being the n-th hyperharmonic number of order α [4, 13].

These numbers can be expressed in terms of binomial coefficients and ordinary
harmonic numbers as:

H
(α)
n =

�
n + α− 1

α− 1

�
(Hn+α−1 −Hα−1) (22)

(see [13, 19]).
The well-known generating functions of the harmonic and hyperharmonic num-

bers are given by
∞�

n=1

Hnx
n = − ln (1− x)

1− x
(23)

and
∞�

n=1

H
(α)
n x

n = − ln (1− x)
(1− x)α , (24)

respectively [14].
The following relations connect harmonic and hyperharmonic numbers with the

Stirling and r-Stirling numbers of the first kind:
�
k + 1

2

�
= k!Hk, (25)

and
k!H(r)

k =
�
n + r

r + 1

�

r

(26)

(see [4]).

2. Transformation of Harmonic Numbers

In this section we study the series related to harmonic numbers by using the
transformation formula (2).

We set g in (2) as the generating function of harmonic numbers, which is given
by equation (23). After rearranging the kth derivative of the right-hand side of (23)
we obtain the following nice result:

Proposition 2. We have

d
k

dxk

�
− ln (1− x)

1− x

�
=

k! (Hk − ln (1− x))
(1− x)k+1

. (27)

Proof. Follows by induction on k.
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From (27) we have

g
(k) (x) =

k! (Hk − ln (1− x))
(1− x)k+1

(28)

and
g
(k) (0) = k!Hk. (29)

Now we are ready to state a transformation formula for the series related to
harmonic numbers.

Proposition 3. For an entire function f the following transformation formula
holds.

∞�

n=0

Hnf (n)x
n =

1
1− x

∞�

n=0

f
(n) (0)
n!

n�

k=0

�
n

k

�
k!Hk

�
x

1− x

�k

(30)

− ln (1− x)
1− x

∞�

n=0

f
(n) (0)
n!

n�

k=0

�
n

k

�
k!

�
x

1− x

�k

.

Proof. Employing (28), (29) in (2) gives the statement.

Geometric polynomials Fn (x) appear in the second part of the right-hand side
of Equation (30). The first part of the right-hand side contains a new family of
polynomials. We will denote them by Fh

n (x) and call them as harmonic-geometric
polynomials because of their factor Hk. Hence the harmonic-geometric polynomials
are

Fh
n (x) :=

n�

k=0

�
n

k

�
k!Hkx

k
. (31)

The first few harmonic-geometric polynomials are:

Fh
0 (x) = 0

Fh
1 (x) = x

Fh
2 (x) = x + 3x2

Fh
3 (x) = x + 9x2 + 11x3

Fh
4 (x) = x + 21x2 + 66x3 + 50x4

Fh
5 (x) = x + 45x2 + 275x3 + 500x4 + 274x5

. (32)

Using these notation we reformulate Equation (30) as follows:

∞�

n=0

Hnf (n)x
n =

1
1− x

∞�

n=0

f
(n) (0)
n!

�
Fh

n

�
x

1− x

�
− Fn

�
x

1− x

�
ln (1− x)

�
.

(33)
Formula (33) enables us to calculate closed forms of some series related to harmonic
numbers.
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Corollary 4. For any nonnegative integer m the following equality holds:
∞�

n=1

n
m

Hnx
n =

1
1− x

�
Fh

m

�
x

1− x

�
− Fm

�
x

1− x

�
ln (1− x)

�
. (34)

Proof. It follows directly by setting f (x) = x
m in (33).

Remark 5. Equation (34) is a generalization of the generating function of harmonic
numbers, since the case m = 0 gives equation (23). Besides this ordinary case,
thanks to formula (34) , we obtain generating functions of several interesting series
related to harmonic numbers. For instance, the case m = 1 in (34) gives

∞�

n=1

nHnx
n =

x (1− ln (1− x))
(1− x)2

, (35)

and the case m = 2 gives
∞�

n=1

n
2
Hnx

n =
x (1 + 2x− (1 + x) ln (1− x))

(1− x)3
, (36)

and so on.

Now we extend our results to multiple sums.

Proposition 6. We have

∞�

n=1

�
n�

r=0

�
n + s− r

s

�
r

m
Hr

�
x

n =
∞�

n=1




�

0≤i≤i1≤···≤is≤n

i
m

Hi



x
n

=
1

(1− x)s+2

�
Fh

m

�
x

1− x

�
− Fm

�
x

1− x

�
ln (1− x)

�
, (37)

where m and s are nonnegative integers.

Proof. By multiplying the right-hand side of (34) with 1
(1−x)s+1 and the left-hand

side of (34) with its Newton binomial series, and considering the equation

n�

r=0

�
n + s− r

s

�
r

m
Hr =

�

0≤i≤i1≤···≤is≤n

i
m

Hi , (38)

we obtain the statement.

Corollary 7. We have
∞�

n=0

H
(s)
n x

n =
− ln (1− x)

(1− x)s .
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Proof. Setting m = 0 in (37) and considering Fh
0 (x) = 0 and F0 (x) = 1 gives the

desired result.

∞�

n=1

(1m
H1 + 2m

H2 + · · · + n
m

Hn)x
n (39)

=
1

(1− x)2

�
Fh

m

�
x

1− x

�
− Fm

�
x

1− x

�
ln (1− x)

�
.

In the light of (39) we get the following sums:
m = 1 gives

∞�

n=1

�
n�

k=1

kHk

�
x

n =
x (1− ln (1− x))

(1− x)3
, (40)

m = 2 gives

∞�

n=1

�
n�

k=1

k
2
Hk

�
x

n =
x (1 + 2x− (1 + x) ln (1− x))

(1− x)4
, (41)

and so on.

Remark 8. All these formulas and equations which we have obtained until now
reveal that harmonic-geometric polynomials have strong relation with the series of
harmonic numbers. We could state the generating functions of some series related to
harmonic numbers in terms of harmonic-geometric polynomials, as in the equations
(34) and (37).

Remark 9. Most of the results in this section are obtained by setting f (x) = x
m

in the transformation formula (33). It is possible to obtain more general results by
setting f (x) in (33) as an arbitrary polynomial of order m as:

f (x) = pmx
m + pm−1x

m−1 + · · · + p1x + p0 (42)

where p0, p1, · · · , pm−1, pm are any complex numbers. Hence we get the following
equation which is more general than (34):

∞�

n=0

�
pmn

m + pm−1n
m−1 + · · · + p1n + p0

�
Hnx

n (43)

=
1

1− x

m�

k=0

pk

�
Fh

k

�
x

1− x

�
− Fk

�
x

1− x

�
ln (1− x)

�
.
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Specializing coefficients of f gives more closed forms of harmonic number series.
Each polynomial creates another sum. For instance by setting pk = 1 for each
k = 0, 1, . . . ,m in (42) we get

∞�

n=0

�
n

m + n
m−1 + · · · + n + 1

�
Hnx

n (44)

=
1

1− x

m�

k=0

�
Fh

k

�
x

1− x

�
− Fk

�
x

1− x

�
ln (1− x)

�
.

This formula leads the following sums:
The case m = 1 in (44) gives

∞�

n=1

(n + 1)Hnx
n =

x− ln (1− x)
(1− x)2

. (45)

The case m = 2 in (44) gives

∞�

n=1

�
n

2 + n + 1
�
Hnx

n =
x

2 + 2x−
�
1 + x

2
�
ln (1− x)

(1− x)3
, (46)

and so on.
By setting pk = k for each k = 0, 1, . . . ,m in (42) we get

∞�

n=1

�
mn

m + (m− 1)n
m−1 + · · · + n

�
Hnx

n (47)

=
1

1− x

m�

k=1

k

�
Fh

k

�
x

1− x

�
− Fk

�
x

1− x

�
ln (1− x)

�
.

We can give some examples of special cases of (47) as well. For example the case
m = 1 in (47) gives the sum (35). The case m = 2 in (47) gives

∞�

n=1

n (2n + 1)Hnx
n =

3x (1 + x)− x (x + 3) ln (1− x)
(1− x)3

, (48)

and so on.
By setting pk = 1

k! for each k = 0, 1, . . . ,m we get the following general formula:

∞�

n=1

�
n

m

m!
+

n
m−1

(m− 1)!
+ · · · + n + 1

�
Hnx

n (49)

=
1

1− x

m�

k=1

1
k!

�
Fh

k

�
x

1− x

�
− Fk

�
x

1− x

�
ln (1− x)

�
.
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Choosing m = 1 in this formula we turn back to (45). The case m = 2 gives

∞�

n=1

�
n

2

2!
+ n + 1

�
Hnx

n =
3x−

�
−2 + x− x

2
�
ln (1− x)

2 (1− x)2
. (50)

For the other values of m we get the closed forms of these kind of interesting
harmonic number series.

We obtain some of these results by using operator argument in the following
subsection.

2.1. The Operator (xD)

The operator (xD) is defined as:

(xD) f (x) = xf
� (x) (51)

where f
� is the first derivative of a function f.

For any m-times differentiable function f we have

(xD)m
f (x) =

m�

k=0

�
m

k

�
x

k
f

(k) (x) (52)

(see [7]). This fact can be easily proven by induction on m with the help of (9).
We consider the generating function of the harmonic numbers in the formula

(52) . With the help of Proposition 2 we have

(xD)m
�
− ln (1− x)

1− x

�
=

m�

k=0

�
m

k

�
x

k k! (Hk − ln (1− x))
(1− x)k+1

=
1

1− x

�
Fh

m

�
x

1− x

�
− Fm

�
x

1− x

�
ln (1− x)

�
.

On the other hand by using (51) we get

(xD)m

� ∞�

n=1

Hnx
n

�
=

∞�

n=1

n
m

Hnx
n
.

Combining these two results we obtain the formula (34).

2.2. Harmonic-Geometric Numbers

Definition 10. The harmonic-geometric numbers Fh
n are obtained by setting x = 1

in (31) as

Fh
n := Fh

n (1) =
n�

k=0

�
n

k

�
k!Hk. (53)
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The first few harmonic-geometric numbers are

Fh
0 = 0, Fh

1 = 1, Fh
2 = 4, Fh

3 = 21, Fh
4 = 138, Fh

5 = 1095. (54)

Remark 11. By using (25) we can write the harmonic-geometric polynomials and
numbers just in terms of Stirling numbers of the first and second kind as follows:

Fh
n (x) =

n�

k=0

�
n

k

��
k + 1

2

�
x

k, (55)

Fh
n =

n�

k=0

�
n

k

��
k + 1

2

�
. (56)

2.3. Harmonic-Exponential Polynomials and Numbers

Geometric and exponential polynomials are connected to each other via equation
(19). Now with this motivation we define harmonic-exponential polynomials and
numbers.

Definition 12. The harmonic-exponential polynomials and numbers are, respec-
tively, given by the following equations;

φ
h
n (x) :=

n�

k=0

�
n

k

�
Hkx

k (57)

and

φ
h
n := φ

h
n (1) =

n�

k=0

�
n

k

�
Hk. (58)

The first few harmonic-exponential polynomials are,

φ
h
0 (x) = 0

φ
h
1 (x) = x

φ
h
2 (x) = x + 3

2x
2

φ
h
3 (x) = x + 9

2x
2 + 11

6 x
3

φ
h
4 (x) = x + 21

2 x
2 + 11x3 + 25

12x
4

φ
h
5 (x) = x + 45

2 x
2 + 275

6 x
3 + 250

12 x
4 + 137

60 x
5

. (59)

And harmonic-exponential numbers are,

φ
h
0 = 0, φ

h
1 = 1, φ

h
2 =

5
2
, φ

h
3 =

22
3

, φ
h
4 =

295
12

, φ
h
5 =

1849
20

. (60)

We can extend the relation (19) for harmonic types of these polynomials as

Fh
n (z) =

� ∞

0
φ

h
n (zλ) e

−λ
dλ. (61)
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3. Hyperharmonic-Geometric and Exponential Polynomials

In this section we generalize almost all of our results which we obtained in the
previous section.

Let us take g in (2) as

g (x) =
∞�

n=1

H
(α)
n x

n = − ln (1− x)
(1− x)α .

The next proposition gives a formula for the kth derivatives of g (x).

Proposition 13. We have

d
k

dxk

�
− ln (1− x)

(1− x)α

�
=

Γ (k + α)
Γ (α)

1
(1− x)α+k

(Hk+α−1 −Hα−1 − ln (1− x)) . (62)

Proof. This follows by induction on k.

Hence we have

g
(k) (x) =

Γ (k + α)
Γ (α)

1
(1− x)α+k

(Hk+α−1 −Hα−1 − ln (1− x)) (63)

and

g
(k) (0) =

Γ (k + α)
Γ (α)

(Hk+α−1 −Hα−1) . (64)

In the light of Equation (22) we can state (64) simply as

g
(k) (0) = k!H(α)

k . (65)

Now we are ready to prove the following proposition.

Proposition 14. Let an entire function f be given. Then we have the following
transformation formula:

∞�

n=0

H
(α)
n f (n)x

n

=
1

(1− x)α

∞�

n=0

f
(n) (0)
n!

n�

k=0

�
n

k

�
k!H(α)

k

�
x

1− x

�k

(66)

− ln (1− x)
(1− x)α

∞�

n=0

f
(n) (0)
n!

1
Γ (α)

n�

k=0

�
n

k

�
Γ (k + α)

�
x

1− x

�k

.

Proof. Invoking (63) and (65) in (2) gives the statement.
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The second part of the right-hand side of the equation (66) contains the gener-
alized geometric polynomials which are given by (18).

The first part of the right-hand side of the equation (66) also contains a new
family of polynomials which is a generalization of (31). We refer to this new family
as the hyperharmonic-geometric polynomials and define them by

Fh
n,α (x) =

n�

k=0

�
n

k

�
k!H(α)

k x
k
. (67)

The first few hyperharmonic-geometric polynomials are:

Fh
n,α (x) α = 2

n = 0 0
n = 1 x

n = 2 x + 5x2

n = 3 x + 15x2 + 26x3

n = 4 x + 35x2 + 156x3 + 154x4

n = 5 x + 75x2 + 650x3 + 1540x4 + 1044x5

, (68)

and
Fh

n,α (x) α = 3
n = 0 0
n = 1 x

n = 2 x + 7x2

n = 3 x + 21x2 + 47x3

n = 4 x + 49x2 + 282x3 + 342x4

n = 5 x + 105x2 + 1175x3 + 3420x4 + 2754x5

(69)

(note that Fh
n,1 (x) = Fh

n (x)).
With the help of these notations we can write the transformation formula (66)

simply as:
∞�

n=0

H
(α)
n f (n)x

n

=
1

(1− x)α

∞�

n=0

f
(n) (0)
n!

�
Fh

n,α

�
x

1− x

�
− Fn,α

�
x

1− x

�
ln (1− x)

�
. (70)

Now we give a simple formula as a corollary of Proposition 14.

Corollary 15. We have
∞�

n=1

n
m

H
(α)
n x

n =
1

(1− x)α

�
Fh

m,α

�
x

1− x

�
− Fm,α

�
x

1− x

�
ln (1− x)

�
, (71)

where m is a nonnegative integer.
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Proof. Directly seen from the taking f (x) = x
m in (70).

Remark 16. Formula (71) is also a generalization of the generating function of
hyperharmonic numbers since the case m = 0 gives (24).

Equation (71) also makes it possible to get closed forms of some series related to
hyperharmonic numbers, for instance the case m = 1 in (71) gives

∞�

n=1

nH
(α)
n x

n =
x (1− α ln (1− x))

(1− x)α+1 (72)

where F1,α (x) = αx, Fh
1,α (x) = x.

Now we state a more general result, which extends (71) to multiple sums.

Proposition 17. We have

∞�

n=1

�
n�

r=0

�
n + s− r

s

�
r

m
H

(α)
r

�
x

n =
∞�

n=1




�

0≤i≤i1≤···≤is≤n

i
m

H
(α)
i



x
n

=
1

(1− x)α+s+1

�
Fh

m,α

�
x

1− x

�
− Fm,α

�
x

1− x

�
ln (1− x)

�
(73)

where m and s are nonnegative integers.

Proof. The proof follows the same steps of Proposition 6 by considering equation
(71).

Corollary 18. We have

∞�

n=0

H
(s)
n x

n = − ln (1− x)
(1− x)s .

Proof. Letting m = 0 and considering Fh
0,α (x) = 0 and F0,α (x) = 1 gives state-

ment.

For m = 1 we get the following corollary.

Corollary 19. We have

∞�

n=1

�
n�

r=0

�
n + s− r

s

�
rH

(α)
r

�
x

n (74)

=
∞�

n=1




�

0≤i≤i1≤···≤is≤n

iH
(α)
i



x
n =

x (1− α ln (1− x))
(1− x)α+s+2 .
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As an example, the case s = 0 gives
∞�

n=1

�
n�

k=1

kH
(α)
k

�
x

n =
x (1− α ln (1− x))

(1− x)α+2 . (75)

Now we give an interesting formula.

Corollary 20. We have
∞�

n=1

�
1m

H
(α)
1 + 2m

H
(α)
2 + · · · + n

m
H

(α)
n

�
x

n

=
1

(1− x)α+1

�
Fh

m,α

�
x

1− x

�
− Fm,α

�
x

1− x

�
ln (1− x)

�
. (76)

Remark 21. If we set f (x) as an arbitrary polynomial of order m, such as

f (x) = pmx
m + pm−1x

m−1 + · · · + p1x + p0 (77)

where p0, p1, · · · , pm−1, pm are any complex numbers, instead of f (x) = x
m in (70)

we obtain the following general formula:
∞�

n=0

�
pmn

m + pm−1n
m−1 + · · · + p1n + p0

�
H

(α)
n x

n (78)

=
1

(1− x)α

m�

k=o

pk

�
Fh

k

�
x

1− x

�
− Fk

�
x

1− x

�
ln (1− x)

�
.

Restricting (77) one can obtain several closed forms of hyperharmonic number series
in a similar fashion to what we did after Remark 9.

3.1. Some Results Using the Operator (xD)

If we set g as the generating function of hyperharmonic numbers in (52), then we
get

(xD)m
�
− ln (1− x)

(1− x)α

�
=

1
(1− x)α

�
Fh

m,α

�
x

1− x

�
− Fm,α

�
x

1− x

�
ln (1− x)

�
.

On the other hand, using (51) we have

(xD)m

� ∞�

n=1

H
(α)
n x

n

�
=

∞�

n=1

H
(α)
n n

m
x

n
.

Collecting these two results again gives Equation (71), i.e.,
∞�

n=1

H
(α)
n n

m
x

n =
1

(1− x)α

�
Fh

m,α

�
x

1− x

�
− Fm,α

�
x

1− x

�
ln (1− x)

�
.
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3.2. Hyperharmonic-Geometric Numbers

Definition 22. The hyperharmonic-geometric numbers Fh
n,α are obtained by set-

ting x = 1 in (67) as:

Fh
n,α := Fh

n,α (1) =
n�

k=0

�
n

k

�
k!H(α)

k . (79)

The first few hyperharmonic-geometric numbers are:

Fh
n,α α = 2 α = 3

n = 0 0 0
n = 1 1 1
n = 2 6 8
n = 3 42 69
n = 4 346 674
n = 5 3310 7455

(80)

(note that Fh
n,1 = Fh

n ).

Remark 23. Using (26) , which is a relation between hyperharmonic numbers and
r-Stirling numbers of the first kind, we can write the hyperharmonic-geometric
polynomials and numbers in terms of Stirling numbers as:

Fh
n,r (x) =

n�

k=0

�
n

k

��
n + r

r + 1

�

r

x
k
, (81)

and

Fh
n,r =

n�

k=0

�
n

k

��
n + r

r + 1

�

r

(82)

respectively. One can easily see that the relations (81) and (82) are the generaliza-
tions of the relations (55) and (56) .

For the completeness of the work let us define a generalization of the exponential
polynomials.

3.3. Hyperharmonic-Exponential Polynomials and Numbers

Definition 24. The hyperharmonic-exponential polynomials and numbers are de-
fined, respectively, as

φ
h
n,α (x) :=

n�

k=0

�
n

k

�
H

(α)
k x

k, (83)

and

φ
h
n,α := φ

h
n,α (1) =

n�

k=0

�
n

k

�
H

(α)
k . (84)
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The first few hyperharmonic-exponential polynomials are

φ
h
n,α (x) α = 2

n = 0 0

n = 1 x

n = 2 x + 5
2x

2

n = 3 x + 15
2 x

2 + 13
3 x

3

n = 4 x + 35
2 x

2 + 26x3 + 77
12x

4

n = 5 x + 75
2 x

2 + 325
3 x

3 + 385
6 x

4 + 87
10x

5

(85)

and

φ
h
n,α (x) α = 3

n = 0 0

n = 1 x

n = 2 x + 7
2x

2

n = 3 x + 21
2 x

2 + 47
6 x

3

n = 4 x + 49
2 x

2 + 47x3 + 57
4 x

4

n = 5 x + 105
2 x

2 + 1175
6 x

3 + 285
2 x

4 + 459
20 x

5

. (86)

The first few hyperharmonic-exponential numbers are

φ
h
n,α (x) α = 2 α = 3

n = 0 0 0

n = 1 1 1

n = 2 7
2

9
2

n = 3 77
6

58
3

n = 4 611
12

347
4

n = 5 2197
10

24887
60

. (87)

We remark that the case α = 1 gives φ
h
n,1 (x) = φ

h
n (x) and φ

h
n,1 = φ

h
n.

For these new concepts we can generalize the relation (61) as

Fh
n,α (x) =

� ∞

0
φ

h
n,α (xλ) e

−λ
dλ. (88)
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