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Abstract
Ramanujan recorded two beautiful theta function identities on p. 310 of his second
notebook. Employing Ramanujan’s identities, we deduce several results on the
number of representations of a number as a sum of three squares and as a sum of
three triangular numbers previously found by Hirschhorn and Sellers with a different
approach.

1. Introduction

Ramanujan’s general theta function f(a,b) is defined by

fla,b):= Y atrD/2pkm/2)

k=—o0

where |ab| < 1 and n is an integer. If we set a = qe?**, b = ge=2*, and q = ™7,
where z is complex and Im(7) > 0, then f(a,b) = 93(z,7), where ¥3(z,7) denotes
one of the classical theta functions in its standard notation [10, p. 464]. Throughout

the paper, it is assumed that |g| < 1.
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Three special cases of f(a,b) are [5, Entry 22]

2 2. .2
o 2.0 GEegR:
= fa.¢° sz _ (0560w
Y(q) = fla,q") = Zq L), o
=t i e ”/2+Z )eqH D = (g q)e, (3)
k=0

where, as customary, we define

oo

(a;@)oe == [ J (1 — ag®),

k=0
and the product representations in (1)—(3) arise from Jacobi’s famous triple product
identity [5, Entry 19]
f(a,b) = (—a; ab) oo (—b; ab) oo (ab; ab) o

Now, if r5(n) and t3(n) denote the number of representations of n as a sum of
three integer squares and as a sum of three triangular numbers, respectively, then

> ra(n)g" = < > q’“2> =¢*(q) (4)
n>0 k=—o00
and 5
S ta(n)a” = (Z qk<'f+1>/2> — ¥3(q). 5)
n>0 k=0

In [7] and [8], M.D. Hirschhorn and J.A. Sellers found many arithmetic proper-
ties of r3(n) and t3(n) by manipulating g-series and theta functions. Their main
identities are given in the following two theorems.

Theorem 1. We have

D r3(2Tn+9)g" =5 rs(3n+1)g (6)
n>0 n>0
> ra(27n+18)¢" =3 r3(3n+2)q (7)
n>0 n>0
Z r3(27n)¢" =4 Z r3(3n)q" — 3 Z r3(n)g®". (8)

n>0 n>0 n>0
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Theorem 2. We have

D t3(2Tn+3)g" =4 t3(3n)g" — 3 ta(n)g® T, (9)

n>0 n>0 n>0
> t3(2Tn+12)¢" =3 ts(3n+1)g (10)
n>0 n>0
D t3(27n+21)g" =5 ta(3n+2)q" (11)
n>0 n>0

On p. 310 of his second notebook, S. Ramanujan [9] recorded the following two
beautiful theta function identities. If ¢(q), 1(q), and f(—q) are as defined in (1)—(3),
then

<,03(q1/3) 803( ) 1/3f (¢°) 2/3f (=¢%)
ele) () 04 f(q) 12 f(—qQ) (12)
and
1/}3((11/3) ¥°(q) 1/3f (=¢*) 2/3f3(—q6)
s e ey Y e 13)

The first proofs of (12) and (13) were given by B. C. Berndt [6, p. 185, Entry 33]
by using Ramanujan’s modular equations and a method of parameterizations. N.
D. Baruah and J. Bora [3] gave alternative proofs by using other theta function
identities of Ramanujan.

The purpose of this paper is to prove Theorem 1 and Theorem 2 by using (12),
(13). In the next section, we present some simple properties of theta functions
which will be used in the subsequent sections. In Section 3, we prove Theorem 1
and in Section 4, we prove Theorem 2.

2. Preliminary Results

In this section, we state some results which will be used to derive our results related
to r3(n) and t5(n).

Lemma 3. [5, p. 39, Entries 24(ii)—(iv)] If x(q) := (—=¢; ¢*) oo, then

(=) = @*(—a)¥(a),
x(@)x(—q) = x(—¢*),
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Lemma 4. [4, Lemma 2.9] We have

B _f3 L L hh
v(q) = 7 P(q) = T o(—q) = 7, Y( q)—T2 ,

B3 _f3 . _h
f(q)——flf4, X(Q)—fflle, and  x( q)—f2,

where f, := f(—q™), and this notation will be used throughout the sequel.

Lemma 5. [5, p. 49, Corollaries (i) and (ii)] We have

o(q) = ¢(¢”) +2qf(¢*, 4™,
() = f(q*,¢°) + qv(q”).

Lemma 6. [5, p. 51, Example (v)] We have

fla,0%) = ¥(=a*)x(a)-
Lemma 7. [5, p. 350, Eq. (2.3)] We have

fla.¢*) = ¢(:q3)~

Lemma 8. [3] We have

X(=¢*) _ v'(a)
oP(—q)  i(e®)
Lemma 9. [2, Eq. (53)] We have

1+

5(0) — o (g) = 8q (—q8) L OXCELN(=)()

x(—q)
Lemma 10. [1] If
ol _hig

a(q) = ¢(—q°), blg) = Tl

then
30\ Y ©! —q)

a’(q) — 84¢b°(q) =)

Lemma 11. If
P = 20 and Qo) = (o),

then

(22)

(23)
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Proof. Employing (14), we have

P3(q) — qQ%(q) = o) *(—¢°)

x3(q)
_ X ()P (=¢%) o 3(_.3
9(.3
a0 (;(xz(”%q; - 1) '

Employing (20), with ¢ replaced by —¢, in (24), we easily arrive at (23).

3. Proof of Theorem 1

Replacing ¢ by ¢® in (12), we find that

s o) L P@”)e(d®)
vl =0 7@
= A(¢®) + 64B(¢%) + 126°C(¢%),

41282 2 (=4")e(q?)

+ 6q

where
_ ¢ _ PPl _ FP(=d)¢(a)
A=y PO ="y OO =Ty
Since
©*(q) =Y _ra(n)q",
n>0
we readily derive from (25) that
n_ a0
§r3(3n)q =AW =gy
n_ PPl o ff
Tgrs(i’m +1)¢" =6B(q) = 0 - 6f1f§f4ff’2’
n_ P G CONN 3
> r3(3n+2)q" = 12C(q) = 12 e 12f12f3.

n>0

(24)

(26)

(27)
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Using (25), (16), and (18) in (26), we find that

> (e(¢”) +2qf (. ¢"%))

. ) (12(a”) + 2ax(¢*)¥(~4°)) -
(29)

Extracting the terms involving ¢®", ¢>**! and ¢3"*2 from both sides of (29), we
obtain

n _ 3 .3 f3(_q6)
> rs(9n)q" = ©*(q) + 24qx(9)¥(—¢?) ) (30)
n>0
n_ N0 3 ()
§r3(9n+3)q = 2x(q)¥(—q )So(qg) + 60(¢°) )
and
30,3 3(_ 6
nzzjorg(% +6)q" = 12x(q)¢(—q3)ffgg)) + 12@((13)];((_;2))7
respectively.
Next, employing (14), we rewrite (30) as
T PEd)v=e)
§T3(9n)q = (@) +24g 77— (31)
Now, replacing ¢ by —¢q in (17), and then using (19), we obtain
U(=q) = f(—4*,4°) — qv(~¢")
9
= ig% — q¥(—¢°)
= P(¢°) - 4Q(d%),
where P(q) and Q(q) are as defined in Lemma 11. Therefore,
1 1 _ P +4P(@)Q) + ¢*Q*(¢°) (32)

Y(—q)  P(¢?) —qQ(q?) P3(¢3) — 3Q3(¢3)
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Employing (25) and (32) in (31), we find that

> rs(9n)g" = A(¢%) + 69B(¢*) +12¢°C(¢%) + 24qf*(—¢°)(—¢°)

n>0
x <P2<q3> +4P(¢)Q(¢") + q2Q2<q3>>
P3(¢%) — *Q3(¢®)
_ 3 L2 (=®)(=¢*)Q%(¢*)
= Ala") + 240" e s
3 SA(=a®)v(=¢*)P?(¢*)
o (o8 + 20 G )
f3(—q6)w(—q3)P(q3)Q(q3)>
P3(¢3) — ?Q3(¢®) '

Extracting the terms involving ¢®", ¢>"! and ¢3"*? from both sides of (33), we

+q° (12C(q3) +24 (33)

obtain
n_ P (=*)v(-9)Q*(q)
n%%rgmn)q = A(q) + 24q P9 — %) (34)
3 2
;r3(27n+9)q" — 6B(q) + 241 ;?qgw )( )( ), (35)
and
n_ (= q2)¢(—Q)P(Q)Q(Q)
§r3(27n+ 18)¢"™ = 12C/(q) + 24 P3g) — Pl (36)
respectively.
Employing Lemma 11 and Lemma 15 in (35), we find that
n_ oL (@)e(g) P =®)v(=a*)¢*(¢*)
2O = g U

SR MR T AR
Using (27) in (37), we readily arrive at (6).
Next, employing Lemma 11, Lemma 15, and (28) in (36), we obtain
f (= qz)w(—Q)P(q)Q(q)
P3(q) — qQ*(q)
P=a®)e@) |, @)=y (=) e(e®)
e YT @t

f2f6
f1f4 3;7“3 (3n +2)q

> ra(27n 4 18)¢" = 12C(q) + 24
n>0
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to complete the proof of (7).
Now, from (34), Lemma 3, and (21), we have

> r3(27n)q _e@ %

=  w(d®) P3(—q
_ ¥ X)X (=»)e* (=¢®)p(—¢*)v(¢®)
o) + 240~ ¢(¢®)x(—q)
oM LN e ?) o) 3/ 3
~ wl?) w(q3) 4@( %) ~30(d).

Employing (26) and (4) in the above, we arrive at (8) to finish the proof.

4. Proof of Theorem 2

Replacing ¢ by ¢* in (13), we find that

3 U] PP=)(@®) L 2 P (=d")(e?)
=y TR T T )
= L(¢*) + 3¢M(¢°) + 3¢°N(¢*), (38)
where
(g _Peaw@ ~ PP(=%)v(g)
L@) = gy MO =gy AN =Ty
Since ¢%(q) = 3,50 t3(n)q"”, we deduce from (38) that
" P!
> (@) = L) = s (39)
Zt3(3n+1)qn:3M(q):3f3(_q3)w(Q> :3f3£27 (40)
7>0 f(=a) 1
f3(—q6)¢((1) fafz
;tg (3n +2)¢" = 3N(q) =3 ) R (41)

where we have also used Lemma 4.
Employing (13), with ¢ replaced by —¢, (17), and (19) in (39), we find that

n_ (V) (=) | . 2/ (=d") 9
nzzotg(i%n)q = <¢(q9) +3q f(_q) +3q ) )(f(q ¢°) + qv(q”))
¥ (q*) F=d®) o 2P (=d") (e(=¢") 9

= (S + 30y 30 ) (S + o)

(42)
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Extracting the terms involving ¢®", ¢>**! and ¢3"*? from both sides of (42), we

obtain
n_ V3(Q)e(—4?) F(=¢")(q?)
D Y Ay [ )
S t5(0n + 3)q" = y(q) + 3K L) (44)
= ©(—q)
and

ona g =3 (P oy L) o) _ SiS
§t3(9 o _3< f(=q) W)+ f(=¢*) x(—q) ) =0 fi’ (45)

respectively, where in the last equality we used the identities in (15).
Now, replacing ¢ by —g in (16), we have

o(—q) = a(q®) — 2qb(¢°),

where a(q) and b(q) are as defined in Lemma 10.
Therefore, we have

1 1 _ (@) +2qa(¢’)b(¢%) +4¢°b*(¢*) (46)
p(—a)  a(¢®) —2gb(¢*) a*(¢%) — 8¢°b(¢?) '
Employing (38) and (46) in (44), we find that
> t3(9n 4 3)g" = L(¢®) + 3¢M(q”) + 3¢°N(¢”) + 3x(—¢*) f*(—¢°)

n>0

a?(q*) + 2qa(¢®)b(¢®) + 4¢%0*(¢*)
a3(q3) — 8¢3b(¢?))
_ 3y, 0P )X(=¢*) 1 (=¢*)
a <L(q ) +3 a®(q?) — 8¢®b(q®) )
a(q?’)b(bS)x(—qS)f“(—q?’))
a3(q3) — 8¢3b(q®)
V2 (*)x(—=¢*) f*(—¢°)
a3(q*) — 8¢°b(¢?) ) ' 47)

Comparing the terms involving ¢®" on both sides of the above identity, and then

+ 3¢ <M(q3) +2

+3f(N@%+4

applying Lemma 10, we deduce that

;20753(2771 +3)¢" = L(g) +3 30~ 80 )
_ W) | 90 ()
¥(q®) ©*(—q)
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Employing (14), the above can be rewritten as

3
> t3(2Tn+3)q" = ((3;+3 (( ))

n>0
w“(Q) X (=*)v*(¢?)
W) T X3(-q)

Using (20) in (48), we obtain

B OO O I L O I )
2 (@ 3)a" =y 3 41/}(61 %)
to arrive at (9), with further aids from (39) and (5).

Next, comparing the terms involving ¢3! on both sides of (47), and then ap-
plying Lemma 10 and (15), we find that

—3q0°(¢°),

n>0

a(g)b(q)x(—q) f*(—q)
a3(q) — 8qb3(q)

Z t3(27n +12)¢™ = 3M(q) + 6
n>0

f3f2
2

The identity (10) now follows from (49) and (40).
Finally, comparing the terms involving ¢3"*2 on both sides of (47), and then
applying Lemma 10 and (15), we obtain

(49)

b (q)x(—q) f*(—q)
a*(q) — 8¢*(q)

> t3(27n +21)¢" = 3N(q) + 12
n>0

fof2
A’
and then with the aid of (41), the identity (11) follows easily.

=15
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